首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Leaves of powdery mildew-susceptible barley (Hordeum vulgare cv. Ingrid) and related near-isogenic lines bearing various resistance genes (Mla12, Mlg or mlo5) were inoculated with Blumeria graminis f. sp. hordei race A6. Fungal attack induced several-fold increases in ethylene emission and electrolyte leakage in leaves of susceptible Ingrid beginning 3 days after inoculation. Activities of peroxidase, superoxide dismutase, glutathione S-transferase, ascorbate peroxidase and glutathione reductase enzymes were induced markedly in susceptible leaves 5–7 days after inoculation. Similar, but less pronounced pathogen-induced changes were detected in inoculated leaves of Mla-type resistant plants that show hypersensitive cell death upon inoculation, and, to an even lesser extent, in the Mlg and mlo lines, where no visible symptoms accompanied the incompatible interaction. Glutathione content increased only in susceptible barley 7 days after inoculation. Catalase activity, total ascorbate content and redox state were not influenced by inoculation in any of the genotypes. The activity of dehydroascorbate reductase was significantly reduced 3–5 days after inoculation in the susceptible parental plants and after 5 days in Mla and Mlg lines, while it was stable in the mlo barley. Slightly elevated levels of H2O2 were observed in the inoculated resistant plants. In contrast, H2O2 content decreased in the susceptible line 7 days after pathogen attack. These data indicate that high levels of antioxidants are involved in the compatible interaction of susceptible barley and powdery mildew by protecting the pathogen from oxidative damage.  相似文献   

2.
A Gram-positive and catalase positive Staphylococcus strain was found to be associated with spongy tissue defect of Alphonso mango. The organism was identified to species level by physiological, morphological and biochemical characterization and fatty acid profile. The strain was identified as Staphylococcus xylosus (IMTECH, India, Accession No. MTCC 7441). The optimal growth of the organism was observed in the pH range of 5.0–9.0 and temperature range of 10–45°C. It was mannitol and arabinose-positive and able to produce acid from various sugars. The organism was able to grow in a medium containing 2–10% NaCl. It was further identified to species level by genomic sequencing of 1,387 base pairs of DNA (Gene Bank accession No. EU019195). Based on nucleotide homology and phylogenetic analysis, the microbe was found to be S. xylosus. The survey of Alphonso mango trees with a known history of producing spongy fruits showed that some of the twigs, leaves and flowers were coated with a honeydew-like sticky substance and mango hopper insects were observed over the inflorescence. The source of contamination of spongy fruits by S. xylosus was in the sticky mass. Gram staining, the catalase test and morphological features of the culture isolated from the sticky mass exhibited characteristics identical to the Staphylococcus strain isolated from the spongy pulp. Pathogenicity tests on different varieties of mangoes, apples and guavas indicated that the disease was experimentally transmitted from infected to healthy fruits. This observation suggested that this organism develops spongy symptoms in the fruits post-harvest and lacks specificity. In inoculated fruits, catalase and peroxidase enzymes were expressed as in naturally infected fruits. This report shows that the infection by S. xylosus could be a major initiating factor for spongy tissue development in Alphonso mangoes.  相似文献   

