首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Standing biomass, net primary production (NPP) and soil carbon (C) pools were studied in a 67-year-old pedunculate oak (Quercus robur L.) stand and a neighboring 74-year- old Scots pine (Pinus sylvestris L.) stand in the Belgian Campine region. Despite a 14% lower tree density and a lower tree height in the oak stand, standing biomass was slightly higher than in the pine stand (177 and 169 Mg ha(-1) in oaks and pines, respectively), indicating that individual oak trees contained more biomass than pine trees of similar diameter. Moreover, NPP in the oak stand was more than double that in the pine stand (17.7 and 8.1 Mg ha(-1) year(-1), respectively). Several observations indicated that soil organic matter accumulated at higher rates under pines than under oaks. We therefore hypothesized that the pines were exhibiting an age-related decline in productivity due to nutrient limitation. The poor decomposability of pine litter resulted in the observed accumulation of organic matter. The subsequent immobilization of nutrients in the organic matter, combined with the already nutrient-poor soil conditions, resulted in a decrease in total NPP over time, as well as in a substantial shift in the allocation of NPP toward fine roots. In the oak stand, litter is less recalcitrant to decay and soil acidity is less severe; hence, organic matter does not accumulate and nutrients are recycled. This probably explains why NPP was much higher in the oaks than in the pines and why only a small proportion of NPP was allocated to oak fine roots.  相似文献   

2.
Following clearcutting applying the conventional stem-only harvesting method in a Norway spruce (Picea abies (L.) Karst.) stand and different levels of removal of logging residue, the nutrient fluxes from the heaps of logging residue and from the O horizon were monitored over four growing seasons and the soil nutrient pools were determined. Three levels of removal of logging residue were carried out using (i) conventional stem-only harvesting (no residues removed); (ii) residues removed; and (iii) removal of branches (foliage left on site). The heaps of logging residue were a minor source of inorganic N entering the soil in the water percolating through the heaps, but they were a significant source of organic N, P, Ca, Mg, and especially K. Nutrient fluxes from the O horizon were in general greater under the heaps of logging residue as compared to soils without overlying logging residue. The leaching of inorganic N from the O horizon under the heaps of logging residue resulted in a net loss of these compounds, while the O horizon without overlying logging residue gained N. The removal of logging residue significantly decreased the extractable K pools in the soil while it or conversely, the presence of residue heaps had no significant effect on the pools of organic matter and the pools of N, P, Ca, and Mg in the O horizon and in the 0–10 cm soil layer. The results show that the short-term effects of logging residue on nutrient dynamics in the soil can be complex and difficult to interpret in terms of site productivity as there are changes in the nutrient fluxes, which imply the opposite effects on site productivity. However, the results do indicate that, in the short-term, the removal of logging residue does not impair pools of N in the soil nor site productivity on sites where the availability of N limits productivity.  相似文献   

3.
Mixtures of litter from different plant species often show non-additive effects on decomposition and net N release (i.e., observed effects in mixtures differ from predictions based on litter of the component species), with positive non-additive (i.e., synergistic effects) being most common. Although large amounts of C and N reside in soil organic matter that contribute significantly to the overall C and N cycle, only a few studies have compared species monoculture vs. mixture effects on soil C and N dynamics. We studied the interactive effects of black spruce (Picea mariana), tamarack (Larix laricina), and white pine (Pinus strobus) on soil C respiration and net N mineralization in a plantation in northern Minnesota, USA. The trees were planted in monoculture and in all three possible two-species combinations (mixtures). After 10 years, we measured aboveground plant biomass and soil C respiration and net N mineralization rates in long-term (266 days) and short-term (13 days) laboratory incubations, respectively. Soil C respiration and net N mineralization were significantly lower in mixtures with tamarack than would be predicted from the monocultures of the two component species. Possibly, mixing of lignin rich litter from black spruce or white pine with N rich litter from tamarack suppressed the formation of lignolytic enzymes or formed complexes highly resistant to microbial degradation. However, these antagonistic effects on soil C respiration and net N mineralization in mixtures with tamarack did not result in reduced aboveground biomass in these plots after 10 years of growth. It remains to be seen if these antagonistic effects will affect long-term forest productivity and dynamics in boreal forests.  相似文献   

