首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experiment was conducted to investigate the effects of reducing dietary CP and increasing dietary cellulose concentrations on manure DM, C, N, S, VFA, indole, and phenol concentrations. Twenty-two pigs (105 kg initial BW) were fed diets containing either 14.5 or 12.0% CP, in combination with either 2.5 or 8.7% cellulose. Pigs were fed twice daily over the 56-d study, with feed intake averaging 2.74 kg/d. Feces and urine were collected after each feeding and added to the manure storage containers. Manure storage containers were designed to provide a similar unit area per animal as found in industry (7,393 cm2). Before sampling on d 56, the manure was gently stirred to obtain a representative sample for subsequent analyses. An interaction of dietary CP and cellulose was observed for manure acetic acid concentration, in that decreasing CP lowered acetic acid in pigs fed standard levels of cellulose but increased acetic acid in pigs fed greater levels of cellulose (P = 0.03). No other interactions were noted. Decreasing dietary CP reduced manure pH (P = 0.01), NH4 (P = 0.01), isovaleric acid (P = 0.06), phenol (P = 0.05), and 4-ethyl phenol (P = 0.02) concentrations. Increasing dietary cellulose decreased pH (P = 0.01) and NH4 (P = 0.07) concentration but increased manure C (P = 0.03), propionic acid (P = 0.01), butyric acid (P = 0.03), and cresol (P = 0.09) concentrations in the manure. Increasing dietary cellulose also increased manure DM (P = 0.11), N (P = 0.11), and C (P = 0.02) contents as a percentage of nutrient intake. Neither cellulose nor CP level of the diet affected manure S composition or output as a percentage of S intake. Headspace N2O concentration was increased by decreasing dietary CP (P = 0.03) or by increasing dietary cellulose (P = 0.05). Neither dietary CP nor cellulose affected headspace concentration of CH4. This study demonstrates that diets differing in CP and cellulose content can significantly impact manure composition and concentrations of VFA, phenol, and indole, and headspace concentrations of N(2)O, which may thereby affect the environmental impact of livestock production on soil, air, and water.  相似文献   

2.
Two studies were conducted to assess the effect of dietary protein reduction on N utilization, N excretion, and AA digestibility in growing pigs. The objective was to determine whether pigs fed diets with a reduced CP concentration could maintain the same N retention as pigs fed an adequate diet. The second objective was to test whether reducing dietary CP concentration decreases AA digestibility. In each study, six barrows were allotted to one of six dietary treatments in a Latin square design. Treatments consisted of four corn-soybean meal-based diets containing 15, 12, 9, and 6% CP, a casein-based diet containing 15% CP, and a protein-free diet. Crystalline AA were included in the 12, 9, and 6% CP diets. The indispensable:dispensable AA ratio was maintained at 45:55 with the addition of L-glutamic acid to the 9 and 6% CP diets. The casein-based and protein-free diets were used to determine endogenous total tract N and ileal AA losses. In the first study, total N losses and N absorbed decreased linearly (P < 0.001) as dietary CP concentration decreased from 15 to 6%. Both a linear (P < 0.001) and a quadratic (P < 0.05) decrease in N retention were found with decreasing dietary CP concentration. Nitrogen retained as a percentage of intake and absorbed increased (P < 0.001) as dietary CP concentration was reduced from 15 to 6%. In the second study, six barrows were surgically fitted with a T-cannula at the terminal ileum to determine ileal AA digestibility. For all dispensable and most indispensable AA, apparent and standardized ileal digestibility increased linearly (P 0.01, and for arginine, P < 0.05) as dietary CP concentration decreased. These results indicate that dietary CP concentration can be decreased from 15 to 12% with crystalline AA supplementation to meet an ideal AA profile without adversely affecting N retention, and that decreasing dietary CP concentration from 15 to 6% increases both dispensable and indispensable AA ileal digestibility.  相似文献   

3.
The objective of this study was to determine the effects of specific crystalline AA supplementation to a diet on odor emission, odor intensity, odor hedonic tone, and ammonia emission from pig manure, and on manure characteristics (pH; ammonia N; total nitrogen; sulfurous, indolic, and phenolic compounds; and VFA concentrations). An experiment was conducted with growing pigs (n = 18) in a randomized complete block design, with 3 treatments in 6 blocks. Treatment groups were (1) a 15%-CP basal diet with 3 times the requirement of sulfur-containing AA (14.2 g/kg of diet, as-fed basis); (2) the basal diet with 2 times the requirement of Trp and Phe+Tyr (2.9 and 20.4 g/kg of diet, respectively, as-fed basis); and (3) the basal diet with AA supplementation to levels sufficient for maximum protein gain. Pigs with an initial BW of 41.2 +/- 0.8 kg were individually penned in partly slatted floor pens and offered a daily feed allowance of 2.8 times the maintenance requirement for NE (293 kJ/kg of BW(0.75)). Feed was mixed with water at 1:2.5 (wt/wt). Feces and urine of each pig was allowed to accumulate in separate manure pits under the slatted floor. After an adaptation period of 2 wk, and after cleaning the manure pits, manure was subsequently collected. In wk 5 of the collection period, separate samples were collected directly from each manure pit for odor, ammonia, and manure composition analyses. Air samples were analyzed for odor concentration and for hedonic tone and odor intensity above the odor detection threshold. Results showed that supplementing crystalline S-containing AA in surplus of the requirement increased odor emission (P < 0.001) and odor intensity (P < 0.05) and reduced odor hedonic tone (P < 0.05) from the air above the manure pits. Supplementing crystalline Trp, Tyr, and Phe in surplus of the recommended requirements did not affect odor emission, odor intensity, or odor hedonic tone. Regardless of dietary treatment, all pigs had similar performance levels. No differences were observed in ammonia emission from manure of pigs fed different levels of AA supplementation (P = 0.20). To reduce odor from pig manure, dietary S-containing AA should be minimized to just meet the recommended requirements.  相似文献   

