首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
The relation between the frequency of legume crops in a rotation and the root rot severity in pea was examined in a field survey. Additionally, greenhouse experiments were performed with soil samples from legume rotation trials or from farmers' fields. The frequency of pea crops in current rotations proved to be much less than the recommended value of one in six years. The correlation between pea root rot and the number of years that pea or other legumes were not grown on the field under consideration (called crop interval) was weak. Root rot severity correlated better with the frequency of peas or legumes in general over a period of 18 years, but the frequency still explained only a minor fraction of the variation in disease index. Some experimental data pointed to the occurrence of a highly specific pathogen microflora with continuous cropping of only one legume species, but this phenomenon probably does not occur in farmers' fields. In field samples, root disease index for pea correlated well with that for field bean. The survival of resting structures of pathogens such asAphanomyces euteiches probably explains why the frequency of legume cropping has a higher impact than crop interval on root disease incidence. Pea-free periods and legume frequencies have a poor predictive value for crop management purposes.  相似文献   

2.
Thielaviopsis basicola has been shown to be a root pathogen of pea of considerable importance in Denmark. The fungus is only found in fields with one or more previous pea crops in the field history. In the dry and warm growing season of 1989 the fungus was found in 0·6% and 3·2% of the fields in two separate areas in Denmark. In the fields where T. basicola was detected the average disease severity index in plant samples was 51·8, whereas the average disease severity index in plant samples without the fungus was 27·0. The average yield of green peas was reduced from 5167 to 4171 kg/ha when T. basicola was present. For detection and isolation of T. basicola it is important to use a technique combining microscopic examination, a semi-selective medium and a dilution plate method.  相似文献   

3.
The pea root rot complex is a major concern for green pea production worldwide. This study aimed at characterizing its composition and dynamics throughout a cropping season in northern France. To this end, fungi and oomycetes were isolated from green pea plant roots with symptoms sampled at the flowering stage in 22 fields in 2017, and at the pea emergence, elongation and flowering stages in two fields in 2018. Out of 646 isolates collected, 317 were identified using molecular markers. Fusarium oxysporum, F. solani and F. redolens were highly predominant. Pathogenicity tests separated the isolates into four aggressiveness groups. F. solani isolates were the most aggressive. Phylogenetic analysis of their TEF1 sequences showed that they mainly belonged to the F. pisi lineage, and that F. oxysporum isolates were genetically close to isolates from the UK that did not belong to the forma specialis pisi. In addition, several Clonostachys rhizophaga isolates are reported for the first time to cause pea root rot. The oomycetes were rarely found and were represented by a few Pythium spp. isolates. Lastly, this study shows that the fungal and oomycete communities associated with pea root rot change during the cropping season. The level of dissimilarity of the root-rot-associated communities decreased throughout the cropping season towards a more similar composition at the flowering stage, dominated by F. solani, F. oxysporum and F. redolens. The proportion of nonpathogenic to weakly pathogenic isolates decreased progressively during the growing season in favour of moderately to highly pathogenic isolates.  相似文献   

4.
The infection of above-ground tissues of Brassica napus by Leptosphaeria maculans is well understood. However, root infection (root rot) under field conditions, the development of root rot over time and its relationship to other disease symptoms caused by L. maculans has not been described. A survey of B. napus crops was conducted in Australia to investigate the incidence and severity of root rot. Additionally, the pathway of root infection was examined in field experiments. Root rot was present in 95% of the 127 crops surveyed. The severity and incidence of root rot was significantly correlated with that of crown canker; however, the strength of this relationship was dependent on the season. Root rot symptoms appeared before flowering and increased in severity during flowering and at maturity, a pattern similar to crown canker suggesting that the infection of the root is an extension of the crown canker phase of the L. maculans lifecycle. All isolates of L. maculans tested in glasshouse experiments caused root rot and crown canker in B. napus and Brassica juncea. In the field, the main pathway of root infection is via invasion of cotyledons or leaves by airborne ascospores, rather than from inoculum in the soil. Root rot was present in crops in fields that had never been sown to B. napus previously, in plants grown in fumigated fields, and in glasshouse-grown plants inoculated in the hypocotyl with L. maculans.  相似文献   