4.
Climate change is predicted to shorten the fire interval in boreal forests. Many studies have recorded positive effects of fire on forest growth over a few decades, but few have modeled the long-term effects of the loss of carbon and nitrogen to the atmosphere. We used a process-based, dynamic, forest ecosystem model, which couples the carbon, nitrogen and water cycles, to simulate the effects of fire frequency on coniferous forests in the climate of Prince Albert, Saskatchewan. The model was calibrated to simulate observed forest properties. The model predicted rapid short-term recovery of net primary productivity (NPP) after fire, but in the long term, supported the hypotheses that (1) current NPP and carbon content of boreal forests are lower than they would be without periodic fire, and (2) any increase in fire frequency in the future will tend to lower NPP and carbon storage. Lower long-term NPP and carbon storage were attributable to (1) loss of carbon on combustion, equal to about 20% of NPP over a 100-200 year fire cycle, (2) loss of nitrogen by volatilization in fire, equal to about 3-4 kg N ha(-1) year(-1) over a 100-200 year fire cycle, and (3) the fact that the normal fire cycle is much shorter than the time taken for the forest (especially the soil) to reach an equilibrium carbon and nitrogen content. It was estimated that a shift in fire frequency from 200 to 100 years over 1000 Mha of boreal forest would release an average of about 0.1 Gt C year(-1) over many centuries.  相似文献   

5.
Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in lodgepole pine (Pinus contorta var. latifolia) forests of the Greater Yellowstone Ecosystem (WY, USA) across a 0-30 year chronosequence of time-since-beetle disturbance. Recent (1-4 years) bark beetle disturbance increased total litter depth and N concentration in needle litter relative to undisturbed stands, and soils in recently disturbed stands were cooler with greater rates of net N mineralization and nitrification than undisturbed sites. Thirty years after beetle outbreak, needle litter N concentration remained elevated; however total litter N concentration, total litter mass, and soil N pools and fluxes were not different from undisturbed stands. Canopy N pool size declined 58% in recent outbreaks, and remained 48% lower than undisturbed in 30-year old outbreaks. Foliar N concentrations in unattacked lodgepole pine trees and an understory sedge were positively correlated with net N mineralization in soils across the chronosequence. Bark beetle disturbance altered N cycling through the litter, soil, and vegetation of lodgepole pine forests, but changes in soil N cycling were less severe than those observed following stand replacing fire. Several lines of evidence suggest the potential for N leaching is low following bark beetle disturbance in lodgepole pine.  相似文献   

6.
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession. We found that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40-fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.  相似文献   

7.
Black spruce forests growing on clay soils in northwestern Quebec change structure from dense even-aged stands to open uneven-aged stands such that almost all forests older than 200 years have an open canopy. These forests become unproductive over time because they are prone to paludification. The main goal of our study was to document the transition between dense and open stands in terms of gap dynamics, with a focus on tree regeneration. Our objective was to determine whether forests remain open due to a lack of regeneration, a lack of growth or both. Nine stands along a 50–250-year-old time since fire gradient were sampled with the line intersect sampling method. Gap fraction increased with stand age and reached a maximum of 77% in the oldest site. In old-growth stands, gaps were interconnected due to the low density of these forests. Most of the gap makers were found with broken stems. Regeneration was dominated by black spruce layers and was relatively abundant (1.71 stems/m2). However, the majority of gap fillers were smaller than 1 m in height in stands of all ages. Instead of a lack of regeneration, the opening of the forests is due to a lack of growth associated with cold and wet organic deposits. Partial harvesting could be implemented on the most productive sites, while management techniques including soil disturbances will be required on low productivity sites to recreate good growth conditions.  相似文献   

8.
Current regional estimates of net primary productivity (NPP) of boreal black spruce overlook the large variation in NPP caused by small-scale topographic effects on soil water, temperature and nutrient availability. Topographic effects on black spruce NPP could likely be modeled by simulating the lateral and vertical movement of water, and its effects on soil nutrient transformation and uptake, through three-dimensional watersheds defined by aspects and slopes of their topographic positions. To examine this likelihood, the ecosystem model 'ecosys' was run for 120 years on a transect that included upper- and lower-slope positions and a basin in which a basal water table was set 0.5 m below the soil surface. For the run, we used soil properties and weather conditions recorded at the 115-year-old BOREAS Southern Old Black Spruce site. Short-term model performance was tested by comparing diurnal and annual carbon (C) transfers simulated under 1994 weather conditions during the 115th year of the model run with those measured at this site during 1994 by eddy covariance, surface chambers and allometry. After 115 years, annual spruce NPP simulated at the upper-slope positions was twice that at the basin (350 versus 170 g C m-2), whereas accumulated wood C was almost three times as large (6.8 versus 2.4 kg C m-2). In the model, increases in NPP and wood growth in upper-slope positions were caused by lower soil water contents, higher soil temperatures, and more rapid O2 uptake that accelerated heterotrophic respiration and hence nutrient mineralization and uptake. Modeled differences in wood growth with topographic position were quantitatively consistent with measurements of boreal black spruce at several research sites differing in water table depth. Modeled differences also agreed with differences in wood growth rates derived from allometric measurements at boreal black spruce sites differing in productivity indices as a result of differences in subsurface hydrology. The magnitude of these differences clearly indicates the importance of accounting for subsurface hydrology in regional estimates of boreal forest productivity.  相似文献   