3.
Climate change, deforestation and over reliance on chemical pesticides during the last five decades are presumed to have had a significant impact on the incidence and abundance of agricultural pests. The thrips (Scirtothrips dorsalis Hood) and the greenfly (Empoasca flavescens Fabricius), which were previously considered as minor or occasionally as serious pests in localized areas of tea plantations, are now established as regular and at times major pests in tea plantations of North Bengal spread over the sub Himalayan slopes and the adjoining plains of Terai and the Dooars. Tea-planters from different pockets of North Bengal have been repeatedly reporting control failures of these pests with the use of insecticides in recommended dilutions. A study of their seasonal incidence along with activity of detoxifying enzymes was considered. The trend of a recent population study revealed that E. flavescens and S. dorsalis were abundant throughout the year, with peaks during April to June. Abiotic factors such as temperature, rainfall, sunshine hours and relative humidity (afternoon) influenced the population abundance. Insecticide-exposed populations showed higher levels of activity of the detoxifying enzymes than those collected from organic plantations and the laboratory-reared populations that had not been exposed to insecticides. Detoxifying enzymes in insecticide-exposed E. flavescens collected from Terai and the Dooars as compared with laboratory control specimens showed 3.0–5.2 and 3.0–9.7-fold increases in general esterases (GEs), 1.5–4.8 and 3.6–5.3-fold increases in cytochrome P450s (CYPs) and 1.2–3.5 and 1.5–2.5-fold increases in glutathione-s-transferases (GSTs), respectively. Similarly, S. dorsalis collected from Terai and the Dooars showed 2.0–6.0 and 2.3–5.6-fold increases in GEs, 1.5–2.3 and 1.6–2.4-fold increases in CYPs and 2.6–3.7 and 2.3–3.6-fold increases for GSTs, respectively. Bands of isozymes of esterase I–VI and I–V were found to be expressed in insecticide-exposed specimens whereas a negligible expression was evident for the bands in unexposed E. flavescens and S. dorsalis of organic plantations and laboratory-reared origins, respectively. The data obtained in the present study would be useful in developing the integrated resistance management strategies leading to effective management of the said pests.  相似文献   

4.
Dry fungal biomass ofPenicillium chrysogenum (dry mycelium), a waste product of the pharmaceutical industry, was extracted with water and applied to the roots of melon plants before or after inoculation withFusarium oxysporum f.sp.melonis (Font). Seedlings (4–6 days after emergence) treated with either acidic dry mycelium extract (DME) or neutralized dry mycelium extract (NDME) were protected against challenge infection withFom. A single drench with 2–5% DME applied 12–72 h before inoculation provided significant control of the disease compared with water-drenched, challenged seedlings. No protection was seen in plants treated 0–6 h before inoculation or 0–48 h after inoculation. Neither DME nor NDME (0.5–5%) had any effect on fungal growthin vitro, which implied that disease controlin vivo was mediated by induced resistance. The resistance induced by DME protected melon plants not only against race 1,2, but also against the three other races of the pathogen, indicating a race-non-specific resistance againstFom. Both DME and NDME significantly increased peroxidase activity and free L-proline content in seedlings 12 h and 48 h after soil drench, respectively. Resistance to Fusarium wilt was significantly associated with elevated levels of peroxidase activity but not with free L-proline content. Thus, peroxidase might be involved in the defense mechanisms activated by DME or NDME. http://www.phytoparasitica.org posting Aug. 31, 2001.  相似文献   

5.
The effect of two chemical elicitors (acibenzolar-S-methyl benzo-[1,2,3]- thiadiazole-7-carboxylic acid S-methyl ester [Boost 500SC]) and salicylic acid in inducing resistance in tea plants against blister blight disease caused by Exobasidium vexans Massee, was studied. Treatments with elicitors resulted in reduced severity of blister blight disease in nursery plants on challenge with the pathogen. There was a significant increase in the activities of defense enzymes like phenylalanine ammonia lyase, peroxidase and β-1,3-glucanase on elicitor treatments in tea leaves challenged with the pathogen than on unchallenged leaves. Acibenzolar-S-methyl (ASM) at 0.14% registered the lowest disease severity (25.2%), whereas treatments with salicylic acid were inferior. Under field conditions, the application of ASM at 0.14% resulted in disease protection of 25%. When ASM was applied in alternate rounds with a standard fungicide, the disease protection improved to 46.8%. The importance of incorporating ASM as a component in integrated disease management and also its importance in organic tea cultivation is discussed.  相似文献   

