首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 609 毫秒
1.
采用RT-PCR法对海兰鸡MyoD全长cDNA序列进行扩增,克隆、测序后,构建真核表达载体pEGFP-N1-MyoD,脂质体瞬时转染鸡胚成纤维细胞,用荧光显微镜、RT-PCR和SDS-PAGE电泳法检测MyoD蛋白表达情况.结果表明,构建的真核表达载体pEGFP-N1-MyoD能成功转染鸡胚成纤维细胞;荧光显微镜观察可见绿色荧光;RT-PCR可见目的条带;SDS-PAGE 电泳证明表达的蛋白相对分子质量为33KD,该结果为研究MyoD蛋白的功能奠定了试验基础.  相似文献   

2.
刘敏  许厚强  陈伟  陈祥  李飞 《广东农业科学》2013,40(17):133-136
采用PCR 技术扩增牛MSTN 基因启子,亚克隆至荧光素酶表达载体pGL3-Basic 中,构建重组报告载体pGL3-Basic- MSTN-promoter。将重组报告载体pGL3-Basic-MSTN-promoter 与内参质粒pRL-TK 用脂质体法瞬时共转染小鼠成肌细胞系C2C12 和小鼠胚胎成纤维细胞3T3-L1,通过双荧光素酶活性检测其启动子活性遥测序结果表明,成功构建了牛MSTN 基因真核报告载体pGL3-Basic-MSTN-promoter,瞬时转染试验表明,pGL3-Basic-MSTN-promoter在C2C12细胞和3T3-L1 细胞中的启动子活性分别为pGL3-Basic空载体的14.53 倍尧5.02 倍。研究结果为进一步研究MSTN 基因的表达调控机制奠定了基础。  相似文献   

3.
【目的】构建牛ATP5B基因启动子双荧光素酶报告基因重组质粒,并检测其在C2C12细胞系中的表达活性。【方法】从牛外周血中提取基因组DNA,通过PCR方法从牛基因组DNA中克隆获得牛ATP5B基因的5′端转录调控区的1 898bp目的片段,通过设计引物逐段缺失后获得7个亚克隆,将其纯化后经SmaⅠ和KpnⅠ双酶切与pGL3-Basic载体连接,连接产物转化感受态细胞DH5α,得到牛ATP5B基因启动子双荧光素酶报告基因重组质粒,经脂质体基因转染法转染C2C12细胞系后,检测7个重组质粒的荧光素酶活性;运用在线软件Gen-omatix和TFSEARCH对ATP5B启动子区序列进行分析。【结果】成功克隆获得7个系列缺失的牛ATP5B基因启动子双荧光素酶报告基因重组质粒pATP5B-1898、pATP5B-1607、pATP5B-1293、pATP5B-992、pATP5B-678、pATP5B-462和pATP5B-145;通过转染细胞和荧光素酶活性分析,可知构建的重组质粒均有启动子活性,且重组质粒pATP5B-678和pATP5B-462与空载体pGL3-Basic的荧光素酶活性差异极显著。软件分析结果显示,ATP5B基因启动子区域-763~-85bp存在多个重要转录调控元件。【结论】成功构建了7个系列缺失的牛ATP5B基因启动子双荧光素酶报告基因重组质粒,且证实-763~-230bp为牛ATP5B基因的核心启动子区域。  相似文献   