4.
Previous studies have indicated that reducing dietary CP may improve N utilization and effectively diminish manure ammonia emissions; however, the response of manure odor emissions to such dietary modifications has been inconsistent. The objective of the current experiment was to induce decreased lactobacilli (DL) numbers in the distal gastrointestinal tract (dGIT; cecum + colon) of finishing pigs offered both high- and low-CP diets through consumption of chitosan, and examine the influence of this model on manure ammonia and odor emissions when compared with a positive control diet. It was hypothesized that an DL population would be accompanied by an increase in markers of protein fermentation. When compared with normal lactobacilli populations in the dGIT, generation of an DL population would result in increased manure odor emissions from pigs offered both dietary CP concentrations. A 2 × 2 factorial arrangement of treatments was conducted to investigate the effect of including chitosan [0 (positive control) vs. 20 g/kg of feed] and high or low dietary CP concentration (200 vs. 150 g/kg of feed) on nutrient digestibility, N utilization, selected bacterial populations, and metabolite composition of the dGIT and manure emissions from finisher pigs (60.3 kg). Consumption of chitosan had no influence (P > 0.05) on nutrient digestibility or N utilization. In both high- and low-CP diets, consumption of chitosan decreased the lactobacilli-to-Enterobacteriaceae ratio (P < 0.01), generating an DL population, and increased pH (P < 0.01) in the dGIT and ammonia (P = 0.02) in the cecum compared with diets that supported normal lactobacilli populations. Consumption of chitosan decreased molar proportions of butyric acid (P < 0.01) and increased valeric acid (P < 0.01) in the dGIT compared with unsupplemented diets. Furthermore, consumption of chitosan increased manure odor emissions (P = 0.05) compared with unsupplemented diets. There was no effect (P > 0.05) of chitosan consumption on manure ammonia emissions from 0 to 240 h. The current study demonstrates that dietary chitosan suppressed populations of lactobacilli in the dGIT. In response, a considerable increase in Enterobacteriaceae, markers of protein fermentation, and manure odor emissions was observed compared with the positive control diet. These effects were observed in pigs offered both high-and low-CP diets. The current study indicates a possible role for lactic-acid bacteria in modulating manure odor emissions relatively independent of the proportions of dietary CP available for fermentation in the dGIT.  相似文献   

5.
Decreasing dietary N inputs into beef cattle feeding operations could potentially decrease environmental concerns relating to air and water quality. Previous studies with sheep suggest that oscillating dietary CP concentrations may improve N use efficiency and thereby decrease dietary N requirements. Therefore, two studies were conducted to determine the effects of oscillating dietary CP concentrations on performance, acid-base balance, and manure characteristics of steers fed high-concentrate diets. Steers were fed to a constant backfat thickness in both studies. In the first trial, 92 steers (mean BW = 408 +/- 2.8 kg; four pens/treatment) were fed the following diets: 1) constant 12% CP, 2) constant 14% CP, and 3) 10 and 14% CP oscillated at 2-d intervals. Steer performance and carcass characteristics were measured. In the second trial, 27 steers were individually fed the same three experimental dietary regimens (nine steers/treatment). Animal performance, arterial acid-base balance, plasma metabolites, and fecal characteristics were measured. In both trials, steers fed the 14% CP diet tended (P < 0.10) to have greater ADG and gain:feed than steers fed the 12% CP diet. Steers fed the oscillating CP regimen had intermediate performance. In Trial 1, steers fed the 14% CP diet tended (P = 0.09) to have smaller longissimus area and higher quality grades than steers fed the oscillating CP regimen. Protein retentions (g/d) calculated from NRC (2000) equations were greater (P = 0.04) for steers fed the 14% CP diet than steers fed the 12% CP diet. Steers fed the oscillating CP regimen tended (P = 0.08) to have greater calculated protein retention (g/d) than steers fed the 12% CP diet. Steers fed the 14% CP diet had greater (P < 0.05) calculated urinary N excretion than steers fed the 12% CP or oscillating CP regimens. Venous plasma concentrations of urea N were greater (P < 0.001) in steers fed the 14% CP diet than in steers fed the 12% CP diet; steers fed the oscillating CP regimen were intermediate but fluctuated over days. Based on arterial blood gas concentrations, acid-base balance was not significantly affected by dietary CP regimen. Results of these trials suggest that the CP requirement of steers in these studies was greater than 12% of the diet DM, and/or that the degradable CP requirement was greater than 6.3% of diet DM. However, the effects of oscillating dietary CP were minimal.  相似文献   

