首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to develop an in‐straw dilution method suitable for direct transfer of vitrified bovine sexed embryos. Embryo sexing was performed by molecular diagnosis. Several sexed and vitrified‐warmed embryos were transferred after evaluation of morphologically embryonic survival at warming and in‐straw dilution (Evaluation group). The other embryos were immediately directly transferred to recipients without first being expelled from the straws after in‐straw dilution (Non‐evaluation group). The pregnancy rates of vitrified sexed embryos were 38.7% and 34.8% in the Evaluation group and Non‐evaluation group, respectively, which were not significantly different. The viability of lower quality embryos before vitrification tended to be lower (P = 0.087) than that of the higher quality embryos regardless of evaluating embryos after warming and in‐straw dilution. The abortion rates were similar, and there was no difference between the two groups (13.9% and 12.5%, respectively). These results demonstrate that vitrified bovine sexed embryos can be vitrified and diluted by the in‐straw method and that the vitrified and warmed sexed embryos can develop to term.  相似文献   

2.
Three experiments were designed to test a solid‐surface vitrification system for bovine in vitro‐produced embryos and to develop a simple method of in‐straw dilution after warming, which can be potentially used for direct transfer in the field. Experiment 1 evaluated embryo survival rates (i.e. re‐expansion and hatching) after vitrification and warming in three different solutions: VS1 (20% ethylene glycol (EG) + 20% propanediol (PROH) + 0.25 m trehalose (Tr)), VS2 (20% EG + 1M Tr) or VS3 (30% EG + 0.75 m Tr). Re‐expansion and hatching rates were higher (p < 0.05) for embryos vitrified in VS3 (72.2 ± 1.9 and 58.2 ± 0.8) than VS1 (64.4 ± 0.9 and 37.2 ± 2.5) or VS2 (68.5 ± 1.5 and 49.6 ± 1.0; p < 0.05). Experiment 2 was designed to compare two methods of vitrification: glass micropipettes or solid surface, using the VS1 or VS3 solutions. No significant differences were detected between the two methods; but re‐expansion and hatching rates were higher (p < 0.05) with VS3 (73.5 ± 3.1 and 47.1 ± 2.1) than VS1 (63.3 ± 3.3 and 39.7 ± 2.8). In experiment 3, embryos were vitrified by solid surface in VS1 or VS3 solutions and cryoprotectants were diluted in‐straw after warming in a TCM 199, 0.25 m sucrose solution or holding media. Survival rates of embryos vitrified in VS3 did not differ between those exposed to 0.25 m sucrose (74.7 ± 1.3 and 57.2 ± 2.2) or holding (77.3 ± 1.4 and 58.0 ± 2.5) medium after warming; however, survival rates of embryos vitrified in VS1 were higher (p < 0.05) in those exposed to 0.25 m sucrose (67.7 ± 2.3 and 47.0 ± 1.7) than holding medium (54.5 ± 1.0 and 27.7 ± 3.1). In conclusion, solid‐surface vitrification using simplified EG‐based solutions and in‐straw dilution with holding media may be a practical alternative for cryopreservation and direct transfer of in vitro‐produced bovine embryos.  相似文献   

3.
The aim of this study was to evaluate the viability in the effect of open pulled straw (OPS) vitrification procedure of sheep embryos after direct transference. Embryos were produced in vivo and cryopreserved in slow freezing or OPS vitrification. The survival rates of cryopreserved embryos were compared to non-frozen standard pattern. In a first set of experiments, embryos at morula and blastocyst stages were dived in ethylene glycol (1.5 M) and frozen in an automatic freezer. After being thawed, they were directly or indirectly transferred to ewes recipient. A second group of embryos were drawn into OPS and plunged into liquid nitrogen after being exposed at room temperature for 1 min and 45 s in 10% EG plus 10% dimethyl sulphoxide (DMSO), then again for 30 s in 20% EG + 20% DMSO + 0.5 M sucrose. After being warmed, embryos were also directly transferred using a French mini straw as the catheter for the transplantation process or after in vitro dilution of cryoprotectants (two-step-process). No significant difference was observed among fresh, frozen or vitrified embryos on pregnancy rate (50.0%, 38.6% and 55.8%). However, when we evaluated only the direct transference, the pregnancy rate of OPS vitrified embryos was higher than that of frozen embryos (57.1% vs 34.8%) (p = 0.07). In addition, vitrified morulae had a higher pregnancy rate than the one with frozen embryos (64.0% vs 38.9%) (p = 0.07). Finally, our results indicate that OPS vitrification technique in association with direct transference improves the viability of sheep embryos with potential applications to field conditions.  相似文献   