4.
【目的】角蛋白10 (K10) 是黑色素细胞中黑素体向周围角化细胞迁移的分子标记之一,在研究基因在黑色素细胞与角化细胞相互作用的功能时,可以作为特异的启动子。本研究欲筛选K10较强的启动子片段,为研究K10以及相关基因的功能提供理论依据和奠定理论基础。【方法】从小鼠尾巴提取基因组DNA,经质量鉴定后,采用PCR法扩增K10的6个不同片段(F1-F6),并将其分别亚克隆到pMD18-T载体,经测序验证是否正确;将K10的6个亚克隆片段再克隆到pGL0载体中,产生pGL0 - F1-F6构建,用脂质体法转染293T细胞,转染结束后将细胞裂解,并通过双荧光素酶报告基因检测6个片段转染细胞后引起的荧光素酶活性变化,以筛选启动效果最好的启动子片段;用筛选到的K10启动子片段作为特异启动子,替换pGL0载体上的CMV强启动子,并与周期素依赖蛋白激酶5(CDK5)基因进行重组,形成pGL0-F-CDK5构建,用脂质体法转染小鼠皮肤角化细胞,待转染结束后,分别进行细胞爬片、细胞裂解和细胞总RNA的提取,之后用免疫荧光化学、双荧光素酶报告基因检测法和实时荧光定量PCR法检测CDK5的表达定位、表达水平及荧光素酶活性,以检测其在角化细胞中的启动效果;用生物信息法Promoter Scan分析所得到的活性最强的K10启动子片段,发现其可能的转录因子结合位点。【结果】PCR扩增、克隆得到K10启动子的6个片段(F1-F6),片段大小分别为1 201、908、664、787、790、656 bp;质粒pGL0 - F1-F6分别转染293T细胞后,通过双荧光报告检测发现长度为787bp的F4启动子活性最强;但F1-F6启动子的活性均弱于pGL0-basic中CMV的启动活性;F4序列中含有基本启动子保守区域的共同序列即TATAAAA,经Promoter Scan分析发现F4序列中含有C/EBPβ、GATA、HSF、CAP等多个转录因子的结合位点,这些位点利于K10在角化细胞中表达;pGL0-F4-CDK5转染角化细胞后,通过荧光蛋白的表达检测载体上GFP报告基因的表达,发现pGL0-F4-CDK5转染角化细胞后引起GFP的表达量明显强于pGL0-basic-CDK5转染组;同时用荧光素酶活性检测pGL0-F4-CDK5在角化细胞中的启动效果,结果发现pGL0-F4-CDK5转染组的荧光比值明显高于对照组,差异显著(P<0.01);经实时荧光定量PCR检测CDK5的表达变化,结果发现pGL0-F4-CDK5转染角化细胞后引起CDK5 mRNA表达量明显高于对照组,差异呈极显著(P<0.01)。上述结果说明F4具有较强的启动子活性,是K10启动子的核心区。【结论】成功筛选了K10的核心启动子区域F4,在角化细胞里具有启动目标基因CDK5表达的功能,因此,F4可作为黑色素细胞与角化细胞相互作用过程中基因功能研究的特异性启动子,为研究K10基因功能提供理论依据。  相似文献   

5.
【目的】鉴定牛MYOZ1基因转录起始位点,确定牛MYOZ1基因核心启动子区域,为进一步研究牛MYOZ1基因的转录调控机制奠定基础。【方法】以秦川牛肌肉5′RACE准备cDNA为模板,设计5′RACE扩增试验,确定牛MYOZ1基因转录起始位点。以秦川牛外周血基因组DNA为模板,通过PCR克隆获得牛MYOZ1基因转录调控区-1 628/+61目的片段。通过生物信息学分析软件预测可能包含的转录因子结合位点,设计逐段缺失引物,获得7个亚克隆,将其分别与pGL3-Basic载体连接,得到牛MYOZ1基因启动子双荧光素酶报告基因重组质粒,通过脂质体法转染C2C12细胞系,检测7个重组质粒的荧光素酶活性,分析启动子活性。【结果】确定了牛MYOZ1基因的转录起始位点,成功克隆获得7个系列缺失的牛MYOZ1基因启动子双荧光素酶报告基因重组质粒:pMYOZ1-1 628/+61、pMYOZ1-1 430/+61、pMYOZ1-1 179/+61、pMYOZ1-932/+61、pMYOZ1-676/+61、pMYOZ1-437/+61和pMYOZ1-116/+61,其中重组质粒pMYOZ1-116/+61启动子活性极显著高于pGL3-Basic,推测牛MYOZ1基因-116/+61区域可能包含核心启动子;重组质粒pMYOZ1-1 628/+61启动子活性极显著高于pMYOZ1-1 430/+61片段活性(P0.01),表明牛MYOZ1基因启动子区域-1 628/-1 430片段可能包含启动子活性增强元件。生物信息学分析发现,牛MYOZ1基因启动子-116/+61片段可能包含SP1、GC Box、CAAT等多个重要转录因子结合位点;-1 628/-1 430片段可能包含SP1、MyoD等多个重要转录因子结合位点。【结论】成功构建了7个系列缺失的牛MYOZ1基因启动子双荧光素酶报告基因重组质粒,且初步确定了牛MYOZ1基因的核心启动子区域位于-116/+61。  相似文献   

