首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
设施光环境优化调控是提高作物产量与品质的关键,而光饱和点决定作物利用光的能力。因此,如何根据温度、CO_2浓度变化实现光饱和点的动态获取是设施光环境调控技术发展的重要问题。针对上述问题,本文提出基于支持向量机—蚁群算法(SVM-ACO)的黄瓜光环境优化调控模型。通过多因子嵌套试验获得不同光光量子通量密度、CO_2浓度、温度组合条件下的光合速率值,利用支持向量机算法建立光合速率模型,设计基于连续蚁群寻优算法获取光饱和点并以其为调控目标,建立全范围温度、CO_2浓度下的光环境优化调控模型。调控模型可实现光饱和点的动态获取,且模型决定系数为0.995,均方根误差为15.73,为设施光环境高效精准调控提供了理论依据。  相似文献   

2.
设施光环境是影响作物生长发育的重要因素之一,其包括设施光强和光质。不同温度下,两者与光合速率存在显著的互作关系,建立融合作物光质需求的设施光环境智能调控模型,是设施农业环境调控急需解决的问题之一。本文以黄瓜为试验材料,设计了温度、光照强度、光质比嵌套的植株净光合速率测试试验,获取了多因子耦合的试验样本,并利用支持向量机建立了融合黄瓜光质需求的光合速率预测模型。其次,提出了基于粒子群算法的光照强度和光质比寻优算法,获取了不同温度条件下最适合植物生长的光照强度和光质比。最后,基于寻优结果,利用偏最小二乘回归法构建红蓝光目标值调控模型。验证结果表明,光合速率预测模型训练集数据和测试集数据的拟合度分别为0. 997 1和0. 996 9,均方根误差分别为0. 363 0、0. 436 7μmol/(m~2·s)。红、蓝光目标值调控模型均方根误差分别为15. 087 8、10. 138 3μmol/(m~2·s),可满足调控模型精度要求。其调控效果相比于传统固定光质比调控模型有明显提升,为有效地进行设施光环境调控提供了重要依据。  相似文献   

3.
提出了融合支持向量机-改进型鱼群算法的CO2优化调控模型,为CO2精准调控提供定量依据。设计了嵌套试验,采集不同温度、光子通量密度、CO2浓度组合下的黄瓜光合速率,以此构建基于支持向量机的黄瓜光合速率预测模型;以预测模型网络为目标函数,采用改进型鱼群算法实现二氧化碳饱和点寻优,获得不同温度、光子通量密度组合条件的CO2饱和点,进而构建CO2优化调控模型。异校验结果表明,CO2饱和点实测值与预测值相关系数为0.965,最大相对误差3.056%。提出的CO2优化调控模型可动态预测CO2饱和点,为实现设施CO2精准调控提供了可行思路。  相似文献   

4.
基于支持向量机-改进型鱼群算法的CO2优化调控模型   总被引:2,自引:0,他引:2  
提出了融合支持向量机-改进型鱼群算法的CO_2优化调控模型,为CO_2精准调控提供定量依据。设计了嵌套试验,采集不同温度、光子通量密度、CO_2浓度组合下的黄瓜光合速率,以此构建基于支持向量机的黄瓜光合速率预测模型;以预测模型网络为目标函数,采用改进型鱼群算法实现二氧化碳饱和点寻优,获得不同温度、光子通量密度组合条件的CO_2饱和点,进而构建CO_2优化调控模型。异校验结果表明,CO_2饱和点实测值与预测值相关系数为0.965,最大相对误差3.056%。提出的CO_2优化调控模型可动态预测CO_2饱和点,为实现设施CO_2精准调控提供了可行思路。  相似文献   

5.
针对当前温室光照环境调控成本较高的问题,在满足作物生长需求的条件下降低调控成本,提出效益优先的温室光照优化调控模型.通过设计嵌套试验获取温室不同温度、二氧化碳浓度、光照强度组合下的黄瓜光合速率数据,以此环境参数作为输入、光合速率作为输出构建基于最小二乘支持向量机(LS—SVM)的光合速率预测模型;继而采用融合两种不同光...  相似文献   

6.
光是植物进行光合作用的主要能量来源,光照好坏直接影响作物的产量和品质。本研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整的问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性的设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层-株间LED补光子系统、冠层-株间环境监测子系统和补光灯升降子系统组成,通过ZigBee技术实现各子系统间无线通信。其中冠层-株间环境监测子系统分别获取冠层和株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型和株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层-株间补光灯,实现冠层与株间补光灯的动态实时调控。在陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备和传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株的株高和茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了8.03%和7.24%,相比自然处理区平均株高、茎粗分别增长了26.51%和36.03%;在一个月的采摘期内,立体补光区相比传统冠层补光区和自然处理区产量分别提升了0.28和1.39 kg/m2,经济效益分别增加了2.82和4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。  相似文献   