6.
Chitosan (β-1,4-linked glucosamine oligomer) derived from crab shells conferred a high protection of grapevine leaves against grey mould caused by Botrytis cinerea. Under controlled conditions, it was shown to be an efficient elicitor of some defense reactions in grapevine leaves and to inhibit directly the in vitro development of B. cinerea. Treatment of grapevine leaves by chitosan led to marked induction of lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL) and chitinase activities, three markers of plant defense responses. Dose-response curves show that maximum defense reactions (PAL and chitinase activities) and strong reduction of B. cinerea infection were achieved with 75–150 mg l−1 chitosan. However, greater concentrations of chitosan did not protect grapevine leaves with the same efficiency, but inhibited mycelial growth in vitro. Present results underlined the potency of chitosan in inducing some defense responses in grapevine leaves which in turn might improve resistance to grey mould.  相似文献   

7.
Plants constitutively produce a variety of secondary metabolites that have antimicrobial activities against phytopathogens; however, interactions between these performed antimicrobial compounds and phytopathogens were poorly understood. In this study, interactions between epigallocatechin gallate (EGCg), which was a major tea catechin that had antimicrobial activities against varieties of bacteria, and Pseudomonas syringae pv. theae (P.s. theae), the causal of bacterial shoot blight of tea, were investigated. EGCg had less antimicrobial activity against P.s. theae; however, subinhibitory concentrations of EGCg induced biofilm formation. Because biofilms are induced in the presence of sucrose in the culture medium but not by P.s. theae strains deficient in exopolysaccharide levan production, biofilm induction by EGCg and levan production are closely related. EGCg increased survival of P.s. theae under dry conditions on nonwounded leaf surfaces in the presence of sucrose. These data indicate the possibility that tea catechins affect the survival of P.s. theae on the phyllosphere. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Yigal Elad 《Phytoparasitica》1991,19(3):201-209
Difluoromethylornithine (DFMO) — an inhibitor of polyamine biosynthesis, and the polyamine spermidine (Spd) reduced gray mold of tomato, pepper, eggplant, bean andSenecio sp. leaves, and of rose petals by 37–88% when applied at 0.1–1.0 mM each. Higher doses did not result in better control. The disease was also reduced significantly on tomato fruits by 1.0 inM DFMO and by 0.1–1.0 mM Spd, and on cucumber fruits by 0.1–1.0 mM of both compounds, but not on grape berries. The combination of 0.2 mM DFMO with 1.0 mM Spd controlled gray mold ofSenecio sp. and tomato leaves additively better than either treatment alone, whereas this effect was not observed in leaves of lettuce and pepper. Ethylene production was reduced significantly by Spd applied to leaves of tomato and pepper, but not by DFMO. Linear growth and germination of the fungus were affected by lower concentrations of DFMO (ED50 0.12–0.97 and 1.4, respectively) as compared with Spd. Spermidine and DFMO controlled white mold(Sclerotinia sclerotiorum) as effectively as did the fungicide benomyl. Contribution from the Agricultural Research Organization. No. 3195-E, 1991 series.  相似文献   

9.
The effect of microclimate variables on development ofClonostachys rosea and biocontrol ofBotrytis cinerea was investigated on rose leaves and crop residues. C.rosea established and sporulated abundantly on inoculated leaflets incubated for 7–35 days at 10°, 20° and 30°C and then placed on paraquat—chloramphenical agar (PCA) for 15 days at 20°C. On leaflets kept at 10°C, the sporulation after incubation on PCA increased from 60% to 93% on samples taken 7 to 21 days after inoculation, but decreased to 45% on material sampled after 35 days. A similar pattern was observed on leaves incubated at either 20° or 30°C. The sporulation ofC. rosea on leaf disks on PCA was not affected when the onset of high humidity occurred 0, 4, 8, 12 or 16 h after inoculation. However, sporulation was reduced to 54–58% on leaflets kept for 20–24 h under dry conditions after inoculation and before being placed on PCA. The fungus sporulated on 68–74% of the surface of leaf disks kept for up to 24 h at high humidity after inoculation, but decreased to 40–51% if the high humidity period before transferral to PCA was prolonged to 36–48 h. The growth ofC. rosea on leaflets was reduced at low inoculum concentrations (103 and 104 conidia/ml) because of competition with indigenous microorganisms, but at higher concentrations (105 and 106 conidia/ml) the indigenous fungi were inhibited. Regardless of the time of application ofC. rosea in relation toB. cinerea, the pathogen’s sporulation was reduced by more than 99%. The antagonist was able to parasitize hyphae and conidiophores ofB. cinerea in the leaf residues. AsC. rosea exhibited flexibility in association with rose leaves under a wide range of microclimatic conditions, and in reducingB. cinerea sporulation on rose leaves and residues, it can be expected to suppress the pathogen effectively in rose production systems.  相似文献   