6.
The objective of this study was to investigate the effect of CP intake from 2 grass silage-only diets, differing in CP concentration, fed at similar DMI on the equine colon ecosystem after an abrupt feed change between the diets. Four adult right ventral colon-fistulated geldings were fed one silage-only diet high in CP (HP, 873 g of CP/d) and one diet providing recommended intakes (RP, 615 g of CP/d). An adaptation period of 15 d on either the HP or the RP diet was followed by 2 experimental periods when the diets were fed for 22 d each in a crossover design. Colon samples were taken before and at 4, 12, and 24 h, and at 7, 14, and 22 d after the feed change. During the first 24 h after the abrupt feed change, the concentrations of total anaerobic bacteria and lactobacilli were greater on the HP than the RP diet (7.1 vs. 6.7 log(10) cfu/mL, P = 0.021, 6.0 vs. 5.5 log(10) cfu/mL, P = 0.021, respectively). During the first 24 h post feed change, VFA concentrations did not differ between the diets. From 7 to 22 d, total VFA concentrations were greater on the HP diet than on the RP diet (51.8 vs. 45.1 mmol/L, P = 0.034), and colon pH was lower on the HP diet than on the RP diet (6.9 vs. 7.2, P = 0.035). After an adaptation period of 22 d, N, ammonia, and urea concentrations and osmolality of the colon fluid did not differ between diets. Fecal pH and colon and fecal DM were unchanged throughout the experiment. The results suggest that, in horses fed at the maintenance level of energy intake, a feed change between silages with different CP content may alter the colon bacterial counts within the first 24 h. Moreover, during the subsequent 3 wk, pH decreased slightly and VFA concentrations increased, but no other major alterations occurred in the composition and activities of the colon ecosystem or fecal DM.  相似文献   

7.
It was hypothesized that supplementation of an oat-extracted mixed-linkage (1 → 3), (1 → 4)-β-d-glucan (β-glucans) to a wheat-based diet may beneficially mitigate manure odor and ammonia emissions associated with intensive pig production, without depressing nutrient digestibility as has been observed with oat-based diets. An experiment was conducted to investigate the effect of dietary β-glucan source and the inclusion of an enzyme composite containing β-glucanase on energy and nutrient digestibility, N utilization, distal gastrointestinal tract (GIT) fermentation, and manure emissions from finisher boars. Twenty-eight boars (BW = 74.2 ± 3.6 kg) were assigned to 1 of 4 dietary treatments (n = 7/treatment): 1) an oat-based diet (oat), 2) an oat diet + enzyme composite (OE), 3) a wheat-based diet + purified β-glucans (WG), and 4) a wheat-based diet + purified β-glucans + enzyme composite. The wheat-based diets containing purified β-glucans were formulated to contain concentrations of total β-glucans comparable with the oat-based diet. Consumption of the WG diet resulted in a greater digestibility of GE (P = 0.001) and an increase in the urine:feces N excretion ratio (P = 0.049) compared with the oat diet. In the distal GIT, pigs offered the WG diet contained fewer bifidobacteria (P = 0.027) and lactobacilli (P = 0.050) compared with the oat diet. Pigs offered the WG diet had increased manure odor emissions compared with the oat diet (P = 0.023). In conclusion, although supplementing wheat-based diets with extracted oat-β-glucan did not reduce nutrient digestibility, there was a negligible effect in beneficially influencing manure emissions from pigs when compared with a conventional oat formulation.  相似文献   

8.
Eight cannulated wethers (BW = 52.5 +/- 5.7 kg) were used in a replicated 4 x 4 Latin square designed experiment to evaluate the effects of oscillating dietary protein concentrations on ruminal fermentation, site and extent of digestion, and serum metabolite concentrations. Four treatments consisted of a 13, 15, or 17% CP diet fed daily or a regimen in which dietary CP was oscillated between 13 and 17% on a 48-h basis (ACP). All diets consisted of 65% bromegrass hay (10.5% CP, 61.9% NDF, 37.2% ADF) plus 35% corn-based supplement and were formulated to contain the same amount of degradable intake protein (9.6% of DM) plus additional undegradable intake protein (SoyPLUS, West Central Cooperative, Ralston, IA) to accomplish CP levels above 13%. Each of four experimental periods were 16 d in duration with 12 d for diet adaptation followed by 4 d for sample collection. All wethers were fed at 3.0% of initial BW (DM basis) throughout the experiment, resulting in an average organic matter intake of 1.39 kg/d across treatments. When compared to the 15% CP daily treatment, feeding ACP had no effect (P > or = 0.10) on ruminal or lower tract N, NDF, ADF, or OM digestion. True ruminal OM digestion responded quadratically (P = 0.07) to increasing dietary CP, reaching a maximum of 52.0% of OM intake with the 15% CP treatment. Sheep fed ACP tended to have lower (P = 0.08) ruminal NH3 N concentrations and an overall higher (P = 0.0001) molar proportion of acetate compared to those fed 15% CP daily. Total VFA concentrations were not affected (P > or = 0.45) by increasing dietary CP. Microbial efficiency did not differ (P > or = 0.55); thus, bacterial N flow at the duodenum responded quadratically (P = 0.04) to increasing dietary CP. Nonbacterial N (P = 0.001) and total N (P = 0.01) flows at the duodenum and total tract N digestibility (P < or = 0.04) increased linearly as dietary CP increased. Wethers fed ACP maintained a lower (P = 0.002) serum glucose and lower (P = 0.0006) serum urea N compared to those fed 15% CP daily. Because the CP content of the diet was increased at the expense of corn, the response to increased CP observed in this experiment is most likely due to negative associative effects of supplemental starch on ruminal fermentation and microbial growth. Oscillating the CP content of the diet on a 48-h basis has little effect on digestion or N utilization in sheep compared with feeding the same quantity of protein on a daily basis.  相似文献   