7.
基于离散曲率的温室CO2优化调控模型研究   总被引:1,自引:0,他引:1  
提出了基于离散曲率算法的温室CO_2优化调控模型,通过设计嵌套试验采集温室不同温度、光照强度、CO_2浓度组合下的番茄光合速率,利用支持向量机回归算法(Support vector regression algorithm,SVR)构建光合速率预测模型;以预测模型网络为目标函数,采用L弦长曲率算法实现CO_2响应曲线离散曲率的计算,利用爬山法获得不同温度、光照强度组合条件的CO_2响应曲线曲率最大点,以此作为效益最优的调控目标值,进而基于SVR构建CO_2优化调控模型。结果表明,调控模型的决定系数为0. 99、均方根误差为4. 42μmol/mol、平均绝对误差为3. 17μmol/mol,拟合效果良好。与CO_2饱和点目标值的调控效果对比发现,理论上CO_2供需量平均下降61. 81%,光合速率平均减少15. 58%;验证试验中,相较饱和点调控下光合速率平均下降15. 14%,CO_2供需量下降57. 61%,相较自然条件下光合速率升高26. 70%。说明此温室CO_2优化调控模型具有高效节能特点,为设施作物CO_2高效精准调控和节本增效提供了理论基础。  相似文献   

8.
基于水分利用率与光合速率的温室作物需水模型研究   总被引:2,自引:0,他引:2  
提出一种融合水分利用率(Water use efficiency, WUE)和光合速率的温室作物需水模型构建方法。在获取不同温度、光量子通量密度、CO2浓度和土壤含水率嵌套条件下番茄净光合速率和WUE的基础上,基于径向基神经网络(Radial basis function, RBF)构建光合速率和WUE预测模型;继而获取不同环境嵌套条件下的光合速率对土壤含水率的响应曲线,利用 U弦长曲率法获取光合速率约束下的土壤含水率调控适宜区间;在此区间内,基于WUE预测模型,以水分利用率最大为目标,利用粒子群算法(Particle swarm optimization, PSO)获取土壤含水率调控目标值;最后,利用支持向量机回归算法(Support vector regression, SVR)建立作物需水模型。结果表明,需水模型的训练精度为0.9969,测试精度为0.9788,均方根误差为0.23%,拟合效果良好。与单一考虑光合效率最优的模型相比,本模型WUE平均提高15.22%,土壤含水率平均下降12.76%,光合速率平均下降4.05%。说明融合WUE-光合速率的需水模型能兼顾作物需求和经济效益,可为温室土壤含水率的精准调控提供理论依据。  相似文献   

9.
温室番茄光合速率的准确预测对于番茄的生长和产量评估具有重要意义。然而,由于温室环境的复杂性和多变性,传统的光合速率预测模型往往难以满足精准预测的需求。因此,为了进一步提高预测模型的准确性和稳定性,本研究提出了一种基于多模型融合策略的温室番茄光合速率预测方法。首先,采集温湿度、光照强度、CO2浓度不同组合下的番茄光合速率,构建样本集,并采用五折交叉验证法(Cross-Validation)对数据进行预处理。以预处理的数据为基础,分别基于粒子群优化支持向量机(PSO-SVR)、布谷鸟优化极限学习机(CS-ELM)和北方苍鹰优化高斯过程回归(NGO-GPR)算法建立番茄光合速率预测模型对光合速率进行初步预测,然后采用Stacking算法通过基于决策树的集成学习模型(XGBoost)组合各基础模型的预测结果,进而实现多模型融合。仿真分析结果表明,与单一预测模型相比,基于多模型融合的光合速率预测模型充分发挥了各基础模型的优势,可以进一步提高光合速率预测的准确性和稳定性,该模型验证集MAE为0.5697μmol/(m2·s),RMSE为0.7214μmol/(m2·s)。因此,本文提出的方法在温室作物光合速率预测方面具有一定的优势,可为温室番茄等作物光环境优化调控提供一定的理论基础和技术支撑。  相似文献   

10.
针对光温耦合条件下番茄光环境调控目标值难以快速、精确获取的问题,在光温嵌套光合速率试验结果基础上,为提高人工鱼群算法寻优速度,基于视野和步长动态调整思想,提出了改进型鱼群算法的光温耦合寻优方法,对不同温度下光饱和点进行快速精准寻优,建立了番茄光环境调控目标值模型,模型决定系数为0.999 9。验证试验结果表明,不同温度下光饱和点的模型计算值与实测值高度线性相关,相关系数为0.988,最大相对误差在±2%内,明显优于遗传算法构建模型的相对误差(±6%)。快速、动态获取不同温度下光饱和点,对设施光环境精准调控效率具有重要意义。  相似文献   