9.
A high-density plantation of three genotypes of Populus was exposed to an elevated concentration of carbon dioxide ([CO(2)]; 550 micromol mol(-1)) from planting through canopy closure using a free-air CO(2) enrichment (FACE) technique. The FACE treatment stimulated gross primary productivity by 22 and 11% in the second and third years, respectively. Partitioning of extra carbon (C) among C pools of different turnover rates is of critical interest; thus, we calculated net ecosystem productivity (NEP) to determine whether elevated atmospheric [CO(2)] will enhance net plantation C storage capacity. Free-air CO(2) enrichment increased net primary productivity (NPP) of all genotypes by 21% in the second year and by 26% in the third year, mainly because of an increase in the size of C pools with relatively slow turnover rates (i.e., wood). In all genotypes in the FACE treatment, more new soil C was added to the total soil C pool compared with the control treatment. However, more old soil C loss was observed in the FACE treatment compared with the control treatment, possibly due to a priming effect from newly incorporated root litter. FACE did not significantly increase NEP, probably as a result of this priming effect.  相似文献   

10.
Timber harvesting, with and without prescribed slash fire, and wild fire are common disturbances in pine forests of western North America. These disturbances can alter soil nitrogen (N) pools and N supply to colonizing vegetation, but their influence remains poorly understood for many forests. We investigated the effects of clear cut harvesting and fire on KCl extractable N pools, net N mineralization rates, phosphorus (P) fractions, seedling N uptake, and seedling growth in mineral soils sampled from a lodgepole pine forest in southern Wyoming. At a site where wild fire burned through a harvested stand of lodgepole pine and the adjacent intact forest, we analyzed mineral soils from the following four treatments: unburned clear cut, burnt clear cut, unburned forest, and burnt forest. Soils from unburned and burnt clear cut treatments had higher concentrations of KCl extractable N and higher net N mineralization rates, and produced larger pine seedlings in bioassays than soils from unburned and burnt intact forest treatments. Further, while seedlings grown in soils from the unburned and burnt forest treatments responded strongly to N fertilization, seedlings grown in clear-cut soils did not respond to fertilization. Taken together, these results suggest that harvesting had increased soil N supply. In comparing clear cut treatments, soils from the unburned clear cut had smaller extractable N and P pools, and lower net N mineralization rates, but produced larger pine seedlings than soils from the burnt clear cut.  相似文献   

11.
Soil organic matter (SOM) has been adopted as an indicator of soil fertility based on the rationale that SOM contributes significantly to soil physical, chemical, and biological properties that affect vital ecosystem processes of forests in Australia. A study was undertaken to evaluate the utility of SOM as an indicator of SFM at two long-term experimental sites in native eucalypt forests, including Silvertop Ash (E. sieberi L. Johnson) and Mountain Ash (E. regnans F. Muell.) in Victoria. This study examines the relative contributions made by various sources of carbon in soil profiles (0–30 cm) of forest soils, viz. mineral soil (<2 mm), plant residues, charcoal (>2 mm), and rock fragments (>2 mm). The long-term changes in these fractions in response to management-induced soil physical disturbance and fire (unburnt, moderate and high intensity) were evaluated. After 10 years, carbon levels in the fine soil fraction (soil <2 mm including fine charcoal) were similar across the range of fire disturbance classes in Mountain Ash forest (20–25 kg/m2) and Silvertop Ash forest (7–8 kg/m2). Likewise differences in carbon associated with other fractions, viz. microbial biomass, labile carbon, plant residues and rock fragments were comparatively small and could not be attributed to fire disturbance. Burning increased the charcoal carbon fraction from 5 to 23 kg/m2 in Mountain Ash forest and from 1 to 3 kg/m2 in Silvertop Ash forest. Taking into account, the percentage area affected by fire, increases in total soil carbon in these forests were estimated at 25 and 7 t/ha, respectively.