6.
为研究胞内氯离子通道5基因(Chloride intracellular channel 5,CLIC5)广泛参与调节细胞内的各项生理活动与生化反应,并探讨该基因自身的表达调控机制,以小鼠基因组序列为模板,利用PCR技术扩增小鼠CLIC5基因5′上游调控序列,将其插入荧光素酶报告基因表达载体(pGL3-Basic)中,同时采用5′侧翼区缺失的方法构建了7个缺失不同DNA片段的荧光素酶表达载体。重组质粒与海肾荧光素酶载体(phRL-TK)共同瞬时转染HEK-293细胞,经双荧光素酶报告基因活性分析后,确定CLIC5基因的核心启动子区。利用生物信息学方法预测其中转录因子结合位点及启动子区甲基化状况。结果表明,CLIC5基因启动子缺乏TATA盒,但含有典型的GC盒及其他潜在转录因子结合位点;双荧光素酶报告基因活性分析表明,CLIC5基因-329~+1、-624~+1、-917~+1和-2 230~+1区域的启动子活性较高,其中-624~+1区域的启动子活性最强。进一步分析表明,启动子区-624~-329存在负性调控元件,预测存在转录因子结合位点RXR heterodimer binding sites与GC-Box factorsSp1/GC,-420~-283范围内存在CpG岛位点。  相似文献   

7.
【目的】分析山羊PRNP基因启动子活性区域,旨在筛选调节朊蛋白表达水平的关键区域或转录因子,为阐明山羊PRNP基因的表达调控提供理论依据,并为从遗传学角度降低朊蛋白病的发生提供思路。【方法】以山羊PRNP基因序列(GenBank登录号:EU870890)为模板,设计特异性引物,扩增山羊PRNP基因5′侧翼区片段,并将扩增片段克隆至pEASY-T3载体,鉴定为阳性的克隆进行测序;利用生物信息学方法和在线工具进行启动子区域和转录因子结合位点的预测;利用缺失突变技术扩增启动子区不同长度的片段11个,并克隆至pEASY-T3载体后,鉴定为阳性的质粒和pGL3-Basic载体分别用限制性内切酶Mlu I和Bgl II进行酶切,并回收酶切产物;利用T4连接酶进行目的片段与pGL3-Basic连接,鉴定为阳性的荧光素酶报告基因重组质粒进行测序,并提取无内毒素质粒,用脂质体转染法瞬时转染至SH-SY5Y细胞,转染48h后,利用双荧光素酶检测试剂盒进行各缺失突变重组质粒在细胞内的启动活性检测。【结果】成功克隆了山羊PRNP基因5′侧翼区片段,长度为2 332 bp,且该片段含有预测的启动子活性区域、保守的motifs和多个转录因子的结合位点;成功克隆了11个含有不同长度启动子的片段,并与荧光素酶报告基因连接,并构建了目的片段与荧光素酶报告基因的重组质粒;转染时脂质体与DNA的比例为1﹕0.5,萤火虫荧光素酶载体与海肾荧光素酶比例为50﹕1;山羊PRNP基因5′侧翼区存在着核心启动子,启动子活性最强的区域为-519-+82 bp,且在-220-+59 bp这一区域存在着正调控元件,外显子1对启动子活性中起重要的调控作用;4个motifs可能为正调控元件结合位点;在强启动子活性区存在10个Sp1结合位点,2个AP-2 alpha结合位点和1个AP-1结合位点;山羊PRNP基因motif 3和motif 4分别预测为转录因子Foxp3和COE 1的结合位点。【结论】确定了山羊PRNP基因启动子的核心区域(-519-+82bp),外显子1对启动子活性起重要的调控作用。  相似文献   