5.
为评价东北地区玉米主推品种对禾谷镰孢根腐病的抗性水平,探究根腐病发生与苗势、产量损失间的关系,采用人工接种方法鉴定东北地区117个玉米主推品种对禾谷镰孢根腐病的抗性水平,应用室内盆栽试验分析自交系LN810在施用氮、磷、钾及复合肥后对禾谷镰孢根腐病发生和苗势的影响,在田间对先玉335接种禾谷镰孢菌Fusarium graminearum后探究根腐病发生程度对其苗势及产量的影响。结果显示,117个玉米品种对禾谷镰孢根腐病的抗性差异明显,鉴定出高抗品种14个,抗病品种44个,中抗品种47个,感病品种12个,其中表现中抗以上的品种占89.74%,且中早熟材料均表现为抗性。与未施肥相比,施用磷钾肥后玉米禾谷镰孢根腐病发生率最低,为22.03%。按照禾谷镰孢根腐病发生程度从轻到重将先玉335群体划分为一、二、三类苗,级别越高苗势越弱,产量测定发现二、三类苗的平均产量较一类苗的平均产量分别下降了39.97%和76.39%。表明东北地区主推玉米品种大部分对禾谷镰孢根腐病表现出抗性,但仍有部分品种存在较大感病风险,且该病害的发生程度与幼苗长势和产量呈负相关,施用磷钾肥可降低该病害的发生率。  相似文献   

6.
豌豆根腐病研究进展   总被引:2,自引:0,他引:2  
根腐病是豌豆根部的重要病害之一,在世界各地豌豆产区均有发生,是制约豌豆产业持续健康发展的因素之一。世界上尚未发现对根腐病完全免疫的豌豆品种,防治方法主要以农业防治和化学防治为主。本文从豌豆根腐病的发生与分布、病原菌的分类及特点、抗性鉴定及评价标准、种质资源、分子标记及防治策略等方面对国内外豌豆根腐病研究现状进行综述。并提出抗病育种和未来豌豆根腐病综合防治的研究方向。  相似文献   

7.
Potential antagonists ofFusarium solani f. sp.pisi (Fsp) were selected from soil samples with varying degrees of receptivity to this pathogen. They were tested against Fsp isolate 48 (Fs48), in increasingly complex systems. Most species testedin vitro were able to antagonize Fs48. No relation could be establishedin vitro between the receptivity of the soil from which an isolate originated and its antagonism to Fs48. In soils naturally infested with pea root rot pathogens, which were stored humid at 4°C for a period longer than a year, various isolates ofFusarium, Gliocladium andPenicillium spp. were able to reduce root rot. After sterilization of these soils, onlyGliocladium roseum isolates, added at 105 conidia g–1 dry soil, significantly reduced disease severity and prevented root weight losses caused by Fs48 at 104 conidia g–1 dry soil. In soils in which the biota were activated by growing peas before the assays, doses of 106 and 107 ofG. roseum were required to reduce root rot. In these soils, the antagonistic effects of fluorescent pseudomonad strains from soil of low receptivity to Fsp were variable. Some strains of fluorescent pseudomonads, from soil moderately receptive to Fsp and from highly infested soils, were also able to reduce root rot. Disease suppression by pseudomonad strains was more evident in the absence than in the presence ofAphanomyces euteiches in the root rot pathogen complex. The role of receptiveness of the soil with regard to potential antagonists is discussed.  相似文献   