The effects of physical disturbance of soils were examined at one site in Mountain Ash forest where soil cultivation was used as site preparation rather than the standard practice of burning of logging residues. Total carbon in soil profiles decreased from 29 to 21 kg/m2 where soil disturbance was severe, i.e. topsoil removed and subsoil disturbed. This was mainly due to a decrease in charcoal carbon from 6.8 to 1.7 kg/m2 but severe soil disturbance also increased the amount of carbon associated with rock fragments from 1.6 to 3.5 kg/m2.

Management-induced fire increased the coarse charcoal content of soil profiles substantially, thus increasing total carbon content as well as the proportion of recalcitrant carbon in SOM. In contrast, there was little change in the carbon content of the fine soil fraction including the labile and biologically active fractions indicating that these SOM fractions most relevant to ecosystem processes showed little long-term impact from soil disturbance and fire. Conventional sampling of the fine soil fraction (<2 mm) only represented between 50% and 70% of total carbon in the soil profiles. In contrast, total nitrogen in this fraction represented between 75% and 90% of the nitrogen in soil profiles and was less affected by changes in the contributions of N made by coarse fractions. Monitoring of soil N rather than C as an indicator of soil fertility and SFM may be more appropriate for forest soils with significant charcoal content.  相似文献   


12.
Boreal forest carbon (C) storage and sequestration is a critical element for global C management and is largely disturbance driven. The disturbance regime can be natural or anthropogenic with varying intensity and frequency that differ temporally and spatially the boreal forest. The objective of this review was to synthesize the literature on C dynamics of North American boreal forests after most common disturbances, stand replacing wildfire and clearcut logging. Forest ecosystem C is stored in four major pools: live biomass, dead biomass, organic soil horizons, and mineral soil. Carbon cycling among these pools is inter-related and largely determined by disturbance type and time since disturbance. Following a stand replacing disturbance, (1) live biomass increases rapidly leading to the maximal biomass stage, then stabilizes or slightly declines at old-growth or gap dynamics stage at which late-successional tree species dominate the stand; (2) dead woody material carbon generally follows a U-shaped pattern during succession; (3) forest floor carbon increases throughout stand development; and (4) mineral soil carbon appears to be more or less stable throughout stand development. Wildfire and harvesting differ in many ways, fire being more of a chemical and harvesting a mechanical disturbance. Fire consumes forest floor and small live vegetation and foliage, whereas logging removes large stems. Overall, the effects of the two disturbances on C dynamics in boreal forest are poorly understood. There is also a scarcity of literature dealing with C dynamics of plant coarse and fine roots, understory vegetation, small-sized and buried dead material, forest floor, and mineral soil.  相似文献   

13.
The effects of the interaction between tree species composition and altitude on soil microbial properties are poorly understood. In this study, soil samples (0–20?cm) were collected in August 2011 from Betula platyphylla and Picea crassifolia forests along two different altitudinal gradients. Soil microbial activity and biomass were measured using Biolog-ECO plates and phospholipid fatty acid analysis. Both of the forest soils were characterized by a significantly lower soil pH (p?p?相似文献   

14.
If forests are to be used in CO2 mitigation projects, it is essential to understand and quantify the impacts of disturbance on net ecosystem productivity (NEP; i.e., the change in ecosystem carbon (C) storage with time). We examined the influence of live tree and coarse woody debris (CWD) on NEP during secondary succession based on data collected along a 500-year chronosequence on the Wind River Ranger District, Washington. We developed a simple statistical model of live and dead wood accumulation and decomposition to predict changes in the woody component of NEP, which we call NEP(w). The transition from negative to positive NEP(w), for a series of scenarios in which none to all wood was left after disturbance, occurred between 0 and 57 years after disturbance. The timing of this transition decreased as live-tree growth rates increased, and increased as CWD left after disturbance increased. Maximum and minimum NEP(w) for all scenarios were 3.9 and -14.1 Mg C ha-1 year-1, respectively. Maximum live and total wood C stores of 319 and 393 Mg C ha(-1), respectively, were reached approximately 200 years after disturbance. Decomposition rates (k) of CWD ranged between 0.013 and 0.043 year-1 for individual stands. Regenerating stands took 41 years to attain a mean live wood mass equivalent to the mean mass of CWD left behind after logging, 40 years to equal the mean CWD mass in 500-year-old forest, and more than 150 years to equal the mean total live and dead wood in an old-growth stand. At a rotation age of 80 years, regenerating stands stored approximately half the wood C of the remaining nearby old-growth forests (predominant age 500 years), indicating that conversion of old-growth forests to younger managed forests results in a significant net release of C to the atmosphere.  相似文献   