8.
【目的】对鸭CD8α基因启动子活性区域进行分析,为鸭CD8α基因功能和表达调控机理研究提供依据。【方法】利用前期基因组步移技术获得的鸭CD8α基因的启动子区序列,制备一系列启动子缺失突变体(-625/-1 bp,-1 110/-1 bp,-1 413/-1 bp,-2 151/-1 bp),定向亚克隆至荧光素酶表达载体pGL3-Basic 中,构建荧光素酶报告基因重组载体,采用 Lipofectamine 2000 将重组质粒瞬时转染DT40细胞,分析CD8α基因启动子系列缺失突变体在细胞内的转录活性。【结果】鸭CD8α基因 5′侧翼区长片段具有较强的启动子活性,-1110--625启动子活性最强,且-625--1和-625--1 110 bp区域均存在正调控元件。【结论】成功构建了荧光素酶报告基因真核表达载体,确定了鸭CD8α基因调控区,为进一步研究其转录调控机制奠定了基础。  相似文献   

9.
[目的]克隆猪生长激素启动子,确定其启动子核心序列和主要的顺式作用元件。[方法]根据NCBI上公布的序列设计引物,PCR扩增了猪生长激素5’端-1 821~+61 bp的序列,并通过移步缺失的方法,获得9段长短不一的启动子序列,将其分别构建到双荧光素酶表达载体pGL3-basic上。通过重组质粒瞬时转染大鼠垂体瘤细胞(GH3)、猪髋动脉血管内皮细胞(PIEC)和猪肾细胞(PK15)和转染后细胞荧光素酶活性的测定,检测这些5’末端缺失质粒在垂体及非垂体细胞中的相对转录活性。[结果]成功扩增了猪GH基因5’上游启动区1 882 bp的片段,并构建了9个pGL3-mGH promoter报告基因载体;双荧光素酶报告基因检测系统证实插入报告基因载体中的启动子具有非常强的细胞特异性。[结论]猪生长激素特异性在垂体细胞中表达,其最小启动子位于-110 bp以内,启动子区-218~-110 bp和-429~-218 bp间存在正向调控元件。  相似文献   

10.
目的 克隆人多药耐药基因1 (MDR1)5'非编码区启动子序列,并检测该段启动子在人肝癌细胞株HepG2中的转录活性.方法 提取HepG2肝癌细胞基因组DNA,PCR扩增人MDR1启动子序列(-1 040~ +288);采用基因重组技术构建由MDR1启动子驱动的荧光素酶报告基因载体,将该载体瞬时转染HepG2细胞,通过双荧光素酶报告基因试剂盒检测该MDR1启动子在HepG2细胞的转录活性.结果 PCR扩增出人MDR1启动子(-1 040~ +288)片段,PCR鉴定、酶切鉴定及测序鉴定均证实该段启动子驱动的荧光素酶报告基因载体构建正确;转染实验证实,转染该质粒的HepG2细胞中荧光素酶活性很高.结论 成功克隆了人MDR1启动子(-1 040~ +288),并证实该MDR1启动子具有较强的转录活性.该启动子的成功克隆为后续研究MDR1基因在药物耐药中作用和基因表达调控机制提供了载体.  相似文献   