10.
Nathan  S. Senthil  Chung  Paul Gene  Murugan  K. 《Phytoparasitica》2004,32(5):433-443
The effect of botanical insecticides and bacterial toxins on gut enzyme activity of larvae of the rice leaffolderCnaphalocrocis medinalis (Guenée) (Insecta: Lepidoptera: Pyralidae) was investigated. Gut enzyme activities were affected by botanical insecticides and bacterial toxin individually and in combination. When fed a diet of rice leaves treated with botanical insecticides and bacterial toxins, in bioassays the activities of gut tissue enzymes — acid phosphatases (ACP), alkaline phosphatases (ALP) and adenosine triphosphatases (ATPase) — of rice leaffolder larvae were affected. When combined, the effect was more severe at a low concentration. Larvae that were chronically exposed to botanical insecticides and bacterial toxins showed a reduction in weight (59–89%) and exhibited a significant reduction in ACP, ALP and ATPase activities. The combination ofBacillus thuringiensis kurstaki and botanical insecticides caused a decrease of twofold in enzyme activity even at reduced concentration. A synergistic effect was found when botanical insecticides and bacterial toxins were combined at low doses. These effects were most pronounced in early instars. Clear dose-response relationships were established with respect to enzyme activity. In conclusion: (i) biopesticides are relatively safe and biodegradable; (ii) a synergistic effect of botanical insecticides and bacterial toxins was found; (iii) less expensive, readily available and naturally occurring biopesticides could be an alternative for organic and inorganic pesticides in controlling RLF. http://www.phytoparasitica.org posting Sept. 28, 2004.  相似文献   

11.
The Ya Li pear (Pyrus bretschneideri) trees were sprayed three times with 2.5 mM salicylic acid (SA) around 30, 60 and 90 days after full flowering. The fruit were harvested at commercial maturity (about 120 days after full flowering), inoculated with Penicillium expansum, and incubated at 20 °C, 95–100% RH. The results showed that resistance to the pathogen of the mature pear fruit was remarkably enhanced by the SA sprays. Disease incidence in the SA-treated fruit was 58.0% or 26.5%, and lesion diameter on SA-treated fruit was 58.4% or 29.0% lower than that in/on fruit without SA treatment (control) on day 12 or 17 after incubation, respectively. The SA spray applied to the trees around 30 days after full flowering notably enhanced accumulation of hydrogen peroxide in the young fruit. Meanwhile, activities of defense enzymes, including peroxidase, phenylalanine ammonia-lyase (PAL), chitinase or β-1,3-glucanase in the young fruit from SA-treated trees was 29.5%, 60.0%, 24.4% or 35.7% higher than that in the control fruit 4 days after the SA spraying. Furthermore, after harvest, activities of PAL, chitinase and β-1,3-glucanase were still significantly higher in the mature pear fruit from the trees sprayed three times with SA than those of the control fruit. Activities of the antioxidant enzymes including catalase and ascorbate peroxidase in the young fruit were significantly reduced by SA spraying. However, the activity of another antioxidant enzyme, glutathione reductase in the young fruit was significantly enhanced by SA spraying. These results suggest that enzymes exerting their functions in different ways may be coordinately regulated by SA in the pear fruit. Our study indicates that treatment of SA sprays on the trees may provide further protection against postharvest disease of Ya Li pear fruit in practice and could be used as an alternative and economical approach to reduce application of chemical fungicides.  相似文献   