15.
Forest soil measurements were made at over 180 sites distributed throughout the H.J. Andrews Experimental Forest (HJA) in the Oregon Cascade Mountains. The influences of both elevation and aspect on soil variables were measured in the early (1998) and late summer (1994). Increased elevation significantly increased soil moisture, mean annual precipitation, soil organic matter, labile C and mineralizable N, microbial activities, extractable ammonium, and denitrification potentials. In contrast, bulk density, pH and soil temperature (1998 only) were significantly lower at the higher elevations. Relative to labile C, mineralizable N was preferentially sequestered at higher elevations. Aspect significantly affected annual mean temperature and precipitation, soil moisture and temperature, soil organic matter, mineralizable N, extractable ammonium, denitrification, and microbial activities. There were no significant higher statistical interactions between elevation and aspect on climatic or soil factors. Soil organic matter (SOM) accumulation at higher elevations is likely driven by a reduction in decomposition rates rather that an increase in primary productivity, however, SOM accumulation on north facing slopes is probably due to both a decrease in decomposition and an increase in primary production. Models of climate change effects on temperate forest soils based on elevational studies may not apply to aspect gradients since plant productivity may not respond to temperature–moisture gradients in the same way across all topographical features.  相似文献   

16.
The strategy of using advanced layering for regenerating logged black spruce stands has become a common practice. Compared with natural post-fire black spruce stands, this strategy may alter stand structure with a possible change in stand productivity. Using harvested tree data from sample plots established in burned and logged stands, 50 years after disturbance, and on similar soils, we compared the structure, height growth, and biomass allocation of both types of stands. Stem analysis revealed that black spruce trees in logged stands reached their maximum height growth later and at a concomitant lower level than black spruce trees in burned stands. Biomass production was comparable between stand types but was reduced when ericaceous shrubs were abundant. Compared to natural post-fire stands, logged stands present a shift of biomass allocation to branches and to leaves. These mechanisms are interdependent and represent the tree adjustment to the altered structure in logged stands characterised by the fragmented canopy with the increase of ericaceous shrubs cover and of organic layer thickness.  相似文献   

17.
The simulation of forest production until 2100 under different environmental scenarios and current management practices was performed using a process-based model BIOME-BGC previously parameterized for the main Central-European tree species: spruce, pine, beech and oak and adapted to include forest management practices. Climatic scenario HadCM3 used in the simulations was taken from the IPCC database created within the 3rd Assessment Report. It was combined with a scenario of CO2 concentration development and a scenario of N deposition. The control scenario considered no changes of climatic characteristics, CO2 concentration and N deposition. Simulation experiment was performed for the test region - South Bohemia - using a 1 km × 1 km grid. The actual data on the regional forest cover were aggregated for each grid cell in such a way that each cell represented an even-aged single-dominant species stand or non-forested area, and a standard management scenario depending on the stand age and species was applied to each cell. The effect of environmental variables was estimated as the difference of simulated carbon pools and fluxes in 2050 under environmental changes and under control scenario.The model simulation for the period to 2050 with only climate change under constant CO2 concentration and N deposition indicated a small decrease of NPP (median values by species reached −0.9 to −1.7% for different species), NBP (−0.3 to −1.7%) and vegetation carbon (−0.3 to −0.7%), whereas soil C slightly increased. Separate increase of N deposition gave small positive effect on carbon pools (0.8-2.9% for wood C and about 0.5% for soil C) and more expressed effect on carbon fluxes (1.8-4.3% for NPP and 1.0-9.7% for NBP). Separate increase of CO2 concentration lead to 0.6-2.4% increase of wood C pool and 0.1-0.5% increase of soil C. The positive effects of CO2 concentration and N deposition were more pronounced for coniferous than for deciduous stands.Replacement of 0.5% of coniferous plantations every year by natural broadleaved stands evoked 10.5% of increase of wood carbon pool due to higher wood density of beech and oak compared to spruce and pine, but slightly decreased soil and litter carbon pools.  相似文献   