11.
【目的】固醇调节元件结合蛋白1(SREBP1)作为核转录因子,对于细胞脂肪合成酶基因的表达发挥着重要的调控作用。论文旨在奶牛乳腺上皮细胞中研究SREBP1对于SCD1基因启动子的转录调控作用,为进一步明确SREBP1对于靶基因的转录调控机制提供理论基础。【方法】以荷斯坦奶牛乳腺组织的c DNA为模板,采用分段克隆的方法获得SREBP1基因的编码序列,通过重组酶与pc DNA3.1载体进行重组环化构建pc DNA3.1-SREBP1表达载体,将构建的载体测序验证后提取质粒,转染奶牛乳腺上皮细胞。以EIF3K基因为内参基因,采用荧光定量PCR检测SREBP1基因m RNA的表达差异;采用免疫荧光的方法对SREBP1进行标记,以DAPI复染细胞核,激光共聚焦观察SREBP1蛋白的亚细胞定位;转染含有不同调控元件的SCD基因启动子,同时转染1.0μg pc DNA3.1-SREBP1作为处理,荧光素酶报告基因系统分析启动子活性;分别转染0.25、0.5和1μg的pc DNA3.1-SREBP1载体,分析p GL3-SCD 2和p GL3-SCD3启动子活性与SREBP1之间的量效关系。【结果】分段克隆得到的PCR产物分别为1 170、1 116、363和900 bp的片段,经过与pc DNA3.1载体重组后获得pc DNA3.1-SREBP1表达载体,经酶切和测序验证,发现除1个无义突变外,与标准序列完全相同,整个序列长度达到3 510bp;将pc DNA3.1-SREBP1载体转染乳腺上皮细胞后,Real-time PCR检测发现与转染空载体的对照组相比,SREBP1基因的m RNA表达倍数增强130.4倍(P0.001);激光共聚焦观察发现,DAPI染色的细胞核呈蓝色,免疫荧光标记的SREBP1呈绿色,二者融合后呈现青色,共定位在乳腺上皮细胞核中;启动子活性检测发现,与p GL3-SCD1、p GL3SCD 2相比,SREBP1处理能够极显著增加p GL3-SCD3、p GL3-CD4启动子的活性(P0.001),分别比对照组提高了1.0倍和0.7倍,进一步分析发现,在用0.25—1μg的pc DNA3.1-SREBP1处理后,与p GL3-SCD2的启动子活性持续下降相比,p GL3-SCD3的启动子活性从59.81上升到108.43(P0.001),二者存在剂量效应关系,结合SCD2和SCD 3启动子上主要的结构差异SRE元件(5′-AGCAGATTGCG-3′),推测此序列可能是SREBP1调控SCD基因启动子转录的结合序列。【结论】克隆构建奶牛SREBP1基因表达载体,亚细胞定位SREBP1蛋白主要在乳腺上皮细胞核中,SREBP1可以与SRE调控元件结合促进SCD1基因启动子的转录。  相似文献   

12.
【目的】通过建立过表达MyoD1基因山羊胎儿成纤维细胞系研究MyoD1基因的异位表达研究其在成肌分化中的生物作用。【方法】采用RT-PCR从激活的骨骼肌卫星细胞中克隆MyoD1基因,并将其cDNA终止密码子TGA定向突变为GGA,定向克隆至带有增强型水母绿色荧光蛋白(ehanced green fluorescent protein,eGFP)报告基因的真核表达载体pEGFP-N1中,构建融合蛋白表达载体pEGFP-MyoD1,经过酶切、测序鉴定后,采用LipofectiminTM LTX转染山羊胎儿成纤维细胞(goat embryonic fibroblast,GEF)以建立MyoD1异位表达细胞株并采用成肌诱导分化培养液进行成肌诱导分化,探究MyoD1在成肌过程中的生物学功能。【结果】成功克隆山羊MyoD1基因,并在MyoD1 的开放阅读框(ORF)两端引入XhoⅠ/EcoRⅠ酶切位点,将其终止密码子TGA定点突变为GGA,定向克隆至pEGFP-N1真核表达载体,获得融合蛋白表达载体pEGFP-MyoD1;经G418(400 μg•mL-1)筛选2周后,获得MyoD1异位表达的GEF细胞株;间接免疫荧光(indirect immunofluorescence assay,IFA)检测结果显示该细胞株能够表达Myf-5等成肌相关免疫学标志;采用成肌分化培养基分化培养处理2—3 d可见少量肌管产生,并表达MyoG、Desmin和MyHC等早期成肌分化标志,处理5 d可见大量肌管形成。【结论】成功克隆出山羊MyoD1基因,构建了pEGFP-MyoD1真核表达载体并建立过表达MyoD1 GEF细胞系,过表达MyoD1 GEF系能够在成肌诱导培养液诱导形成肌管。  相似文献   