11.
季宇寒  李婷  张漫  沙莎 《农业机械学报》2015,46(S1):201-207
CO 2是植物进行光合作用的重要原料,合理增施可提高作物的光合速率。为实现温室CO 2气肥的精细管理,设计了基于无线传感器网络(WSN)的温室CO 2气肥调控系统。该系统由监控节点、智能网关和远程管理软件组成,其中监控节点能够自动实时监测温室环境信息(CO 2浓度、光照强度、空气温湿度和土壤温湿度),并控制CO 2增施气阀的开关;智能网关不仅能实现监控节点与远程管理软件之间的通信,还可在本地实现对温室环境信息的显示与存储,以及CO 2增施调控等操作;远程管理软件除了具备基本的数据接收、存储和查询功能外,还可通过建立的光合速率预测模型对CO 2气肥实现远程自动调控。本文以番茄为研究对象,采用开发的系统实时获取环境信息,使用LI-6400XT光合速率仪获取单叶净光合速率,建立了基于支持向量机(SVM)的番茄光合速率预测模型。为了提高预测模型的通用性,实验将苗后期番茄在4个CO 2浓度梯度进行培育,其中C1、C2、C3分别进行700、 1 000 、1 300 μmol/mol浓度的CO 2增施,CK为对照组(CO 2浓度约为450 μmol/mol)。数据分析采用SVM算法,以多种环境信息作为输入变量,以单叶净光合速率作为输出变量,得到光合速率预测模型。经过测试与验证,CO 2浓度调控系统能够稳定可靠地采集温室环境信息,适合应用在温室环境中;光合速率模型预测值和实测值相关系数为0.981 5,均方根误差为1.092 5 μmol/(m 2 ·s),具有较好的预测效果,为温室番茄CO 2定量增施调控提供了依据。  相似文献   

12.
黄瓜在温室栽培面积中占有很大的比重,监测温室黄瓜营养状态非常重要。因此,利用光谱分析技术对叶片所含的化学成分进行测量,主要包括建模与预测两步,采用基于BP算法的人工神经网络和支持向量机进行光谱的定量分析,探索基于光谱分析的整株光谱判断温室黄瓜的营养状态。研究结果表明,基于 BP 算法的人工神经网络和支持向量机所建立的回归模型,在一定程度上提高了模型的自预测能力和实际预测能力。  相似文献   

13.
不同植株叶位、叶龄和所处环境的导致单叶光合速率存在明显差异,使其在表征整株光合能力和物质积累效率等方面存在不足.本文以设施蔬菜为研究对象,基于透明同化箱设计基于碳同化过程的群体光合速率测量系统,系统通过高精度光辐射传感器和SCD30对同化箱内光照强度、CO2浓度、温湿度进行采集,实现了同化箱光环境的精确控制、碳同化过程...  相似文献   

14.
针对当前设施黄瓜种植管理标准化程度低,作物生长过程中环境因素难以精准调控等问题,以德州市陵城区秋冬茬设施黄瓜为试验材料,利用主成分分析、多重共线性分析和岭回归组合算法构建基于主要环境因子的设施黄瓜生长模型.结果表明:(1)在株高、茎粗、叶片数、叶面积等生长指标中,苗期和初花期的叶面积载荷值在第一主成分中分别为0.994...  相似文献   

15.
现有光合预测模型主要考虑环境因子对植物光合作用的影响,模型只能对生理状况相似的叶片进行光合速率预测,本文面向不同生长状态叶片光合速率预测模型的建模需求,提出融合叶片暗荧光参数Fv/Fm的多环境因子光合速率预测模型构建方法。试验以不同生长状态的茄子叶片为样本,在获取暗荧光参数的同时,分别测量不同温度、CO2浓度和光照强度下的光合速率,构建建模样本集。在此基础上,利用遗传支持向量机算法,建立了光合速率统一预测模型,其训练集决定系数为0.8895,均方根误差为3.2679μmol/(m2·s)。采用异校验方式进行模型验证,结果表明,融合荧光参数后模型精度显著提高,光合速率预测值与实测值拟合斜率为0.9046,截距为0.3641,〖JP〗说明引入Fv/Fm后,模型可实现对不同生理状态叶片光合速率的精准预测。  相似文献   

