首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Fusarium culmorum is one of the most important Fusarium species causing head blight infections in wheat, rye, and triticale. It is known as a potent mycotoxin producer with deoxynivalenol (DON), 3‐acetyl deoxynivalenol (3‐ADON), and nivalenol (NIV) being the most prevalent toxins. In this study, the effect of winter cereal species, host genotype, and environment on DON accumulation and Fusarium head blight (FHB) was analysed by inoculating 12 rye, eight wheat, and six triticale genotypes of different resistance levels with a DON‐producing isolate at three locations in 2 years (six environments). Seven resistance traits were assessed, including head blight rating and relative plot yield. In addition, ergosterol, DON and 3‐ADON contents in the grain were determined. A growth‐chamber experiment with an artificially synchronized flowering date was also conducted with a subset of two rye, wheat and triticale genotypes. Although rye genotypes were, on average, affected by Fusarium infections much the same as wheat genotypes, wheat accumulated twice as much DON as rye. Triticale was least affected and the grain contained slightly more DON than rye. In the growth‐chamber experiment, wheat and rye again showed similar head blight ratings, but rye had a somewhat lower relative head weight and a DON content nine times lower than wheat (3.9 vs. 35.3 mg/kg). Triticale was least susceptible with a five times lower DON content than wheat. Significant (P = 0.01) genotypic variation for DON accumulation existed in wheat and rye. The differences between and within cereal species in the field experiments were highly influenced by environment for resistance traits and mycotoxin contents. Nevertheless, mean mycotoxin content of the grain could not be associated with general weather conditions in the individual environments. Strong genotype‐environment interactions were found for all cereal species. This was mainly due to three wheat varieties and one rye genotype being environmentally extremely unstable. The more resistant entries, however, showed a higher environmental stability of FHB resistance and tolerance to DON accumulation. Correlations between resistance traits and DON content were high in wheat (P = 0.01), with the most resistant varieties also accumulating less DON, but with variability in rye. In conclusion, the medium to large genotypic variation in wheat and rye offers good possibilities for reducing DON content in the grains by resistance selection. Large confounding effects caused by the environment will require multiple locations and/or years to evaluate FHB resistance and mycotoxin accumulation.  相似文献   

2.
Fusarium head blight (FHB) in wheat and triticale leads to contamination of the grain with the mycotoxin deoxynivalenol (DON) that is harmful to animal and man. A fast, low-cost, and reliable method for quantification of the DON content in the grain is essential for selection. We analysed 113 wheat and 55 triticale genotypes for their symptom development on spikes, Fusarium exoantigen (ExAg) and DON content in the grain after artificial inoculation with a highly aggressive isolate of F. culmorum in three (wheat) and six (triticale) location-by-year combinations. Additionally, in triticale the amount of Fusarium damaged kernels (FDK) was assessed. ExAg content was analysed by a newly developed Fusarium-specific plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) and DON content by an immunoassay. A moderate disease severity resulted in an ExAg content of 0.87 optical density (OD) units in wheat and 1.02 OD in triticale. DON content ranged from 12.0 to 105.2 mg kg–1 in wheat and from 24.2 to 74.0 mg kg–1 in triticale. Genotypic and genotype-by-environment interaction variances were significant (P < 0.01). Coefficient of phenotypic correlation between DON content analysed by the immunoassay and ExAg content was r = 0.86 for wheat and r = 0.60 for triticale. The highest correlation between DON content and symptom rating was found by FHB rating in wheat (r = 0.77) and by FDK rating in triticale (r = 0.71). In conclusion, selection for reduced FHB symptoms should lead to a correlated selection response in low fungal biomass and low DON content in the grain.  相似文献   