9.
The excretion of major odor-causing and acidifying compounds in response to dietary supplementation of chicory inulin extract was investigated with six Yorkshire barrows, with an average initial BW of 30 kg, according to a balanced two-period cross-over design. The animals were fed a control diet containing no inulin extract and a treatment diet with 5% inulin extract (as-fed basis) at the expense of cornstarch. Each diet was formulated (as-fed basis) to contain 16% CP from corn (51%) and soybean meal (29%). Each experimental period lasted 14 d, with 10 d for dietary adaptation and 4 d for collection of fecal and urine samples. The fecal samples were analyzed for four major classes of odor-causing and acidifying compounds: 1) VFA; 2) N-containing compounds, including total N and ammonia; 3) volatile sulfides measured as hydrogen sulfide units; and 4) phenols and indoles, including p-cresol, indole, and skatole. Supplementation of chicory inulin at 5% had no effects on the fecal excretion of VFA (P = 0.29), ammonia (P = 0.96), total volatile sulfides (P = 0.56), p-cresol (P = 0.56), and indole (P = 0.75). Fecal excretion of total N (inulin = 6.13 vs. control = 5.10 g/kg DMI) was increased (P < 0.05), whereas urinary total N excretion (inulin = 15.1 vs. control = 16.4 g/[pig x d]) was not affected (P = 0.17) by the inulin supplementation compared with the control group. Furthermore, fecal excretion of skatole (inulin = 9.07 vs. control = 18.93 mg/kg DMI) was decreased (P < 0.05) by the inulin supplementation compared with the control group. In conclusion, dietary supplementation of 5% chicory inulin extract is effective in decreasing the fecal excretion of skatole in growing pigs fed corn and soybean meal diets.  相似文献   

10.
The objectives of this study were to determine differences in apparent total tract energy and macronutrient digestibility, fecal and urine characteristics, and serum chemistry of domestic cats fed raw and cooked meat-based diets and extruded diet. Nine adult female domestic shorthair cats were utilized in a replicated 3 × 3 Latin square design. Dietary treatments included a high-protein extruded diet (EX; 57% CP), a raw beef-based diet (RB; 53% CP), and a cooked beef-based diet (CB; 52% CP). Cats were housed individually in metabolic cages and fed to maintain BW. The study consisted of three 21-d periods. Each period included diet adaptation during d 0 to 16; fecal and urine sample collections during d 17 to 20; and blood sample collection at d 21. Food intake was measured daily. Total feces and urine were collected for determination of nutrient digestibility. In addition, a fresh urine sample was collected from each cat for urinalysis, and a fresh fecal sample was collected from each cat for determination of DM percentage and ammonia, short-chain fatty acid (SCFA), and branched-chain fatty acid (BCFA) concentrations. All feces were scored after collection using a scale ranging from 1 (hard, dry pellets) to 5 (watery, liquid that can be poured). Blood was analyzed for serum metabolites. Apparent total tract DM, OM, CP, fat, and GE digestibilities were greater (P ≤ 0.05) in cats fed RB and CB than those fed EX. Total fecal SCFA concentrations did not differ among dietary treatments; however, molar ratios of SCFA were modified by diet, with cats fed RB and CB having an increased (P ≤ 0.05) proportion of fecal propionate and decreased (P ≤ 0.05) proportion of fecal butyrate compared with cats fed EX. Fecal concentrations of ammonia, isobutyrate, valerate, isovalerate, and total BCFA were greater (P ≤ 0.05) in cats fed EX compared with cats fed RB and CB. Our results indicated that cooking a raw meat diet does not alter apparent total tract energy and macronutrient digestibility and may also minimize risk of microbial contamination. Given the increasing popularity of feeding raw diets and the metabolic differences noted in this experiment, further research focused on the adequacy and safety of raw beef-based diets in domestic cats is justified.  相似文献   