12.
为明确一种全身覆盖表皮毛的野生甘蓝Brassica incana(编号C01)是否具有抗虫性,通过测定菜青虫Pieris rapae对野生甘蓝C01和无毛甘蓝B. alboglabra(编号C41)的拒食、取食和产卵行为进行抗虫性分析,同时通过测定两者的内源激素含量、表皮毛发育相关基因表达量和防御酶活性探讨野生甘蓝C01对菜青虫的抗性机理。结果显示,生长至8~10叶期,无毛甘蓝C41叶片被菜青虫啃食严重,但野生甘蓝C01叶片未被啃食;菜青虫对无毛甘蓝C41和剪除表皮毛的野生甘蓝C01叶片取食面积差异不显著,但均显著大于对野生甘蓝C01叶片的取食面积;着卵的无毛甘蓝C41植株显著多于野生甘蓝C01。野生甘蓝C01叶片中茉莉酸和茉莉酸甲酯含量都显著高于无毛甘蓝C41叶片,而两者中水杨酸和水杨酸甲酯的含量差异不显著。BolJAZ1基因在无毛甘蓝C41叶片中高表达,而BolGL3和BolGL2基因在野生甘蓝C01叶片中高表达;且野生甘蓝C01叶片中多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶3种防御酶的活性均显著高于无毛甘蓝C41。表明野生甘蓝C01叶片的表皮毛会影响菜粉蝶产卵,对菜青虫表现出显著抗...  相似文献   

13.
丁布胁迫对亚洲玉米螟氧化还原系统的影响   总被引:1,自引:0,他引:1  
为探明丁布胁迫对亚洲玉米螟氧化还原系统的影响,采用酶活力测定方法和实时荧光定量PCR技术,研究了取食丁布含量差异显著的3个玉米品种登海662、浚单20和隆玉602叶片及模拟其叶片丁布含量的人工饲料后,玉米螟3龄幼虫氧化还原系统主要酶活性和谷氧还蛋白(Grx)mRNA转录表达的变化。结果显示:取食3个玉米品种叶片24 h后,亚洲玉米螟幼虫过氧化物酶和超氧化物歧化酶活性均显著高于对照,且在3个品种处理间差异显著,由大到小依次为登海662(118.30 U/mg和182.19 U/mg)、浚单20(107.13 U/mg和90.02 U/mg)和隆玉602(77.54 U/mg和93.59 U/mg)。取食浚单20可显著促进幼虫脂肪体Grx的表达,取食登海662可显著促进其中肠Grx的表达;取食模拟登海662叶片丁布含量的人工饲料12 h后,幼虫脂肪体中Grx表达量高于对应玉米叶片饲喂处理,而中肠部位则低于对应玉米叶片饲喂处理;取食模拟浚单20的结果与模拟登海662相反。表明亚洲玉米螟氧化还原系统在防御丁布胁迫过程中发挥着重要作用。  相似文献   

14.
Volatile compounds of plants, including monoterpenes, are a possible source of signal molecules that induce defense systems to protect plants from tissue damage. Volatile compounds from rough lemon leaves were trapped by solid-phase microextraction fibers in sealed vials, and subsequent gas chromatography–mass spectrometry and gas chromatography analyses identified the profile of the major components, mainly various monoterpenes. Among several monoterpenes examined, citral, citronellal, and linalool significantly inhibited the spore germination and hyphal growth of Alternaria alternata. The effect of linalool was fungistatic, while the effects of citral and citronellal were partially fungicidal. Wounding of rough lemon leaves induced a significant increase in release of monoterpenes. The release of linalool was the most abundant and was 14.5 times that of unwounded rough lemon leaves. Unlike the wounding treatment, microbe attack did not significantly change monoterpene releases, and there was statistically no difference found in the peak areas from microbe-treated and untreated leaves. Linalool, limonene, and β-pinene also had insect-repellant effects on wild-type Drosophila melanogaster. Expression patterns of defense-related genes in rough lemon and rice significantly changed after treatment with vapors of monoterpene volatiles. Taking these results together, monoterpene volatiles are likely to play roles in the defense of rough lemon against microbe and insect pathogens.  相似文献   