8.
Fusarium crown and root rot of tomatoes in the UK   总被引:1,自引:0,他引:1  
Fusarium crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici was found in the UK in 1988 and 1989 mainly in rockwool-grown tomato crops. Up to 14% of plants were affected in individual crops. In experiments, leaf and stem symptoms did not appear until the time of first fruit harvest even when the plants were inoculated at planting, first flowers or fruit set. Conidial inoculum at 106 spores/plant applied at seed sowing killed 70–83% of tomato seedlings, whereas similar levels of inoculum applied to young plants caused root and basal stem decay, and eventually death but only after fruit harvest began. Disease incidence and symptom severity increased with inoculum concentration. Experimentally, the disease was more severe in peat- or compost-grown plants than in rockwool. Disease spread was only a few centimetres in 50 days in experimental rockwool-grown plants. All tomato cultivars tested were highly susceptible. Prochloraz-Mn was highly effective against the pathogen in vitro and controlled the disease in the glasshouse, but only when applied preventively. Non-pathogenic Fusarium oxysporum isolates and Trichoderma harzianum also reduced FCRR disease levels.  相似文献   

9.
The occurrence ofAphanomyces euteiches Drechs. in Dutch soils is reported for the first time. Isolates of the pathogen were obtained from peas (Pisum sativum L.). A bioassay was used that baited the pathogen from soil into the cortex of stem and root of seedlings of a highly susceptible pea cultivar. The pathogen could subsequently be isolated on a semi-selective medium. Screening of soil samples from 13 fields known to be infested with fungi causing foot and root rot demonstrated the presence ofA. euteiches in 10 cases. In a second screening on soil samples from 43 fields, the pathogen was present in 16 cases. A positive correlation was found between the disease severity caused byA. euteiches in the seedling bioassay and the disease severity caused by the complex of foot and root pathogens in the same soils as evidenced by a mature plant bioassay. It is considered probable thatA. euteiches has since long been a common component of the foot and root rot complex in Dutch soils but has not been detected previously due to inadequate sampling and isolation techniques.Samenvatting De aanwezigheid vanAphanomyces euteiches Drechs. in Nederlandse gronden is voor het eerst aangetoond. Isolaten van het pathogeen werden verkregen van erwten (Pisum sativum L.). De pathogene schimmel werd in petrischalen uit grond in het schorsweefsel van wortel en stengel van een zeer vatbaar erwteras gelokt. Met behulp van een semiselectief medium konden vervolgens isolaten van de schimmel worden verkregen. Toetsing van grondmonsters afkomstig van 13 percelen, waarvan bekend was dat ze besmet waren met schimmels die voetziekten in erwten veroorzaken, toonde de aanwezigheid vanA. euteiches aan in 10 gevallen. In een tweede biotoets op grondmonsters van 43 percelen bleken 16 monsters het pathogeen te herbergen. Er werd een positieve correlatie gevonden tussen de ernst van de aantasting doorA. euteiches van kiemplanten en de aantasting van volwassen planten in een biotoets in de kas. Het is waarschijnlijk dat de schimmel reeds lang in Nederlandse akkers voorkomt, maar door inadequate bemonsterings- en isolatietechnieken over het hoofd is gezien.  相似文献   

10.
甘薯根腐病抗性在不同环境条件下的表现及遗传趋势   总被引:1,自引:0,他引:1  
结果表明,甘薯根腐病发病轻重与环境条件有很大关系,表现为干旱少雨的年份发病较重,降雨量较多的年份发病较轻;土壤瘠薄的发病较重,肥力条件较好的则发病较轻;通常情况下,年份间品种的抗性表现较为一致,但遇特殊气候则年份间品种的抗性有一定的差异。对1150份甘薯品种资源及育种材料的根腐病抗性鉴定结果表明,高抗型材料占14.6%,抗病型占15.7%,感病型占26.0%,高感型占43.7%。对754份材料及亲本的抗性分析表明,不同的抗性组合后代中均可分离出高抗至高感类型的材料,杂交后代的抗性强弱随双亲抗性水平的提高而提高。中国自1970年以来采用品种间杂交和种间杂交育种技术,先后育成了一批高产、优质的高抗型优良品种。  相似文献   