3.
Fusarium head blight (FHB) is a cereal disease of major importance responsible for yield losses and mycotoxin contaminations in grains. Here, we introduce a new measurement approach to quantify FHB severity on grains based on the evaluation of the whitened kernel surface (WKS) using digital image analysis. The applicability of WKS was assessed on two bread wheat and one triticale grain sample sets (265 samples). Pearson correlation coefficients between Fusarium‐damaged kernels (FDK) and WKS range from r = 0.77 to r = 0.81 and from r = 0.61 to r = 0.86 for the correlation between deoxynivalenol (DON) content and WKS. This new scoring method facilitates fast and reliable assessment of the resistance to kernel infection and shows significant correlation with mycotoxin content. WKS can be automated and does not suffer from the “human factor” inherent to visual scorings. As a low‐cost and fast approach, this method appears particularly attractive for breeding and genetic analysis of FHB resistance where typically large numbers of experimental lines need to be evaluated, and for which WKS is suggested as an alternative to visual FDK scorings.  相似文献   

4.
Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat   总被引:10,自引:0,他引:10  
Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (telomorph =Gibberella zeae (Schw.)), is an important wheat disease world‐wide. Production of deoxynivalenol (DON) by F. graminearum in infected wheat grain is detrimental to livestock and is also a safety concern in human foods. An international collection of 116 wheat lines was evaluated for FHB resistance and concentration of DON in grain. Plants were inoculated with mixed isolates of F. graminearum in the greenhouse by injecting conidia into a single spikelet of each spike and in the field by scattering F. graminearum‐infected wheat kernels on the soil surface. FHB symptoms were evaluated by visual inspection in both the greenhouse and field, and DON was analysed by HPLC. Significant differences in FHB ratings and DON levels were observed among cultivars. In the greenhouse test, visual symptoms varied from no spread of FHB from the inoculated spikelet to spread throughout the spike, and DON levels ranged from trace levels to 283 mg/kg. In the field test, DON ranged from 2.8 to 52 mg/kg. The greenhouse test identified 16 wheat lines from various origins that accumulated less than 2 mg/kg DON. These lines may be useful as sources for breeding wheat cultivars with lower DON levels. Correlation coefficients were significant between FHB symptom ratings, seed quality traits, and DON levels. Thus, the percentage of scabbed spikelets and kernels can be generally used to predict DON levels in harvested wheat grain. In breeding programmes, selection for plants having few scabbed spikelets and scabbed kernels is most likely to result in low DON levels.  相似文献   

5.
Greenhouse and growth chamber experiments were carried out using seven bread wheat (Triticum aestivum), three durum wheat (T. durum), two rye (Secale cereale), three barley (Hordeum vulgare), two triticale (x Triticosecale Wittmack) and one oat (Avena sativa) cultivars to study response to zinc (Zn) deficiency and Zn fertilisation in nutrient solution and in a severely Zn deficient calcareous soil. Visual Zn deficiency symptoms, such as whitish-brown necrotic patches on leaf blades, developed rapidly and severely in the durum wheat and oat cultivars. Bread wheat showed great genotypic differences in sensitivity to Zn deficiency. In triticale and rye, visual deficiency symptoms were either absent or appeared only slightly, while barley showed a moderate sensitivity. When grown in soil, average decreases in shoot dry matter production due to Zn deficiency were 15% for rye, 25% for triticale, 34% for barley, 42% for bread wheat, 63% for oat and 65% for durum wheat. Differential Zn efficiency among and within cereal species was better related to the total amount of Zn per shoot, but not to the Zn concentration in the shoot dry matter. However, in leaves of Zn efficient rye and bread wheat cultivars, the activity of Zn-containing superoxide dismutase was greater than in Zn inefficient bread and durum wheat cultivars, suggesting higher amounts of physiologically active Zn in leaf tissue of efficient genotypes. When grown in nutrient solution, there was a poor relationship between Zn efficiency and release rate of Zn-chelating phytosiderophores from roots, but uptake of labelled Zn (65Zn) and its translocation to the shoot was higher in the Zn efficient rye and bread wheat cultivars than in inefficient bread and durum wheat cultivars. The results demonstrate that susceptibility of cereals to Zn deficiency decline in the order durum wheat > oat > bread wheat > barley > triticale > rye. The results also show that expression of high Zn efficiency in cereals was causally related to enhanced capability of genotypes to take up Zn from soils and use it efficiently in tissues. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Summary Yield data obtained from a comparative small grain cereals trial, grown for five consecutive growing seasons at a total of 23 environments in Cyprus, were subjected to regression analysis. Within each environment, yield trials consisted of a standard set of three cultivars or elite lines of barley, triticale, durum and bread wheat. The regression coefficient (b) of crop mean on the environmental index (I) and the mean square deviation from regression (sd2) were calculated for each crop. Each crop tended to have its own characteristic value of sd2 and its magnitude was an excellent indicator of specific crop-environment interaction. The causes of large sd2, for two of the four crops, were the susceptibilith of barley to lodging, when favourable conditions were encountered at high yielding environments, and triticale dependence on late season precipitation. Durum wheat and triticale had an average response to different yielding environments (b>1.19) and both were significantly different from those of bread wheat (1.08) and barley (0.54). Hence, barley, bread and durum wheat are specifically adapted to low, average and high yielding Mediterranean environments, respectively. The cultivation of triticale at the expence of durum wheat is not feasible. Furthermore, interactions between crops and environments demonstrated by the regression parameters, should constitute the basis for decision making, regarding crop adaptation in a region. The average yield in all environments should not be considered as a proper criterion for adaptation. In this study, triticale had a similar mean grain yield (3,842 kg/ha) to that of bread wheat, but was significantly higher yielding than barley or durum wheat (5 and 7%, respectively).  相似文献   