15.
A two-year study was conducted to determine the effect of six sanitation treatments on leaf litter density (LLD), relative ascospore production of Venturia inaequalis and scab incidence on spur-leaf clusters, leaves and harvested fruits, on two cultivars with low and high scab susceptibilities, in Hungarian integrated and organic apple orchards. The following sanitation treatments were used: sprays of lime sulphur in autumn, collecting fallen leaves in autumn, straw mulch cover in late winter, sprays of lime sulphur followed by mulch cover, collecting fallen leaves followed by mulch cover, collecting fallen leaves followed by covering the orchard floor with plastic foil, and non-sanitized control. LLD decreased continuously in all treatment plots by 0–23% by mid-May in both orchards and years; however, LLD reduction was 1.4–4.2 times higher in the organic orchard compared to the integrated one. All treatments, except for the lime sulphur treatment, resulted in significant (P < 0.05) reduction of LLD and ascospore production in both the integrated and organic apple orchards compared to non-sanitized plots. The most efficient treatment was leaf collection combined with plastic foil cover, followed by leaf collection combined with mulch cover, leaf collection alone, mulch cover alone, and lime sulphur spray combined with mulch cover, with a reduction in the ascospore production of >95, 72–92, 56–79, 24–38, and 27–46%, respectively, in the mean of both orchards and years. However, only treatments of leaf collection applied alone, or in combination with mulch or with plastic foil cover reduced significantly (P < 0.05) leaf and/or fruit scab incidence by 18–57% compared to non-sanitized plots. These three leaf collection treatments are recommended in both integrated and organic orchards and the possibilities of successfully incorporating these methods into orchard management practices are interpreted.  相似文献   

16.
Severe blight of stems, leaves and pods caused by Botrytis cinerea was found on pearl lupine (Lupinus mutabilis), a legume crop, grown in Kagawa Prefecture, Japan, in March–June 1996–2002. This disease was named “gray mold of pearl lupine” as a new disease. One of the fungal isolates obtained in this study was deposited in Genebank, National Institute of Agrobiological Sciences as accession MAFF238557.  相似文献   

17.
Dry mycelium (DM) of killedPenicillium chrysogenum and its water extract (DME) were used to induce resistance in cotton plants againstFusarium oxysporum f.sp.vasinfectum (Fov). Results showed that the efficacy of either DM or DME in controlling the disease depends on both the concentration and the mode of application. DM amended to the soil at 0.25–2% (w/w) provided 32–75% protection againstFov. Soil drench with 2–5% DME (w/v) and pre-sowing seed soakage with 5–10% DME provided 51–77% and 28–35% protection against the wilt disease, respectively, whereas no protection was obtained with foliar sprays of 1–10% DME. DM and its water extract had no direct antifungal activity on growth ofFov in vitro, suggesting that disease control with DM or DME resulted from the induction of natural defense mechanisms in the cotton plants. Soil drench with 5% DME was as effective as 2% DM powder in inducing resistance againstFov, implying that the resistance-inducing substances were mostly water-soluble. Four cotton cultivars with various genetic resistance levels againstFov were tested at the seedling stage: two resistant ‘Pima’ cultivars and two susceptible ‘Acala’ cultivars. The level of protection achieved in the two susceptible cultivars with DME was equal to, or higher than, that of the two resistant cultivars treated with water. Innate and induced peroxidase activity in cotyledons or hypocotyls and roots coincided with the level of genetic resistance and DME-induced resistance, respectively. Based on our results, an integrated control strategy ofFov with both genetic resistance and induced resistance is suggested.  相似文献   