11.
Research on root rot pathogens of peas in the Netherlands has confirmed the prevalence ofFusarium solani, F. oxysporum, Pythium spp.,Mycosphaerella pinodes andPhoma medicaginis var.pinodella. Aphanomyces euteiches andThielaviopsis basicola were identified for the first time as pea pathogens in the Netherlands. Other pathogens such asRhizoctonia solani andCylindrocarpon destructans were also found on diseased parts of roots. F. solani existed in different degrees of pathogenicity, and was sometimes highly specific to pea, dwarf bean of field bean, depending on the cropping history of the field.A. euteiches was specific to peas, whereasT. basicola showed some degree of physiological specialization.  相似文献   

12.
A high-throughput and reliable seedling bioassay to screen wheat germplasm for crown rot resistance was developed. Single wheat seedlings were grown in square seedling punnets in a glasshouse and inoculated with a monoconidial Fusarium pseudograminearum isolate 10 days after emergence. The punnets were laid horizontally on their side and a 10- µ L inoculum droplet placed on the stem base. Seedlings were incubated at near-saturated relative humidity, and crown rot severity was assessed 35 days after inoculation. Studies on the duration of incubation period, inoculum concentration and temperature were carried out to optimize these parameters. Seedling growth at 25/15(±5)°C in a glasshouse and 48-h incubation at near-saturated RH in darkness gave the best results. When crown rot resistance rankings of 16 Australian cultivars from the bioassay were compared with their field performance, Spearman's rank correlation coefficient was highly significant. This indicated that the seedling bioassay mimicked field resistance to crown rot in adult plants. A bootstrap resampling analysis showed little or no improvement in the coefficient of variation with an increasing number of replications, indicating a high level of precision and reproducibility. By detecting small but consistent differences in crown rot severity, the bioassay proved effective in large-scale screening for partial resistance: already over 1400 wheat genotypes have been screened. The high degree of precision makes this an invaluable tool in the understanding of pathogen aggressiveness, host specialization and parasitic fitness.  相似文献   

13.
The effects of root‐knot nematodes on black root rot of watermelon and bottle gourd were studied using field surveys and co‐inoculation tests with Meloidogyne incognita (southern root‐knot nematode) and Diaporthe sclerotioides. The results of the field survey suggested that root‐knot nematodes had little effect on either the severity of black root rot or infection with D. sclerotioides. None of the three fields showed a significant positive correlation between disease severity and nematode gall index, with low correlation coefficients. Co‐inoculation experiments under controlled conditions found no significant effect of root‐knot nematodes on black root rot of watermelon and bottle gourd based on area under disease progress curves (AUDPC). These results were supported by the quantities of DNA of the two agents in root tissues because no significant difference was found between dual‐ and single‐inoculation treatments with M. incognita and/or D. sclerotioides. These findings suggest that root‐knot nematodes probably do not affect the infection of watermelon or bottle gourd roots by D. sclerotioides or the incidence of black root rot in these crops caused by this fungus.  相似文献   

14.
The relationships between a number of agronomic practices, Fusarium root rot (FRR) measurements and yield variables were characterized at different growth stages in 122 commercial bean fields in Zanjan, Iran. Mean FRR incidence, severity and index differed among growth stages and years. A lower FRR index at growth stage R9 and higher yields were detected in Red beans compared to Pinto and White beans. FRR severity affected the number of pods and seeds per plant. Despite the lack of an impact of initial drought on FRR and yield factors, FRR levels were higher following frequent irrigations at 2–3 days intervals than at longer intervals at R6-7. The highest FRR index at R6-7 (51.9%) and incidence at R9 (69.1%) were associated with the densest category of plant populations. Yield components differed significantly between the levels of plant density at R9. FRR levels at V3 were lower for June plantings than for May-second-week plantings. Lower FRR ratings and higher yields were detected at a seeding depth of 0–5 cm in comparison to 10–20 cm. At R9, FRR levels on beans following maize were lower than those following barley, bean, tomato or wheat. At V3, FRR severity was greater in fields that received 50–500 kg/ha of urea compared to non-fertilized fields. Greater mean FRR index at R6-7 and lower yield levels were associated with the greatest weed density compared to weed-free fields. This new information benefits the systematic understanding of interactions between bean yield, FRR and various agronomic variables at large-scale.  相似文献   