7.
Rye is a multi-purpose cereal crop grown in Central and Eastern Europe as well as in Western Canada. Fusarium head blight (FHB) is one of the diseases that have a severe negative impact on rye, but knowledge about FHB resistance at the genomic level is totally missing in rye. The objective of this study was to elucidate the genetic architecture of FHB resistance in winter rye using genome-wide association (GWA) mapping complemented by genomic prediction (GP) in comparison with marker-assisted selection (MAS). Additionally, plant height and heading stage were analysed. A panel of 465 S1-inbred lines of winter rye was phenotyped in three environments (location–year combinations) for FHB resistance by inoculation with Fusarium culmorum and genotyped with a 15k SNP array. Significant genotypic variation and high heritabilities were found for FHB resistance, heading stage and plant height. FHB did not correlate with heading stage, but was moderately correlated with plant height (r = −.52, p < .001) caused by some susceptible short inbred lines. The GWA scan identified 15 QTL for FHB resistance that jointly explained 74% of the genotypic variance. In addition, we detected 11 QTL for heading stage and 8 QTL for plant height, explaining 26% and 14% of the genotypic variance, respectively. A genome-wide prediction approach resulted in 44% higher prediction abilities than marker-assisted selection for FHB resistance. In conclusion, genomic approaches appear promising to improve and accelerate breeding for complex traits in winter rye.  相似文献   

8.
Fusarium head blight (FHB), caused by Fusarium graminearum and Fusarium culmorum, is a devastating disease in cereals. This study was undertaken to estimate progeny means and variances in each of five winter triticale and winter wheat crosses using unselected F2−derived lines in F4 or F5 generation bulked at harvest of the previous generation. Fifty (triticale) and 95 (wheat) progeny per cross were inoculated in two (triticale) or three (wheat) field environments. FHB rating was assessed on a whole-plot basis. Mean disease severities of the parents ranged from 2.3 to 6.4 in triticale and from 3.1 to 6.5 in wheat on a 1-to-9 scale (1 = symptomless, 9 = 100% infected). The midparent values generally resembled the means of their derived progeny. Significant (P < 0.01) genotypic variance was detected within each cross, but genotype × environment interaction and error variances were also high for both crops. Medium to high entry-mean heritabilities (0.6–0.8) underline the feasibility of selecting F2-derived bulks on a plot basis in several environments. Phenotypic correlation of FHB resistance between generation F2:4 and F2:5 was r = 0.87 (P < 0.01) tested across 150 wheat bulks at two locations. Our estimates of selection gain are encouraging for breeders to improve FHB resistance in triticale and wheat by recurrent selection within adapted materials.  相似文献   