11.
Diarrhea incidence in weaned pigs may be associated with the concentration of intestinal microbial metabolites (ammonia, amines, and VFA) that are influenced by dietary CP content. Three experiments were conducted to determine effects of a low-protein, AA-supplemented diet on ileal AA digestibility, growth performance, diarrhea incidence, and concentration of microbial metabolites in ileal and cecal digesta of pigs weaned at 14 d of age. In Exp. 1, 8 pigs fitted with a simple T-cannula at the distal ileum were assigned in a crossover design to 2 diets containing 24 or 20% CP using wheat, corn, full-fat soybeans, whey powder, fish meal, and blood plasma as the main ingredients. Supplemental AA were added to the diets to meet the AA standards according to the 1998 NRC recommendations. Chromic oxide was used as an indigestible marker. Diets were fed at 2.5 times the ME requirement for maintenance. The reduction of dietary CP decreased (P < 0.05) the apparent ileal digestibility of most AA, except Lys, Met, Thr, Val, and Pro. Dietary CP content did not affect the pH of ileal digesta or ileal concentrations of ammonia N, cadaverine, putrescine, or VFA. In Exp. 2, 8 pigs fitted with a simple T-cannula in the cecum were assigned to 2 diets, similar to Exp. 1. Dietary CP content did not affect the pH of cecal digesta. The reduction in CP content decreased (P < 0.05) cecal ammonia N, acetic acid, isobutyric acid, isovaleric acid, total VFA, and putrescine concentrations by 28 to 39%. In Exp. 3, 32 pigs were assigned to 2 diets, similar to Exp. 1, according to a randomized complete block design. Pigs had free access to feed and water. Dietary CP content did not affect growth performance or fecal consistency scores during the 3-wk study, and diarrhea was not observed. The results of these experiments indicate that lowering the dietary CP content combined with supplementation of AA markedly reduced the production of potentially harmful microbial metabolites in cecal digesta of early-weaned pigs without affecting growth performance.  相似文献   

12.
Two feeding studies were conducted to examine the impact of dietary inclusion of specific feed ingredients on manure characteristics and manure odor. In one study, 72 finishing pigs were used to evaluate the effects of distillers dried grains with solubles (DDGS) on pig performance, manure characteristics, and odorous emissions. Three diets containing 0, 5, and 10% DDGS were fed during six 4-wk feeding periods. Week 1 served as a dietary adjustment period. Animals were housed in two feeding rooms (six pigs/room) with one treatment/room. A new group of animals (average initial BW = 85.8 kg) was used for each feeding period. Diets were replicated four times. Rooms were equipped with individual shallow manure storage pits that were cleaned once weekly (d 7). On d 4 and 7 of each week, manure pit samples, for chemical analyses, and air samples, for olfactometry analysis, were collected from each room. Odor dilution threshold was greater on d 7 than on d 4 of manure storage across all treatments (P < 0.01). No treatment differences in manure composition were noted. In the second study, weaned pigs (approximately 5 wk old) were fed isonitrogenous diets containing 0, 1.5, or 3% bloodmeal. Pigs were housed by diet (three pigs/diet) in one of four individual feeding rooms. A new group of pigs was used for each of the two, 4-wk feeding periods. During period 1, the 3% bloodmeal diet was fed in two of the four rooms; the 0% bloodmeal diet was fed in two rooms during period 2. Manure samples, for chemical analyses, and air samples, for olfactometry analysis, were collected 2 d per week (d 4 and d 6) from each room during wk 2 through 4. No significant treatment differences were observed for odor dilution threshold (P = 0.30). Longer manure storage time, 6 d vs 4 d, resulted in a larger odor dilution ratio (P < 0.01). Manure composition was unaltered by storage time. Results suggest that odor intensifies during storage.  相似文献   

13.
The objective of this study was to determine the effects of dietary crude protein (CP) level on odour emission, odour intensity, odour hedonic tone, ammonia and greenhouse gaseous emission from pig manure, and on fresh faeces and manure characteristics. An experiment was conducted with finishing pigs (n = 12) in a randomized complete block arrangement with 2 treatments of 12 and 15% dietary CP in six blocks. The 2 diets were supplemented with essential AA up to the level of the animal's requirement. Pigs with an initial body weight (BW) of 57.7 ± 0.7 kg were penned individually in partly slatted floor pens. Faeces and urine of each pig accumulated in separate manure pits under the slatted floor. In the 3rd week of the collection period, fresh faeces were collected for identifying fresh faeces characteristics and for assessing dry matter, organic matter, nitrogen (N), fat and non-starch polysaccharides digestibility using Cr2O3 as a marker. In the 6th week of the collection period, air samples were collected directly from each manure pit: one for odour, one for ammonia concentration and one for greenhouse gases. Afterwards the manure was mixed and a representative sample was taken for manure characteristic analysis. Odour samples were analyzed for odour concentration and for hedonic tone and odour intensity. Manure samples were analyzed for volatile fatty acids (VFA), indolic, phenolic, sulphurous compounds, ammonium and total N concentrations and pH. Reducing dietary CP level from 15 to 12% did not affect odour emission, odour intensity and odour hedonic tone and greenhouse gaseous concentration (CH4, CO2 and N2O) (P > 0.05) of odorous air above the manure pit. Reduced dietary CP level decreased manure pH (P < 0.001), total N (P < 0.001) and ammonium (P < 0.001) concentrations and ammonia emission from pig manure (P = 0.03). In addition, total VFA, acetic, propionic, iso-butanoic and iso-pentanoic acids, phenol, 4-ethyl phenol and carbon disulfide concentrations in manure were decreased by reducing dietary CP level (P < 0.05). We conclude that reducing dietary CP from 15 to 12% did not reduce odour emission and greenhouse gaseous concentration; however, ammonia emission was significantly reduced.  相似文献   