13.
[目的]构建犬细小病毒(CPV) VP2基因真核表达质粒,为研究核酸疫苗奠定基础.[方法]参考GenBank中发表的CDV N蛋白基因序列设计引物,采用RT - PCR方法从疑似犬瘟热病犬全血样品中扩增CDV N蛋白基因,将其克隆至真核表达载体pcDNA3.1(+).经测序验证后,小白鼠尾静脉注射瞬时表达CDV N蛋白基因,8h取其肝脏提取总RNA,进行RT - PCR方法扩增.[结果]在病犬的全血样品中扩增得到1 572 bp的CDV N蛋白基因片段,并构建了真核表达质粒pcDNA3.1(+)- CDV N,从瞬时表达的小白鼠肝脏总RNA中可扩增到目的条带.[结论]构建了犬瘟热病毒N蛋白基因真核表达质粒,并在小白鼠体内进行了瞬时表达.  相似文献   

14.
【目的】探究关岭牛心脏型脂肪酸结合蛋白 (FABP3)和脂肪型脂肪酸结合蛋白 (FABP4)基因的分子特征及其在不同年龄段和不同组织中的表达差异,为揭示牛FABP3和FABP4基因对脂肪酸的调控作用机制提供理论依据。【方法】通过RT-PCR扩增关岭牛FABP3和FABP4基因蛋白编码区(CDS)序列,采用ProtScale、 ProtParam、 SOPMA、SWISS-MODEL、 TMHMM-2.0、 SignalP-5.0及NetPhos-3.1等在线软件进行生物信息学分析,同时以实时荧光定量PCR检测FABP3和FABP4基因在3日龄关岭犊牛、 24月龄关岭牛 (成年)及24月龄杂交牛 (关岭牛×利木赞牛)各组织中的表达情况。【结果】关岭牛FABP3、 FABP4基因CDS序列全长分别为402和399 bp,对应编码133和132个氨基酸残基,其蛋白二、三级结构以无规则卷曲和延伸链为主,均无跨膜结构域和信号肽,且为稳定的亲水性蛋白。关岭牛FABP3、FABP4氨基酸序列分别存在26和21个磷酸化位点,其中又以苏氨酸磷酸化位点为主;关岭牛FABP3和FABP4蛋白与FABP1、 FABP6、过氧化物酶体增殖物激活受体γ(PPARγ)、脂蛋白脂肪酶(LPL)及激素敏感脂肪酶(LIPE)等存在互作关系。基于FABP3和FABP4氨基酸序列相似性构建的系统发育进化树均显示,关岭牛与牦牛的亲缘关系最近,其次是绵羊,与鸡和斑马鱼的亲缘关系较远。FABP3和FABP4基因在关岭牛和杂交牛各组织中均有不同程度的表达,其中, FABP3基因以在心脏中的相对表达量最高,且在成年牛中的相对表达量极显著高于犊牛和杂交牛(P<0.01,下同); FABP4基因以在脂肪中的相对表达最高,且在犊牛中的相对表达量极显著高于成年牛。【结论】关岭牛FABP3和FABP4基因具有较高的遗传保守性,且以在心脏和脂肪中的表达水平较高,与脂肪酸代谢密切相关。  相似文献   

15.
[目的]构建犬细小病毒(CPV)VP2基因真核表达质粒,为研究核酸疫苗奠定基础.[方法]根据CPVVP2基因序列设计特殊引物,采用PCR方法从疑似"犬细小病毒"的患犬粪便基因组中扩增VP2基因,将其克隆至真核表达载体pcDNA3.1(+),测序验证后,小白鼠尾静脉注射瞬时表达VP2基因,8 h后取小白鼠肝脏提取总RNA,进行RT-PCR扩增.[结果]在病犬粪便基因组中扩增得到1 755 bp的VP2基因片段,并构建了真核表达质粒pcDNA3.1(+)-VP2,从瞬时表达的小白鼠肝脏总RNA中可扩增到目的条带.[结论]成功构建了犬细小病毒VP2基因真核表达重组质粒,并在小白鼠体内进行了瞬时表达.  相似文献   