9.
Fusarium head blight (FHB) in triticale (× Triticosecale Wittmack) results in yield losses and mycotoxin contamination, for example, by deoxynivalenol (DON). This study aimed to analyse the correlation between FHB severity and DON content in a DH population of 146 entries across environments. Additionally, Fusarium damaged kernel (FDK) rating, heading stage and plant height were recorded. Highly significant (P < 0.001) genotypic variances were found throughout, but also significant (P < 0.001) genotype–environment interaction variances occurred. Correlation between FHB severity and heading stage or plant height was low (r = 0.144 and r = ?0.153, P < 0.10). A prediction of DON content from FHB severity or FDK rating is not possible caused by low correlations (r = 0.315 and 0.572, respectively, P < 0.001). A common quantitative trait locus (QTL) for all FHB‐related traits was found on wheat chromosome 2A being of minor importance for FHB severity, but of high importance for DON content and FDK rating. Another QTL on rye chromosome 5R was more important for FHB severity. In conclusion, DON content has to be measured in triticale after selection for FHB severity to gain for healthy and mycotoxin‐reduced feed.  相似文献   

10.
F. Wilde    T. Miedaner 《Plant Breeding》2006,125(1):96-98
Fusarium head blight (FHB) results in yield losses and contamination of kernels by mycotoxins, particularly deoxynivalenol (DON). For minimizing DON content in grain, indirect selection methods would increase gains from selection compared to the costly and time‐consuming DON analysis. The aim of this study was to examine whether an early selection for fewer FHB symptoms would lead to a reduced DON content in grain after inoculation with Fusarium culmorum. Starting with a double‐cross derived population of about 1,100 genotypes, 30 F1:3 genotypes were selected for FHB rating in a two‐step selection in spring wheat with the non‐adapted resistance sources CM82036 and ‘Frontana’. In winter wheat, 30 F1:2 genotypes were selected out of a double‐cross derived population of about 600 F1 plants from crosses with German resistance sources (‘Dream’, G16‐92). Selected genotypes were grouped in three categories according to their FHB rating (low, moderate and high) and analysed afterwards for grain DON content. The three groups differed in their DON content illustrating that indirect selection should already be feasible in the earliest generations. Because of the wide genotypic ranges for DON contents within one grouping, a final DON analysis for selected materials is advisable to achieve full selection gain.  相似文献   

11.
Fusarium head blight (FHB) poses a challenge for wheat breeders worldwide; there are limited sources of resistance and the genetic basis for resistance is not well understood. In the mid-1980s, a shuttle breeding and germplasm exchange program launched between CIMMYT-Mexico and China, enabled the incorporation of FHB resistance from Chinese bread wheat germplasm into CIMMYT wheat. Most of the Chinese wheat materials conserved in the CIMMYT germplasm bank had not been fully characterized for FHB reaction under Mexican environments, until 2009, when 491 Chinese bread wheat lines were evaluated in a FHB screening nursery in Mexico, and 304 (61.9 %) showed FHB indices below 10 %. Subsequent testing occurred in 2010 for plant height (PH), days to heading (DH), and leaf rust response. In 2012, 140 elite lines with good agronomic types were further evaluated for field FHB reaction and deoxynivalenol (DON) accumulation. Most of the tested lines showed good resistance: 116 (82.9 %) entries displayed FHB indices lower than 10 %, while 89 (63.6 %) had DON contents lower than 1.0 ppm. Significant negative correlations were observed between FHB traits (FHB index, DON content, and Fusarium damaged kernels) and PH, DH, and anther extrusion. A subset of 102 elite entries was selected for haplotyping using markers linked to 10 well known FHB quantitative trait loci (QTL). 57 % of the lines possessed the same 2DL QTL marker alleles as Wuhan 1 or CJ 9306, and 26.5 % had the same 3BS QTL allele as Sumai 3. The remaining known QTL were of low frequency. These materials, especially those with none of the above tested resistance QTL (26.5 %), could be used in breeding programs as new resistance sources possessing novel genes for FHB resistance and DON tolerance.  相似文献   

