首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
基于MK—SVR模型的小麦叶面积指数遥感反演   总被引:1,自引:0,他引:1  
提出了运用多核支持向量回归(MK-SVR)算法构建小麦叶面积指数(LAI)遥感监测模型。以2010—2013年试验样点小麦拔节、孕穗、开花3期的实测LAI数据为基础,同步获取我国自主研发的环境减灾卫星HJ-CCD对该研究区域的影像数据,分析了各生育期小麦LAI与8种植被指数间的相关性。以显著相关的植被指数作为输入参数,使用MK-SVR算法构建了每个生育期的小麦LAI反演模型,即MK-SVR-LAI模型。为了评价模型,每期使用单一核支持向量回归(SK-SVR)、偏最小二乘(PLS)回归算法构建了SK-SVR-LAI、PLS-LAI模型。将模型估算LAI值和田间观测LAI值进行比对,以决定系数(R2)和均方根误差(RMSE)为指标评价并比较了模型。结果表明:3个生育期MK-SVR-LAI模型的RMSE值均低于参比模型,拔节期为0.293 1,孕穗期为0.466 8,开花期为0.548 6,且该模型的R2也都最高,拔节期为0.762 4,孕穗期为0.801 8,开花期为0.668 9。  相似文献   

2.
基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算   总被引:13,自引:0,他引:13  
以陕西省关中地区冬小麦不同生育期冠层高光谱反射率为数据源,模拟国产高分辨率卫星高分一号(GF-1)的光谱反射率,提取18种对叶绿素敏感的宽波段光谱指数,构建了基于遥感光谱指数的冬小麦叶片叶绿素相对含量(SPAD)遥感监测模型,并利用返青期的GF-1卫星数据对研究区的冬小麦叶片SPAD值进行了估算和验证。结果表明:返青期、孕穗期和全生育期SPAD值均与TGI指数相关性最高,相关系数分别为-0.742、-0.740和-0.483。拔节期和灌浆期SPAD值分别与SIPI指数和GNDVI指数相关性最高,相关系数分别为0.788和0.745。GNDVI、GRVI和TGI植被指数在各个生育期都和冬小麦叶片SPAD含量在0.01水平下呈显著相关。基于此3类植被指数构建的冬小麦叶片SPAD值回归模型精度较高,其中基于随机森林回归算法的估算模型效果最优,各类模型均在冬小麦拔节期的预测效果最佳。GF-1号卫星数据结合SPAD-RFR模型对研究区冬小麦叶片SPAD的估算结果最为理想,可用于大面积空间尺度的冬小麦叶片SPAD值遥感监测。  相似文献   

3.
快速获取作物叶片叶绿素含量对及时诊断作物健康状况、指导田间管理具有重要意义。本研究以关中地区2020年夏玉米为研究对象,获取试验区无人机多光谱影像,提取植被指数,分析所选植被指数与SPAD的相关性,筛选得到模型的输入变量,利用偏最小二乘法(PLS)、随机森林回归(RF)和分层线性模型(HLM)分别构建拔节期、抽雄期、灌浆期以及全生育期的SPAD估算模型,最终选出最优估算模型,以期为快速获取夏玉米SPAD提供参考。研究发现:除NRI之外,NDVI、OSAVI、GNDVI、RVI、MCARI、MSR、CIre与SPAD均显著相关,其中,OSAVI、NDVI与SPAD呈现出较强且稳定的相关性;各个生育期的最优模型均是RF模型,在拔节期、抽雄期、灌浆期和全生育期,验证集R2分别为0.81、0.81、0.73、0.61,RMSE分别为1.24、2.32、3.13、3.20;对于SPAD估算模型,将降雨量、最高气温这两个气象因子与植被指数耦合的HLM模型可以一定程度提升线性模型的估算精度,但其精度低于RF模型。因此,基于无人机多光谱影像的RF模型可以实现夏玉米SPAD的快速准确估算。  相似文献   