14.
选用平均体重为(40±2)kg杜长大三元杂交去势公猪3头,按3×3的拉丁方进行试验设计,试验分3期,每期为7 d,采用全收粪法,研究不同蛋白质(CP)水平的氨基酸平衡日粮CP水平分别为14%、16%和18%)对氮、磷及能量代谢的影响。结果表明:不同蛋白质水平日粮处理间的氮表观消化率差异不显(著P>0.05),氮的沉积率以14%CP和16%CP组显著高于18%CP组(P<0.05),而14%CP和16%CP组之间无显著差异(P>0.05)。粪氮排出量14%CP日粮组显著低于16%CP和18%CP日粮组(P<0.05),16%CP日粮组和18%CP日粮组间无显著差异(P>0.05)。随着日粮蛋白质水平下降,生长猪的氮排出量、粪氮和尿氮均减少,总排泄氮中尿氮的比例较大,而粪氮则较少。不同蛋白质水平日粮对磷和能量的消化利用无显著影响(P>0.05)。  相似文献   

15.
Reducing the CP content and increasing the fermentable carbohydrates (FC) content of the diet may counteract the negative effects of protein fermentation in newly weaned piglets fed high-CP diets. To study the synergistic effects of CP and FC on gut health and its consequences for growth performance, 272 newly weaned piglets (26 d of age, 8.7 kg of BW) were allotted to 1 of 4 dietary treatments in a 2 x 2 factorial arrangement, with low and high CP and low and high FC content as the factors. Eight piglets from each dietary treatment were killed on d 7 postweaning. Feces and digesta from ileum and colon were collected to determine nutrient digestibility, fermentation products, and microbial counts. In addition, jejunum tissues samples were collected for intestinal morphology and enzyme activity determination. During the entire 4-wk period, interactions between the dietary CP and FC contents were found for ADFI (P = 0.022), ADG (P = 0.001), and G:F (P = 0.033). The high-FC content reduced ADFI, ADG, and G:F in the low-CP diet, whereas the FC content did not affect growth performance in the high-CP diet. Lowering the CP content of the low-FC diet improved ADFI and ADG, whereas lowering the CP content of the high-FC diet did not influence growth performance. The low-CP diets resulted in a lower concentration of ammonia in the small intestine (P = 0.003), indicating reduced protein fermentation. In the small intestine, the high FC content increased the number of lactobacilli (P = 0.047), tended to decrease the number of coliforms (P = 0.063), tended to increase the lactic acid content (P = 0.080), and reduced the concentration of ammonia (P = 0.049). In the colon, the high-FC diets increased the concentration of total VFA (P = 0.009), acetic acid (P = 0.003), and butyric acid (P = 0.018), and tended to decrease the ammonia concentration (P = 0.076). Intestinal morphology and activity of brush border enzymes were not affected by the diet, although maltase activity tended to decrease with increasing dietary FC (P = 0.061). We concluded that an increase in the dietary FC content, and to a lesser extent a decrease in the CP content, reduced ammonia concentrations and altered the microflora and fermentation patterns in the gastrointestinal tract of weaned piglets. However, these effects were not necessarily reflected by an increased growth performance of the piglets.  相似文献   