12.
Acid soils containing high levels of aluminum (Al) are known to severely limit plant growth on over 1.6 billion hectares worldwide. In the United States, a gradual decline in the pH of many soils both in the Great Plains as well as the Southeast, has caused many soils to become high in levels of free Al. This worldwide condition encouraged the analysis of wheat (Triticum aestivum L. em Thell.), triticale (X Triticosecale Wittmack), and rye (Secale cereale L.) germplasm from one of the major acid soil regions of the world (Brazil) in order to evaluate and compare the genetic potential of Al genes for cereal improvement. The objectives were to compare Al-tolerance levels in wheats, triticales, and ryes by measuring root elongation responses in Al-containing hydroponic nutrient solutions. Root elongation was impaired for all species grown in 1 mg/L concentrations of Al. Rye had the longest root regrowth and Al-sensitive wheats had the shortest root regrowth. The triticales containing a 2D(2R) substitution developed in the mid-1970s had the poorest root regrowth of all triticale types. The newly developed advanced triticale lines (AABBRR) yet to be released for commercial production showed the highest degree of Al tolerance of all the triticale types and approached or exceeded the levels observed in rye. This indicated that progress is being made in improving Al-tolerance of triticale in Brazil. Of all the old and new wheat varieties showing the highest degree of Al-tolerance, none of them were better than ‘BH 1146’ a variety that is at least 50 years old. This indicated that over the past 50 years, although Brazilian wheat breeders have made yield improvements in wheat production, they have not improved Al-tolerance. Rye showed a higher degree of Al-tolerance than the other cereals when tested in 1 mg/L of Al, but as expected, some variation was noted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Schwabe), is an important wheat disease. In addition to head blight, F. graminearum also causes Fusarium seedling blight (FSB) and produces the mycotoxin deoxynivalenol (DON) in the grain. The objectives of this study were: (1) to compare the relationship between resistance of wheat lines to F. graminearum in the seedlings and spikes and (2) to determine whether the quantitative trait loci (QTL) for FSB were the same as QTLs for FHB resistance and DON level reported for the same population previously (Somers et al. 2003). There was no relationship between FSB infection and FHB index or DON content across the population. A single QTL on chromosome 5B that controlled FSB resistance was identified in the population; the marker WMC75 explained 13.8% of the phenotypic variation for FSB. This value implies that there may be other QTL with minor effects present, but they were not detected in the analysis. Such a QTL on chromosome 5B was not reported previously among the QTLs associated with FHB resistance and DON level in this population. However, because of recombination, some lines in the present study have Fusarium resistance for both seedling and head blight simultaneously. For example, DH line HC 450 had the highest level of resistance to FSB and FHB and was among the ten lines with lowest DON content. This line is a good candidate to be used as a parent for future crosses in breeding for Fusarium seedling resistance, together with breeding for head blight resistance. This approach may be effective in increasing overall plant resistance to Fusarium.  相似文献   

14.
The objectives of this study were to investigate (i) the correlations between Fusarium head blight (FHB) index, deoxynivalenol (DON) accumulation and percentage of Fusarium‐damaged kernels (FDK) with agronomic and quality traits and (ii) the effect associated with the presence of single QTLs for FHB resistance on agronomic and quality traits in winter wheat. The population was derived from the cross between ‘RCATL33' (FHB resistance derived from ‘Sumai 3’ and ‘Frontana’) and ‘RC Strategy’. Parental lines and recombinant inbred lines (RILs) were genotyped with SSR markers associated with the 3B, 5A and 3A QTLs. The population was planted in FHB‐inoculated nurseries and in agronomy trials. Lines in the 3B QTL class had the lowest FHB index, DON content and FDK level and did not have a significantly lower yield, thousand kernel weight or protein content compared with the lines grouped in other QTL classes (including no QTL class). Marker‐assisted selection of the 3B QTL for FHB resistance into high‐yielding FHB‐susceptible winter wheat is the recommended approach for the development of lines with increased FHB resistance without significant yield and quality penalties.  相似文献   