18.
We measured the change in above- and below-ground carbon and nutrient pools 11 years after the harvesting and site preparation of a histic-mineral soil wetland forest in the Upper Peninsula of Michigan. The original stand of black spruce (Picea mariana), jack pine (Pinus banksiana) and tamarack (Larix laricina) was whole-tree harvested, and three post-harvest treatments (disk trenching, bedding, and none) were randomly assigned to three Latin square blocks (n = 9). Nine control plots were also established in an adjoining uncut stand. Carbon and nutrients were measured in three strata of above-ground vegetation, woody debris, roots, forest floor, and mineral soil to a depth of 1.5 m. Eleven years following harvesting, soil C, N, Ca, Mg, and K pools were similar among the three site preparation treatments and the uncut stand. However, there were differences in ecosystem-level nutrient pools because of differences in live biomass. Coarse roots comprised approximately 30% of the tree biomass C in the regenerated stands and 18% in the uncut stand. Nutrient sequestration, in the vegetation since harvesting yielded an average net ecosystem gain of 332 kg N ha−1, 110 kg Ca ha−1, 18 kg Mg ha−1, and 65 kg K ha−1. The likely source for the cations and N is uptake from shallow groundwater, but N additions could also come from non-symbiotic N-fixation and N deposition. These are the only reported findings on long-term effects of harvesting and site preparation on a histic-mineral soil wetland and the results illustrate the importance of understanding the ecohydrology and nutrient dynamics of the wetland forest. This wetland type appears less sensitive to disturbance than upland sites, and is capable of sustained productivity under these silvicultural treatments.  相似文献   

19.
Large areas of northern coniferous forests once naturally maintained by stand-replacing wildfires have shifted to an anthropogenic disturbance regime of clearcut harvesting followed by natural or artificial regeneration, with unknown consequences for soil biogeochemical processes. We used a comparative approach to investigate the effects of whole-tree harvesting (WTH) vs. stand-replacing wildfire (WF) on soil C and nutrient availability, and nutrition and growth of the succeeding stand, in jack pine (Pinus banksiana) forests of northern Lower Michigan. We compared total carbon (C), total nitrogen (N), potential N mineralization, and extractable phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) among stands regenerated via WTH or WF in two age classes (4–7 years and 12–18 years). We also measured jack pine foliar nutrition and height growth in these same stands, as well as estimating the contribution of legacy dead wood to ecosystem nutrient capital in young stands. We found some evidence in support of our hypothesis that WTH would leave behind greater pools of soil C and N, but lower pools of P and base cations. However, the differences we observed were confined entirely to surface organic horizons, with the two disturbance regimes indistinguishable when viewed cumulatively to our maximum sampling depth of 30 cm. Estimates of nutrient pools in legacy wood inherited by young jack pine stands were also small in comparison to total soil pools (ranging from 1 to 9% depending on the element), suggesting that decomposition and nutrient release from this material is not likely to result in noticeable differences in soil fertility later in stand development. Similar levels of soil nutrients between WTH- and WF-origin stands were reflected in our measures of jack pine foliar nutrition and height growth, which were both unaffected by mode of stand origin. Results from this study suggest that soil nutrient levels following WTH fall within the natural range of variation produced by WF in these jack pine forests; however, comparison with a similar study on boreal jack pine suggests that latitudinal effects on O-horizon nutrient capital may influence the degree to which WTH matches the effects of WF on soil nutrient availability.  相似文献   

20.
土壤活性有机碳作为森林土壤有机碳的活跃成分,在凋落物分解和土壤碳循环中发挥着重要作用。林火干扰通过改变土壤底物的数量和理化性质进而影响土壤活性有机碳,因而阐明林火干扰对土壤活性有机碳的影响是开展森林碳循环研究的基础。文中以6种土壤活性有机碳为研究对象,分别阐述林火干扰对土壤活性有机碳影响的研究进展。针对目前研究现状及存在问题,认为应进一步深化探究林火干扰后土壤微生物活性变化机制对土壤活性有机碳的影响,揭示土壤碳库平衡的影响机理;加强林火干扰后C-N耦合循环特征的研究;深入研究林火干扰后影响土壤活性有机碳的内在因素和外在因素的相互作用,综合评价林火干扰对土壤活性有机碳的短期与长期影响;加强林火干扰—土壤碳库—全球气候变化的交互关系研究,深入探讨林火干扰与土壤活性有机碳的相互作用关系及影响机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号