15.
Fungal and oomycete communities in symptomatic roots, crowns and lower stem tissues of field pea plants from sites across the Canadian prairies were characterized using plate culture and sequence-based identification. Symptomatic plants were sampled at the mid-flowering stage from a total of 21 fields in 2014 and 2015. Fungi and oomycete species were isolated on agar medium and grouped into operational taxonomic groups (OTU) based on their morphology. From the OTUs, 40 fungal and oomycete species were identified according to translation elongation factor-1 alpha or ITS sequences. Fusarium spp. accounted for more than 60 % of total isolations. The fungal communities were similar in roots and crowns, but differed from communities in lower stems. In 2014, the most prevalent fungi isolated from roots were F. avenaceum, F. solani and F. redolens, but F. solani was dominant in 2015. In crown tissues, F. avenaceum was most prevalent in 2014 but F. solani was more prevalent in 2015. Stem tissues were primarily colonized by Peyronellaea spp. (= Ascochyta / Phoma spp.) and Alternaria spp. in 2014, but there was a drastic decrease in Peyronellaea spp. in 2015. This study indicated that climate, primarily precipitation levels, and local edaphic characteristics may play a profound role in the structure of phytopathogen communities associated with the root and foot rot diseases complex of field pea on the Canadian prairies.  相似文献   

16.
Poinsettia plants growing in ebb-and-flow irrigation systems developed wilting and root rot during the summer growing seasons of 2010 in Gifu Prefecture and 2011 in Aichi Prefecture. Pythium species were isolated from roots with rot symptoms. The isolates were identified as P. helicoides and P. myriotylum on the basis of morphological characteristics and sequence homologies in the rDNA internal transcribed spacer regions. In pathogenicity tests, these isolates caused severe wilting and root rot. This is the first report of poinsettia root rot disease caused by P. helicoides and P. myriotylum, although P. aphanidermatum was reported as a pathogen of poinsettia root rot. To better understand these diseases, we performed an epidemiological study of three high-temperature-tolerant Pythium species, P. aphanidermatum, P. helicoides and P. myriotylum. Disease incidence as a percentage of diseased plants was greatest at 35 °C for all three species. Disease severity using the rating scale of root rot was also highest at 35 °C, particularly with high zoospore inoculum densities (100.0 zoospores/mL). Although the disease incidence and severity were reduced at lower temperatures, the three Pythium species were able to cause disease at temperatures as low as 20 °C.  相似文献   

17.
苯醚甲环唑等杀菌剂包衣种子防治花生冠腐病和根腐病   总被引:2,自引:0,他引:2  
为筛选能兼治花生冠腐病和根腐病、安全而高效的种子处理药剂,采用室内生测法比较了4种杀菌剂对花生冠腐病菌和根腐病菌的毒力,评价了其包衣种子对花生的安全性,并进行了温室接菌盆栽和田间防治试验。结果显示,苯醚甲环唑、氟啶胺、咯菌腈和氟菌唑对花生冠腐病菌的毒力差异较大,EC_(50)分别为0.05、6.56、0.52和1.43 mg/L;对花生根腐病菌的毒力均较高,EC_(50)分别为0.49、0.31、0.44和0.37 mg/L。氟菌唑2 g(a.i.)/kg种子包衣后,花生出苗率和幼苗的根长、株高和茎叶鲜重均降低,出苗时间延迟1~2 d;而氟菌唑0.5、1 g(a.i.)/kg种子包衣及苯醚甲环唑、氟啶胺、咯菌腈3种杀菌剂的所有剂量处理对花生出苗和幼苗生长均无影响。苯醚甲环唑0.5、1、2 g(a.i.)/kg种子,氟啶胺0.4、0.8、1.6 g(a.i.)/kg种子,咯菌腈0.1、0.2、0.4 g(a.i.)/kg种子和氟菌唑0.5、1 g(a.i.)/kg种子包衣对花生冠腐病、根腐病的温室接菌盆栽防效均在80.19%以上。苯醚甲环唑1、2 g(a.i.)/kg种子和咯菌腈0.4 g(a.i.)/kg种子包衣对花生冠腐病、根腐病的田间防效较高,均在75.30%以上,且对荚果的增产率为5.60%~11.10%。表明苯醚甲环唑和咯菌腈包衣种子对花生安全,且可有效防治花生冠腐病和根腐病,具有开发为兼治药剂的潜力。  相似文献   