15.
Pearl millet is an efficient alternative to maize as a pollen source for haploid production in bread wheat. To compare haploid production frequencies in other Triticeae species, the crossabilities of two genotypes each of bread wheat, durum wheat and hexaploid triticale with four pearl millet genotypes and a maize control were examined. Embryos were obtained from crosses of all three species with both pearl millet and maize. However, significant differences in crossability were found among the three species (10.5–79.8% seed development and 1.4–15.8% embryo formation), as well as among genotypes of durum wheat (7.2–23.7% and 2.1–6.4%) and hexaploid triticale (0.3–20.6% and 0.1–2.7%). Crossability of bread wheat with pearl millet was relatively high. Haploid plants were regenerated from crosses of all three species with pearl millet. As in the case of maize crosses, low crossabilities of durum wheat and hexaploid triticale with pearl millet can be attributed to the absence of D-genome chromosomes.  相似文献   

16.
Q. Chen    F. Eudes    R. L. Conner    R. Graf    A. Comeau    J. Collin    F. Ahmad    R. Zhou    H. Li    Y. Zhao  A. Laroche   《Plant Breeding》2001,120(5):375-380
Fusarium head blight (FHB, scab), caused by Fusarium graminearum Schwabe, is a serious and damaging disease of wheat. Although some hexaploid wheat lines express a good level of resistance to FHB, the resistance available in hexaploid wheat has not yet been transferred to durum wheat. A germplasm collection of Triticum durum× alien hybrid lines was tested as a potential source of resistance to FHB under controlled conditions. Their FHB reaction was evaluated in three tests against conidial suspensions of three strains of F. graminearum at the flowering stage. Two T. durum×Thinopyrum distichum hybrid lines, ‘AFR4’ and ‘AFR5′, expressed a significantly higher level of resistance to the spread of FHB than other durum‐alien hybrid lines and a resistant common wheat line ‘Nyu‐Bay’. Genomic in situ hybridization using total genomic DNA from alien grass species demonstrated that ‘AFR5’ had 13 or 14 alien genome chromosomes plus 27 or 28 wheat chromosomes, while ‘AFR4’ had 22 alien genome and 28 wheat chromosomes. All of the alien chromosomes present in these two lines belonged to the J genome. ‘AFR5’ is likely to be more useful as a source of FHB resistance than ‘AFR4’ because of its relatively normal meiotic behaviour, high fertility and fewer number of alien chromosomes. ‘AFR5’ shows good potential as a source for transferring FHB resistance gene into wheat. The development of T. durum addition lines carrying resistance genes from ‘AFR5’ is underway.  相似文献   

17.
Durum wheat is the most important tetraploid wheat mainly used for semolina and pasta production, but is notorious for its high susceptibility to Fusarium head blight (FHB). Our objectives were to identify and characterize quantitative trait loci (QTL) in winter durum and to evaluate the potential of genomic approaches for the improvement of FHB resistance. Here, we employed an international panel of 170 winter and 14 spring durum lines, phenotyped for Fusarium culmorum resistance at five environments. Heading date, plant height and mean FHB severity showed significant genotypic variation with high heritabilities and FHB resistance was negatively correlated with both heading date and plant height. The dwarfing gene Rht‐B1 significantly affected FHB resistance and the genome‐wide association scan identified eight additional QTL affecting FHB resistance, explaining between 1% and 14% of the genotypic variation. A genome‐wide prediction approach yielded only a slightly improved predictive ability compared to marker‐assisted selection based on the four strongest QTL. In conclusion, FHB resistance in durum wheat is a highly quantitative trait and in breeding programmes may best be tackled by classical high‐throughput recurrent phenotypic selection that can be assisted by genomic prediction if marker profiles are available.  相似文献   