4.
SPAD(Soil and plant analyzer development)值能够反映作物叶片叶绿素含量,是表征作物健康状态的重要指标。采用无人机搭载可见光和多光谱相机同步获取冬小麦可见光和多光谱影像,同时获取冬小麦叶片SPAD值,探究了可见光和多光谱植被指数与SPAD值的关系,将可见光植被指数与多光谱植被指数相结合进行SPAD值估算,利用逐步回归和随机森林回归方法估算SPAD值,并将估算结果进行对比,筛选出冬小麦叶片SPAD值的最优估算模型。结果表明,SPAD值与可见光植被指数(IKAW和RBRI)、多光谱植被指数(GNDVI、CI、GMSR和GOSAVI)具有较好的相关性,与可见光植被指数(CIVE)和多光谱植被指数(GNDVI)的相结合指数具有较好的相关性,其估算模型的R2为0.89,模型验证的RMSE为2.55,nRMSE为6.21%。研究表明,可见光植被指数与多光谱植被指数相结合指数逐步回归和随机森林回归模型估算SPAD值的精度高于仅用可见光植被指数或多光谱植被指数,采用逐步回归的估算模型R2为0.91,模型验证R2、RMSE和nRMSE分别为0.89、2.32和5.64%,采用随机森林回归的估算模型R2为0.90,模型验证R2、RMSE和nRMSE分别为0.88、2.51和6.12%。  相似文献   

5.
为研究水稻叶片叶绿素相对含量(SPAD)在3种水分处理和5种施氮处理下的变化规律,探讨无人机多光谱遥感技术反演水稻SPAD的可行性,本研究利用大疆精灵4多光谱无人机,采集了水稻拔节孕穗期、抽穗开花期和乳熟期的冠层多光谱遥感影像,并同步测定水稻SPAD值,基于25个光谱变量(5个波段反射率和20个植被指数),采用多元线性逐步回归、岭回归和套索回归3种方法构建了水稻SPAD的反演模型。结果表明:水稻3个生育期的SPAD最佳反演模型均是采用套索回归方法构建的,其中乳熟期建立的SPAD最佳反演模型在3个生育期中的反演精度最高,决定系数为0.782,均方根误差为1.217 7,相对误差为6.611 3%。因此,该研究可对水稻叶片SPAD进行遥感监测,并为水稻精准灌溉和施肥提供科学依据和数据支撑。  相似文献   

6.
无人机多源光谱反演大田夏玉米叶面积指数   总被引:1,自引:0,他引:1  
【目的】研究多源光谱反演大田夏玉米叶面积指数(LAI)的效果。【方法】以大田夏玉米为研究对象,利用无人机获取试验区不同生育期热红外以及多光谱影像,提取热红外冠层温度(TC)以及多光谱植被指数,结合地面实测LAI数据,分析光谱数据与实测LAI之间的相关关系,并将TC与筛选出的11种植被指数作为输入变量,LAI作为输出变量利用多元线性回归、支持向量机和随机森林3个算法模型训练学习,建立了夏玉米LAI的反演模型。【结果】多光谱植被指数以及TC均与夏玉米LAI在P0.000 1水平上显著相关,相关系数均在0.5以上;RF算法于拔节期、喇叭口期、以及吐丝期3个生育期的LAI预测值与实测值的R~2均高于MLR算法和SVM算法,对应的RMSE及NRMSE均低于MLR算法和SVM算法;融合热红外TC后的RF模型反演精度均有不同程度的提升,各生育期LAI预测值与实测值R~2均大于同时期未融合TC的LAI反演模型。【结论】多光谱植被指数以及TC均与夏玉米LAI具有较强的相关性,且RF算法构建的夏玉米LAI反演模型精度优于MLR和SVM算法,同时TC的加入可以有效提升夏玉米LAI反演精度。  相似文献   

7.
基于无人机高光谱遥感数据的冬小麦产量估算   总被引:4,自引:0,他引:4  
为了准确和高效地预测作物产量,以冬小麦为研究对象,利用无人机遥感平台搭载高光谱相机,获取了冬小麦各生育期的无人机影像。根据高光谱具有较多的光谱信息且存在特有的红边区域的特点,选取了9种植被指数和5种红边参数。首先,分析植被指数和红边参数与产量的相关性,优选5种植被指数和2种红边参数用于构建产量估算模型;然后,构建了不同生育期的3种产量估算模型:单参数线性回归模型、基于植被指数并使用偏最小二乘回归方法模型、基于植被指数结合红边参数并使用偏最小二乘回归方法模型;最后利用3种模型分别估算冬小麦产量。结果表明:4个生育期内,大部分植被指数和红边参数与产量呈现极显著相关性;拔节期、挑旗期、开花期与灌浆期构建的单参数线性回归模型中表现最佳的参数分别为REP、Dr/Drmin、GNDVI与GNDVI;利用偏最小二乘回归方法提高了产量估算精度,以植被指数结合红边参数为因子构建的模型提高了产量估算效果(优于以植被指数为因子构建的产量模型)。本研究可为无人机高光谱估算作物产量提供参考。  相似文献   