16.
科学、高效地获取作物不同叶位叶绿素含量的垂直分布信息,可监测农作物长势状况并进行田间管理。基于冬小麦抽穗期获取的不同叶位叶片的高光谱反射率和叶绿素含量实测数据,将原始光谱、一阶微分光谱、二阶微分光谱、植被指数和连续小波系数与叶绿素含量进行相关性分析,筛选相关性较强的光谱特征参数,然后分别采用偏最小二乘回归、支持向量机、随机森林和反向传播神经网络4种机器学习算法构建冬小麦上1叶、上2叶、上3叶和上4叶的叶绿素含量估算模型,并根据精度评估结果筛选不同叶位叶绿素含量估算的最佳模型。结果表明,上1叶、上2叶和上3叶采用小波系数结合偏最小二乘回归构建的叶绿素含量估算模型精度最高,建模和验证R2分别为0.82和0.75、0.80和0.77、0.71和0.62;上4叶采用植被指数结合支持向量机构建的叶绿素含量估算模型效果最佳,建模和验证R2为0.74和0.79。研究结果可为基于遥感技术精准监测作物营养成分的垂直变化特征提供理论和技术支撑。  相似文献   

17.
科学、高效地获取作物不同叶位叶绿素含量的垂直分布信息,可监测农作物长势状况并进行田间管理。基于冬小麦抽穗期获取的不同叶位叶片的高光谱反射率和叶绿素含量实测数据,将原始光谱、一阶微分光谱、二阶微分光谱、植被指数和连续小波系数与叶绿素含量进行相关性分析,筛选相关性较强的光谱特征参数,然后分别采用偏最小二乘回归、支持向量机、随机森林和反向传播神经网络4种机器学习算法构建冬小麦上1叶、上2叶、上3叶和上4叶的叶绿素含量估算模型,并根据精度评估结果筛选不同叶位叶绿素含量估算的最佳模型。结果表明,上1叶、上2叶和上3叶采用小波系数结合偏最小二乘回归构建的叶绿素含量估算模型精度最高,建模和验证R2分别为0.82和0.75、0.80和0.77、0.71和0.62;上4叶采用植被指数结合支持向量机构建的叶绿素含量估算模型效果最佳,建模和验证R2为0.74和0.79。研究结果可为基于遥感技术精准监测作物营养成分的垂直变化特征提供理论和技术支撑。  相似文献   

18.
在可控环境下通过改变温度、光照强度和相对湿度的不同水平梯度组合,研究这3 个因子对黄瓜叶片净光合速率的综合影响;通过最小二乘法进行多元非线性参数回归,建立黄瓜叶片净光合速率对这3个因子的响应模型.研究了模型规律,并依据生长环境最优和经济性最优原则,提出了可控温室环境优化的调控策略.  相似文献   

19.
基于BP神经网络算法的温室番茄CO2增施策略优化   总被引:6,自引:0,他引:6  
CO2浓度是植物光合作用的主要原料之一,确定植株生长阶段的最适CO2浓度需求量,对日光温室内CO2浓度调控具有重要意义。以开花期番茄植株为研究对象,将定植后的番茄分为4个CO2浓度梯度处理组,其中,C1、C2、C3处理组CO2增施摩尔比分别为(700±50)、(1 000±50)、(1 300±50)μmol/mol,CK处理组为温室内自然状态下CO2摩尔比(约450μmol/mol)。实验利用无线传感器网络节点实时监测温室环境因子,包括空气温湿度、光照强度和CO2浓度;利用LI-6400XT型便携式光合速率仪进行光合日动态和环境因子交互影响实验测定。光合日动态组间差异性研究表明,对开花期番茄增施1 000~1 300μmol/mol的CO2时,可使番茄单叶净光合速率提高约37.13%~40.42%。以环境因子为输入参数,建立基于BP神经网络的光合速率预测模型,用于不同CO2浓度梯度下的光合日动态预测。结果表明,模型训练集和测试集的相关系数分别为0.98和0.93,预测精度较高;C1、C2、C3和CK处理组的日动态预测相关系数分别为0.96、0.94、0.78和0.96,与实测结果吻合度较高且相对误差较小,因此该模型可以为可变环境下的番茄光合日变化动态预测提供依据。  相似文献   

20.
为了实现CO2气肥和营养液氮肥含量的准确调控,建立了作物整个生长周期的光合速率预测模型。以番茄为实验对象,设置了3个CO2浓度和3个营养液含氮量的交互处理实验,使用LI-6400型便携式光合速率仪采集叶室内的环境信息和单叶净光合速率。利用多元线性回归方法建立了番茄整个生长周期的光合速率预测模型,模型的相关系数为0.885,调整后的决定系数为0.782。实验结果表明,该模型具有较高预测精度,可为温室CO2气肥浓度和营养液氮肥含量的调控提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号