18.
Resistances to Septoria tritici blotch (STB) and Fusarium head blight (FHB) are important goals in European wheat breeding. We tested 25 winter wheat cultivars differing in their resistance to both diseases by inoculating Zymoseptoria tritici or Fusarium culmorum either separately on different plots or combined on the same plot. Experiments were carried out across three location × year combinations in four variants: non‐inoculated, STB inoculated, FHB inoculated and STB+FHB inoculated at the respective optimal plant stages. On the individually inoculated plots, mean STB severities ranged from 12% to 70% and mean FHB severities from 0.3% to 67% across wheat cultivars. The resistances to STB and FHB were not correlated. Mean disease severities of the respective inoculation variants, STB vs. STB+FHB and FHB vs. STB+FHB, were not significantly different (P > 0.1), and correlations between both inoculation variants were extremely high (r = 0.98) for STB. In conclusion, breeding populations have to be selected for both resistances separately, but phenotyping can be performed on the same plot without ranking differences of the respective resistance.  相似文献   

19.
Summary Pathogenicity of 20 isolates of 12 Fusarium species recovered from triticale seed against seedlings of 14 varieties of winter cereals (triticale, wheat, and rye) was tested. The most pathogenic inoculum was a mixture of isolates (a composite isolate) of all the species. The following species were individually the most pathogenic: F. avenaceum, F. culmorum, F. sambucinum var. coeruleum, and F. graminearum. Winter triticale was more resistant to seedling blight than rye but more susceptible than wheat.Also reactions of 31 winter and 12 spring varieties of cereals to head inoculation with a composite isolate of 4 Fusarium spp. (F. avenaceum, F. culmorum, F. graminearum, and F. sambucinum var. coeruleum) was studied. In comparison to other cereals of similar type winter and spring wheat appeared to be the most susceptible while winter rye reaction was comparable to winter triticale. Spring and winter triticale varieties responded to head infection intermediately.There was no significant correlation between seedling and head reactions to infection with Fusarium spp. for winter rye and triticale. For winter wheat a negative trend was found. The above findings imply that screening of cereals at the seedling stage can not be used to predict the resistance to head blight. Nevertheless, resistance at the stage is highly desirable to prevent excessive damage of the crops due to the seedling blight incited by Fusarium spp..  相似文献   

20.
Fusarium head blight (FHB) is a devastating disease in wheat throughout the world. FHB resistance consists of two components: resistance to initial infection (type I) and resistance to spread within infected spikes (type II). Current wheat breeding programs for FHB focus on type II resistance, which limits pathogen spread but may not be sufficiently durable. To combine type I with existing type II resistance, 113 F9-derived recombinant inbred lines (RILs) were developed from a cross between three wheat genotypes Frontana, W9207, and Alsen. The RILs were evaluated for resistance to initial infection, FHB spread within spike, kernel damage, and deoxynivalenol (DON) content in two independent greenhouse experiments in 2006 and 2007. Among the 113 RILs, 20% lines showed ≤10% initial disease severity (IDS) and ≤11 to 30% final disease severity (FDS), and 19% had DON content ≤5 μg/g. Approximately 11% of the RILs showed tendency of higher resistance (as exhibited by lower IDS, FDS, and DON content) than the resistant parents. The 42 of the FHB-resistant RILs were analyzed with seven simple sequence repeat (SSR) markers or microsatellites known to be linked to FHB resistance. Approximately half of the RILs had molecular markers linked to both types of FHB resistance indicated the presence of type I and II resistance alleles in the RILs. The resistant RILs identified in this study should be useful for the future improvement of FHB resistance in spring wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号