8.
叶片含水率和叶水势反映植物组织中水分的状态,是衡量植物水分供应和水分利用效率的重要指标。为探究基于不同高度下无人机多光谱影像反演叶片含水率和叶水势模型的差异,本研究在3个飞行高度处理F30、F60、F100 (30、60、100m)下采集多光谱影像数据,通过使用6种光谱反射率+经验植被指数的组合与地面实测数据进行相关性分析,获得不同飞行高度下的光谱反射率+经验植被指数组合与叶片含水率和叶水势的反演模型及其决定系数,以决定系数为依据分别构建支持向量机(SVM)、随机森林(RF)和径向基神经网络(RBFNN)模型,分析不同飞行高度无人机多光谱影像反演芳樟叶片含水率和叶水势的精度。结果发现:3个飞行高度下,基于RF模型的反演精度均高于SVM模型和RBFNN模型。F30处理对叶片含水率与叶水势反演效果均优于F60和F100处理。F30处理对叶片含水率反演的敏感光谱反射率+植被指数组合为红光波段反射率(R)、红边1波段反射率(RE1)、红边2波段反射率(RE2)、近红外波段反射率(NIR)、增强型植被指数(EVI)、土壤调节植被指数(SAVI)。RF模型训练集的R2、RMSE、MRE分别为0.845、0.548%、0.712%;测试集的R2、RMSE、MRE分别为0.832、0.683%、0897%。对叶水势反演的敏感光谱反射率+植被指数组合为R、RE2、NIR、EVI、SAVI、花青素反射指数(ARI)。RF模型训练集的R2、RMSE、MRE分别为0.814、0.073MPa、3.550%;测试集的R2、RMSE、MRE分别为0.806、0.095MPa、4.250%。研究结果表明飞行高度30m与RF方法分别为反演叶片含水率和叶水势的最优光谱获取高度与最优模型构建方法。本研究可为基于无人机平台的矮林芳樟水分监测提供技术支持,并可为筛选无人机多光谱波段与经验植被指数、实现植物长势参数快速估测提供应用参考。  相似文献   

9.
基于无人机高光谱遥感的冬小麦株高和叶面积指数估算   总被引:1,自引:0,他引:1  
为了快速、准确地估算叶面积指数(LAI),通过无人机搭载成像高光谱相机,获取了冬小麦3个生育期的影像数据,从中提取出株高(Hcsm)。首先,分析了植被指数、Hcsm与LAI的相关性,挑选出最优植被指数;然后,分别构建了单个参数的LAI线性估算模型;最后,以植被指数、植被指数结合Hcsm为模型输入因子,采用偏最小二乘回归方法构建LAI估算模型。结果表明:通过无人机高光谱遥感影像提取的Hcsm精度较高(R2=0.95);在不同生育期,大部分植被指数和Hcsm均与LAI呈0.01显著相关水平;基于最优植被指数结合Hcsm估算LAI的精度优于仅基于最优植被指数或Hcsm的估算精度;以植被指数、植被指数结合Hcsm为输入变量,通过偏最小二乘回归构建的LAI估算模型在开花期估算精度达到最高,并且以植被指数结合Hcsm为自变量估算LAI的能力更佳(建模R2=0.73,RMSE为0.64)。本研究方法可以提高LAI估算精度,为农业管理者提供参考。  相似文献   

10.
基于多时相无人机遥感植被指数的夏玉米产量估算   总被引:6,自引:0,他引:6  
为建立夏玉米无人机遥感估产模型,正确评价规模化农业经营管理和用水效率,以内蒙古自治区规模化种植的夏玉米为研究对象,设置了5个不同水分处理的实验区域,每个实验区域布置了3个样区,利用自主研发的多旋翼无人机多光谱遥感平台,对夏玉米进行多时相的遥感监测。采用牛顿-梯形积分和最小二乘法,构建了基于多种植被指数和多种生育期对应的夏玉米实测产量的6种线性模型,并采用阈值滤波法减少土壤噪声对模型精度的影响。结果显示,不同生育期的玉米估产模型精度存在显著差异。单一生育期中,精度由高到低依次为:抽雄期、吐丝期、蜡熟期、拔节期,最优植被指数为EVI2(决定系数R^2=0.72,均方根误差RMSE为485.46 kg/hm^2);多生育期的最优植被指数为GNDVI(R^2=0.89,RMSE为299.35 kg/hm^2)。经过土壤滤波后,拔节期和多生育期的R^2提升显著,其中基于植被指数GNDVI、MASVI2、EVI2的多生育期估产模型的决定系数R2提升到0.87以上。多生育期的无人机遥感估产优于单生育期,最优估产植被指数为GNDVI,阈值滤波法可以有效提升估产精度,优化后基于植被指数的无人机遥感估产模型可以快速有效诊断和评估作物长势和产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号