16.
【目的】构建一种能在对虾细胞内稳定存在的新型表达载体,为对虾口服疫苗的研制奠定基础。【方法】设计特异性引物,以对虾白斑综合症病毒(WSSV)DNA为模板,PCR扩增早期基因启动子IE1的不同长度片段IE(-94/+52)和IE(-945/+52);利用限制性酶切及连接的方法,以IE(-94/+52)和IE(-945/+52)替换pcDNA3.1-GFP的CMV启动子;然后将构建好的表达载体与阳离子脂质体转染试剂TransLipidTM混合,肌肉注射凡纳滨对虾。【结果】经双酶切鉴定,表达载体pcDNA3.1-IE(-94/+52)-GFP、pcDNA3.1-IE(-945/+52)-GFP分别获得6150和146 bp、6150和997 bp的目的条带;注射pcDNA3.1-IE(-94/+52)-GFP、pcDNA3.1-IE(-945/+52)-GFP的对虾部分体细胞在荧光显微镜下可见绿色荧光,且注射pcDNA3.1-IE(-94/+52)-GFP的绿色荧光强度强于注射pcDNA3.1-IE(-945/+52)-GFP。【结论】构建的两个新型表达载体pcDNA3.1-IE(-94/+52)-GFP、pcDNA3.1-IE(-945/+52)-GFP均可用于对虾病毒抗原蛋白基因的表达。  相似文献   

17.
【目的】探究肌细胞增强因子-2(MEF2A和MEF2B)的生物学信息特征及其在关岭牛不同发育阶段各器官组织中的表达情况,为揭示MEF2A和MEF2B基因在关岭牛生长发育过程中的作用机制及挖掘地方种质资源提供理论参考。【方法】通过RT-PCR克隆MEF2A(NM_001083638.2)和MEF2B(NM_001145793.1)基因编码区(CDS)序列,利用ProtScal、NetPhs 3.1、SOPMA、ProtParam、PSORT II Preadict、SWISS-MODEL等在线软件进行生物信息学分析,同时采用实时荧光定量PCR检测MEF2A和MEF2B基因在关岭牛不同发育阶段(犊牛、青年牛和成年牛)各器官组织中的表达水平。【结果】关岭牛MEF2A和MEF2B基因CDS序列分别编码492和368个氨基酸残基;MEF2A和MEF2B蛋白相对分子量分别为52和39 k D,对应的理论等电点(p I)为9.07和9.35,均属于碱性不稳定蛋白。关岭牛MEF2A和MEF2B蛋白以无规则卷曲和α-螺旋为主,主要定位于细胞核(分别占60.9%和52.2%)。关岭牛MEF2A基因与与挪威鼠和绵羊的MEF2A基因遗传距离较近,关岭牛MEF2B基因则与牦牛和绵羊的MEF2B基因遗传距离较近。实时荧光定量PCR检测结果显示,MEF2A和MEF2B基因在关岭牛不同发育阶段的心脏、肝脏、脾脏、肺脏、肾脏、里脊和脂肪等7个组织中均有表达,且受生长发育阶段的影响。其中,MEF2A基因在犊牛各器官组织中的相对表达量极显著高于在青年牛和成年牛(P<0.01,下同),随着年龄的增长,MEF2A基因在关岭牛心脏中的相对表达量极显著高于其他组织;MEF2B基因在青年牛和成年牛的相对表达量极显著高于犊牛,且在关岭牛心脏、肝脏和脾脏中的表达量与年龄呈正相关。【结论】MEF2A基因在关岭牛不同发育阶段心脏中高表达,而MEF2B基因在关岭牛不同发育阶段肺脏和脾脏中高表达,但在里脊中的表达相对较低。可见,MEF2A和MEF2B基因在关岭牛的生长发育过程中发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号