18.
Among 153 isolates ofRhizoctonia spp. obtained from 95 soil samples collected from different fields in the USA, 42 (27.5%) isolates were hypovirulent or non-pathogenic on cabbage (tested on tap water agar plus 250 μg/ml chloramphenicol plates). Of these, 14 (33.3% of the np-R) isolates protected >60% of the cabbage seedlings againstR. solani, and the best eight isolates protected 73–95% of the cucumber seedlings. The np-R isolates RU56-8 (AG-P) and RU89-1 [AG-B(o)] induced the highest resistance against hypocotyl challenge inoculation with virulentR. solani (38.3–85.7%), whereas most of the challenged control seedlings (85–100%) collapsed. Similarly, isolates RU56-8 and RU89-1 induced the highest resistance (22.2–87.5%) against hypocotyl challenge inoculation withPythium aphanidermatum, whereas most of the challenged control seedlings collapsed (90–100%). Isolates RU56-8 and RU89-1 significantly reduced the lesion numbers and area/leaf (to 8.9–42.0% of the control) caused by challenge inoculation of the first true leaves withPseudomonas syringae pv.lachrymans. No np-R isolate could be recovered from the upper hypocotyls or from the leaves, indicating that there was no contact between the inducer and the pathogen. Root colonization with some np-R increased seedling tolerance to low soil moisture levels.  相似文献   

19.
Ascochyta blight caused by Ascochyta rabiei, is the most destructive disease in many chickpea growing countries. Disease development varies with the growth stage and host resistance. Hence, disease development was studied in cvs ICCX 810800 (resistant), ICCV 90201 (moderately resistant), C 235 (moderately susceptible), ICCV 96029 and Pb 7 (susceptible) under controlled environment (ICRISAT, Patencheru) and field conditions (Dhaulakuan, Himachal Pradesh) at seedling, post-seedling, vegetative, flowering and podding stages. Under controlled environment, the incubation period and terminal disease reaction (TDR) did not vary significantly at different growth stages against virulent isolate AB 4. Cultivars ICCX 810800, ICCV 90201 and C 235 showed a significantly longer incubation period than the susceptible cv. Pb 7. Cultivar ICCX 810800 showed slow disease progress and the least TDR. Field experiments were conducted during the 2003–2004 and 2004–2005 growing seasons. During 2003–2004, TDR was higher in plants inoculated at podding and the flowering stage and the lowest disease reaction was recorded in ICCX 810800. A severe epidemic during 2004–2005 was attributed to the favourable temperature, humidity and well distributed high rainfall. TDR did not differ significantly at any of the growth stages in susceptible cvs ICCV 96029 and Pb 7. With respect to seeding date and cultivar, the highest yield was recorded in the early-sown crop (1,276.7 kg ha−1) and in ICCV 90201 (1,799.3 kg ha−1), respectively. The yields were greatly reduced in all the cultivars during 2004–2005 and the highest yield was recorded in ICCX 810800 (524.7 kg ha−1). Integrated disease management using resistant cultivars, optimum sowing period and foliar application of fungicides will improve chickpea production. The experiment under controlled environment and field conditions (during the epidemic year) showed a similar disease development.  相似文献   

20.
Each living cell of a plant produces photons in certain conditions. Under normal physiological conditions, cell photon emission is stationary and minimal. Disturbance in the oxidative homeostasis by biotic stress is manifested by increased ‘biophoton’ production. Such biophoton responses of plants may be used as an integral indicator of the degree of oxidative homeostasis misbalance. Our results demonstrate that biophoton generation has been much higher in a resistant potato variety than in a susceptible one till 10 h after Phytophthora infestans inoculation. In contrast, ultra-weak luminescence from detached susceptible potato and moderately resistant pelargonium leaves increased from 1–4 to 4–5 days after inoculation with Phytophthora infestans or Botrytis cinerea, respectively. Pre-treatment of susceptible potato leaves with a defence inducer, arachidonic acid, resulted in a transient burst of light in response to P. infestans lasting for 30–45 h post inoculation (hpi). This study presents the potential adaptation of functional imaging of ultra-weak luminescence to monitor time-dependent free radical processes during disease development and its application to draw conclusions on plant resistance to pathogens of different lifestyle. Moreover, it has been shown that imaging of temporal biophoton generation from potato leaves treated with arachidonic acid might be a helpful marker in mapping oxidative changes leading to systemic acquired resistance (SAR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号