16.
As cattle mature, the dietary protein requirement, as a percentage of the diet, decreases. Thus, decreasing the dietary CP concentration during the latter part of the finishing period might decrease feed costs and N losses to the environment. Three hundred eighteen medium-framed crossbred steers (315 +/- 5 kg) fed 90% (DM basis) concentrate, steam-flaked, corn-based diets were used to evaluate the effect of phase-feeding of CP on performance and carcass characteristics, serum urea N concentrations, and manure characteristics. Steers were blocked by BW and assigned randomly to 36 feedlot pens (8 to 10 steers per pen). After a 21-d step-up period, the following dietary treatments (DM basis) were assigned randomly to pens within a weight block: 1) 11.5% CP diet fed throughout; 2) 13% CP diet fed throughout; 3) switched from an 11.5 to a 10% CP diet when approximately 56 d remained in the feeding period; 4) switched from a 13 to an 11.5% CP diet when 56 d remained; 5) switched from a 13 to a 10% CP diet when 56 d remained; and 6) switched from a 13 to an 11.5% CP diet when 28 d remained. Blocks of cattle were slaughtered when approximately 60% of the cattle within the weight block were visually estimated to grade USDA Choice (average days on feed = 182). Nitrogen volatilization losses were estimated by the change in the N:P ratio of the diet and pen surface manure. Cattle switched from 13 to 10% CP diets with 56 d remaining on feed or from 13 to 11.5% CP with only 28 d remaining on feed had lower (P < 0.05) ADG, DMI, and G:F than steers fed a 13% CP diet throughout. Steers on the phase-feeding regimens had lower (P = 0.05) ADG and DMI during the last 56 d on feed than steers fed 13.0% CP diet throughout. Carcass characteristics were not affected by dietary regimen. Performance by cattle fed a constant 11.5% CP diet did not differ from those fed a 13% CP diet. Serum urea N concentrations increased (P < 0.05) with increasing dietary CP concentrations. Phase-feeding decreased estimated N excretion by 1.5 to 3.8 kg/steer and nitrogen volatilization losses by 3 to 5 kg/steer. The results suggest that modest changes in dietary CP concentration in the latter portion of the feeding period may have relatively small effects on overall beef cattle performance, but that decreasing dietary CP to 10% of DM would adversely affect performance of cattle fed high-concentrate, steam-flaked, corn-based diets.  相似文献   

17.
Short-chain fructooligosaccharides (FOS) were supplemented to the diets of nine quarter horses ranging in age from 489 to 539 d with initial BW averaging 400.6 +/- 21.2 kg. The objectives of this study were to determine the effects of dietary FOS on the fecal responses in terms of pH, the microbial population, and VFA concentrations. The horses were used in a 3 x 3 replicated Latin square design, fed according to NRC requirements, and their individual diets were supplemented with no FOS (CON), 8 g of FOS/d (LOW), or 24 g of FOS/d (HIGH) over three 10-d feeding periods. On the last 3 d of each 10-d feeding period, a single fecal sample was collected between 0730 and 0930. Fecal pH decreased linearly (P = 0.01) from 6.48 with the CON diet to 6.38 with the HIGH diet, but there was no change (P = 0.19 for linear effect) in fecal consistency among treatments. A quadratic effect (P < 0.01) was observed for fecal Escherichia coli population, but no difference (P = 0.88 for linear effect) was found in fecal Lactobacilli enumeration among treatments. The presence of fecal Bifidobacteria was unable to be confirmed and was therefore not reported. Fecal acetate concentrations increased linearly (P = 0.03), with means of 2.13, 2.18, and 2.52 mg/g of wet feces for CON, LOW, and HIGH treatments, respectively. Similarly, fecal propionate concentrations increased linearly (P = 0.01), with means of 0.58, 0.64, and 0.73 mg/g for CON, LOW, and HIGH treatments, respectively. Fecal butyrate concentrations also increased linearly (P = 0.02), with means of 0.40, 0.46, and 0.54 mg/g for CON, LOW, and HIGH treatments, respectively. Total VFA (P = 0.01) and lactate (P = 0.02) concentrations increased linearly, with total VFA means of 3.47, 3.69, and 4.25 mg/g for CON, LOW, and HIGH treatments, respectively, and lactate means of 0.36, 0.41, and 0.47 mg/g for CON, LOW, and HIGH treatments, respectively. Supplementing FOS in diets fed to yearling horses altered fecal microbial populations, fecal VFA concentrations, and pH.  相似文献   

18.
We hypothesized that oscillation of the dietary CP concentration, which may improve N retention of finishing beef steers, would reduce production of manure odor compounds and total N inputs while yielding comparable performance. Charolais-sired steers (n = 144; 303 +/- 5 kg of initial BW) were used in a completely randomized block design (6 pens/treatment). The steers were fed to 567 kg of BW on the following finishing diets, which were based on dry-rolled corn: 1) low (9.1% CP), 2) medium (11.8% CP), 3) high (14.9% CP), or 4) low and high oscillated on a 48-h interval for each feed (oscillating). Steers fed low tended (P = 0.08) to have less DMI (7.80 kg/d) than steers fed medium (8.60 kg/d) or oscillating (8.67 kg/d), but not less than steers fed high (8.12 kg/d). Daily N intake was greatest (P < 0.01) for steers fed high (189 g), intermediate for medium (160 g) and oscillating (164 g), and least for low (113 g). The ADG was lower (P < 0.01) for steers fed low (1.03 kg) than for those fed medium (1.45 kg), high (1.45 kg), or oscillating (1.43 kg). Similarly, steers fed low had a lower adjusted fat thickness (P < 0.01) and yield grade (P = 0.05) and tended (P = 0.10) to have less marbling than steers fed the other 3 diets. In slurries with feces, urine, soil, and water, incubated for 35 d, nonsoluble CP was similar among slurries from steers fed medium, high, or oscillating, but was less (P < 0.01) in slurries from steers fed low. However, throughout the incubation period, slurries from steers fed high or oscillating had greater (P < 0.01) concentrations of total aromatics and ammonia than those from steers fed low or medium. Also, the slurries from steers fed oscillating had greater (P < 0.01) concentrations of branched-chain VFA than manure slurries from steers fed any of the other diets. These data indicate that although there is no apparent alteration in the performance of finishing steers fed diets with oscillation of the dietary protein, there may be undesirable increases in the production of compounds associated with malodor.  相似文献   