18.
An experiment was conducted to study the effectiveness of contact, systemic and botanical fungicides, and indigenous biocontrol agents in controlling red root rot disease of tea plants. In general, all tested bioagents, the combination of Pseudomonas fluorescens and Trichoderma atroviride reduced red root disease incidence recorded in two consecutive field experiments. Among the fourteen treatments tested, soil drenching of systemic fungicides was superior but similar to the combination between P. fluorescens and T. atroviride. In contrast, the maximum green leaf yield and plant growth was achieved when soil application of biocontrol agents was carried out. However, the performance of these biocontrol agents under various combinations was on par with systemic fungicides, but superior to botanical fungicides. Correspondingly, the physiological and biochemical parameters were also greatly increased in plants in several treatments when compared to untreated control. The disease increased from 31.5 % to 40.0 % in untreated control plots and those plants were unhealthy in terms of leaf yellowing, stunted growth with heavy flowering, drying of branches and sudden death of bushes. The tea quality parameters were significantly improved in treated plants including total liquor colour, thearubigins, theaflavins, highly polymerized substance and caffeine contents.  相似文献   

19.
The oomycete pathogen Aphanomyces euteiches causes root rot in various legume species. In this study we focused on A. euteiches causing root rot in pea (Pisum sativum), thereby being responsible for severe yield losses in pea production. We aimed to understand the genetic diversity of A. euteiches in Europe, covering a north-to-south gradient spanning from Sweden, Norway and Finland to the UK, France and Italy. A collection of 85 European A. euteiches strains was obtained, all isolated from infected pea roots from commercial vining pea cultivation fields. The strains were genotyped using 22 simple-sequence repeat markers. Multilocus genotypes were compiled and the genetic diversity between individual strains and population structure between countries was analysed. The population comprising strains from Italy was genetically different and did not share ancestry with any other population. Also, strains originating from Finland and the eastern parts of Sweden were found to be significantly different from the other populations, while strains from the rest of Europe were more closely related. A subset of 10 A. euteiches strains from four countries was further phenotyped on two susceptible pea genotypes, as well as on one genotype with partial resistance towards A. euteiches. All strains were pathogenic on all pea genotypes, but with varying levels of disease severity. No correlation between the genetic relatedness of strains and virulence levels was found. In summary, our study identified three genetically distinct groups of A. euteiches in Europe along a north-to-south gradient, indicating local pathogen differentiation.  相似文献   

20.
Root rots are limiting factor for pea production worldwide. This disease is caused by a pathogen complex and the role of single pathogens is unclear. This study aimed at identifying pathogens involved in a root rot of organically grown field pea in Germany, and establishing their importance in the disease complex. The potential of yard waste compost to suppress the diseased was also studied. Average disease severity index was similar in 2010 and 2011 (DI of 4.56 to 4.59, respectively) but it increased in 2012 to DI 5.8. Peyronellaea pinodella was most frequently isolated pathogen, with isolation frequency from 86%, 73% and 86% in 2010, 2011 and 2012, respectively. In addition, Didymella pinodes, Fusarium solani f. sp. pisi, F. oxysporum f. sp. pisi and F. avenaceum were the main fungi recovered from pea roots. In pathogenicity test all of the tested pathogens caused weak symptoms on the pigmented winter variety EFB33 and moderate to severe symptoms on the white flowering summer variety Santana. F. avenaceum was the most aggressive pathogen on Santana with DI of 7.4 followed by P. pinodella with DI of 5.7. The high aggressiveness combined with the wide host range highlights the possibility of F. avenaceum emerging as potential risk for organic crop rotation. High levels of resistance of EFB33 against all pathogens shows the potential of this variety to serve as a resource in further research for identification and development of new sources of resistance against root rot diseases of pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号