19.
The effects of two types of nondigestible oligosaccharides (NDO), fructooligosaccharides (FOS), and transgalactooligosaccharides (TOS) were studied on growing and weanling pigs' nutrient digestion. Dietary NDO were included at the expense of purified cellulose. Twenty-five 57-d-old growing pigs, averaging 15.9+/-.6 kg on d 0 of the experiment, were fed a corn-based control diet or the control with 6.8 or 13.5 g of FOS/kg or 4.0 or 8.0 g of TOS/kg (five pigs per diet). Feces were collected on d 28 to 32, and small-intestinal digesta were collected (slaughter technique) on d 42 to 47 of the experiment. Feeds, feces, and digesta were analyzed for DM, inorganic matter, CP, ether extract, and crude fiber. Dietary NDO did not significantly affect apparent fecal and small intestinal digestion of nutrients in growing pigs. After being fed a NDO-free diet through d 10 after weaning, 38-d-old weanling pigs (n = 20), averaging 10.4+/-.8 kg on d 0 of the experiment, were fed a control diet (based on cornstarch, casein, and oat husk meal) or the control with 10 or 40 g of FOS or TOS/kg (four pigs per diet). Feces and urine were collected on d 13 to 17, and ileal digesta were collected via a postvalve T-cecum cannula on d 33 to 37 of the experiment. Feeds, feces, and digesta were analyzed for DM, inorganic matter, CP, ether extract, starch, NDF, ADF, ADL, Ca, P, Mg, Fe, Cu, and Zn. Nonstarch neutral-detergent soluble carbohydrates (NNSC) completed the mass balance for the carbohydrates. Urine was analyzed for N and minerals. The apparent fecal digestion of NNSC increased in the NDO-supplemented diets. The TOS-fed pigs tended (P<.10) to have a higher apparent fecal digestion of CP than the FOS-fed and control pigs but excreted more N via the urine (P<.01). Nitrogen and mineral balances were not affected. The FOS was nearly completely degraded prececally. Mean fiber digestion was lower at the fecal compared with the ileal level, as was the extent of NDO effects. This indicates that fiber digestion requires more than 2 wk to adapt to dietary NDO. Apparent ileal digestion of hemicellulose increased for the NDO-supplemented diets (P<.05), but that of NNSC decreased (P<.001). Thus, under the well-controlled conditions of this experiment, dietary NDO hardly affected nutrient digestion in well-kept growing and weanling pigs. However, digestion of dietary nonstarch carbohydrates may be affected.  相似文献   

20.
An experiment was done to determine manure output, N and P excretion, and apparent digestibilities of AA, CP, P, and DM in growing pigs fed barley-based diets containing micronized or raw peas with or without supplementation with enzyme containing primarily beta-glucanase and phytase (Biogal S+). Eight barrows (21.5 +/- 1.2 kg of initial BW) fitted with T-cannulas at the distal ileum were used in a 40-d trial and housed in metabolism cages. Pigs were assigned in a replicated 4 x 4 Latin square design to 4 experimental diets: 1) barley-raw peas control (BRP), 2) barley-micronized peas (BMP), 3) BRP plus enzyme, and 4) BMP plus enzyme (BMP+E). Pigs received 2.6 times maintenance energy requirements based on BW at the beginning of each experimental period. During each experimental period, pigs were acclimatized to their respective diets for 5 d followed by a 3-d period of total fecal and urine collection and another 2-d period of ileal digesta collection. Samples were analyzed for DM, AA (diets and digesta only), N, and P. Wet fecal output of BRP plus enzyme-fed pigs tended to be lower (P = 0.07) than the amount produced by BMP-fed pigs. The amounts of dry feces and urine produced were not different among treatments (P > 0.10). Supplementing the BRP and BMP diet with enzyme increased (P = 0.002) the daily P retained per pig. Pigs fed the enzyme-supplemented diets tended to have lower (P = 0.06) fecal P excretion and greater urinary P excretion (P = 0.001) compared with pigs fed the nonsupplemented diets, but total P excretion was not influenced by diet (P > 0.10). Pigs fed the BMP+E diet retained more (P = 0.006) N per day than pigs fed the BMP diet. However, N excretion was not influenced by dietary treatment (P > 0.10), although BMP+E-fed pigs excreted 13.2% less N in the feces compared with those fed the nonenzyme supplemented controls. Inclusion of micronized peas with or without enzyme supplementation did not affect urinary or fecal N excretion (P > 0.10) compared with the BRP. Dietary treatment had no effect (P > 0.10) on ileal or fecal DM or CP digestibilities. Apparent ileal digestibilities of AA were usually lower (P < 0.05) in the BRP diet compared with the other diets. Enzyme supplementation improved P digestibility at the ileal and fecal level. The current results indicate that utilizing micronized peas in barley-based pig grower diets enhances P retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号