4.
This study assessed the effects of cryoprotectant concentration during equilibration on the efficiency of bovine blastocyst vitrification and the expression of selected developmentally important genes. In vitro produced bovine blastocysts were equilibrated in either 7.5% ethylene glycol (EG) + 7.5% DMSO (Va group) or in 2% EG + 2% DMSO (Vb group) then vitrified on Cryotop® sheets in 16.5% EG + 16.5% DMSO + 0.5M sucrose. After warming, embryos were cultured for 48 hr. Re‐expansion, hatching, and the numbers of total and membrane damaged cells were compared among vitrified groups and a control. There was no significant difference between the vitrified groups in survival, cell numbers and the extent of membrane damage. Vitrification increased the number of membrane‐damaged cells in both groups, however, in a greater extent in the Vb group. Vitrification increased (p < .05) the expression of the HSP70 gene in Va but not in Vb embryos. The expression of IGF2R, SNRPN, HDAC1, DNMT3B, BAX, OCT4, and IFN‐t genes were the same in control and vitrified groups. In conclusion, the concentration of cryoprotectants during equilibration did not affect survival rates; however, normal cell numbers could be maintained only by equilibration in 15% cryoprotectants which was associated with increased HSP70 expression.  相似文献   

5.
Generating techniques to enhance the success of blastomere separation is important for bovine economy, because it increases the number of transferable embryos. This study aimed to identify the optimum cryoprotectants for the vitrification of bovine embryos and the separation of blastomeres at different stages. In experiment 1, expanded blastocysts were vitrified in two different vitrification solutions, either (1) ethylene glycol (EG) + propylene glycol (PG) or (2) EG. The survival rate of blastocysts in the EG + PG was higher than that of the EG. In experiment 2, intact two‐cell and eight‐cell stage embryos were vitrified in the same solutions used in experiment 1. The EG + PG produced more dead embryos than the EG (P < 0.05). In the EG, the rate of blastocyst formation was similar for the vitrified two‐ and eight‐cell embryos and the non‐vitrified ywo‐cell embryos. In experiment 3, separated blastomeres of two‐ and eight‐cell embryos were vitrified in EG. There was no difference in the rate of blastocyst formation and total number of cells between the two vitrified groups. In summary, at the blastocyst stage, EG + PG was superior, based on both survival rates and cell numbers; however, at the 2–8 cell stage, the use of EG alone was better than the other groups.  相似文献   

6.
This study was conducted to evaluate the effectiveness of forced collapse of the blastocoel before slow‐rate freezing and vitrification of bovine blastocysts. Cryopreservation of bovine blastocysts has been proposed as a tool to improve the feasibility of cattle production using the embryo transfer technique. However, the low efficiency of frozen–thawed embryos survival and further development is a crucial problem. In this study, bovine in vitro and in vivo blastocysts were slow‐rate frozen and vitrified after forced blastocoele collapse (FBC) of the blastocyst cavity by puncturing the blastocoele with a pulled Pasteur pipet. Differences in the developmental potential of frozen–thawed blastocysts derived from FBC and non‐FBC groups were found in both slow‐rate freezing and vitrification. Furthermore, we found that the total cell number of blastocysts in FBC groups was increased and the index of apoptosis in FBC groups was decreased. Consistent with these results, real‐time RT‐PCR analysis data showed that expression of the anti‐apoptotic Bcl‐XL gene was significantly increased by FBC groups, whereas expression of the pro‐apoptotic Bax gene was significantly decreased by FBC groups. Our results also showed that pregnancy outcomes in both slow‐rate frozen and vitrified bovine in vivo blastocysts could be improved by reducing the fluid content after FBC of the blastocyst cavity. Therefore, we suggest that FBC of the blastocyst cavity with a pulled Pasteur pipet is an effective pre‐treatment technique for both slow‐rate freezing and vitrification of bovine blastocysts.  相似文献   

7.
转基因兔胚胎玻璃化冷冻保存的研究   总被引:4,自引:0,他引:4  
在25℃条件下,将兔体外受精精子载体转基因兔桑椹胚置于含有40%乙二醇、18%Ficol、0.3mol蔗糖的mPBS溶液(EFS40)中平衡2分钟,然后直接投入液氮,成功地进行了玻璃化冷冻保存。解冻后桑椹胚发育至囊胚和孵化囊胚的比例分别为65.81%和39.24%,与未经冷冻的鲜胚发育比例(71.05%和43.42%)相比,没有明显的差异。78枚经玻璃化冷冻和解冻的桑椹胚移植给5只受体,其中2只妊娠,共产下8只活仔兔。  相似文献   

8.
An efficient cryopreservation protocol for porcine morulae was investigated with three types of vitrification having different cooling rates (Exp. 1). Survival of embryos vitrified after removal of cytoplasmic lipid droplets was also examined by means of the minimum volume cooling (MVC) method (Exp. 2). In Exp. 1, the morula stage embryos were vitrified with a 0.25 ml plastic straw (ST-method), gel loading tip (GLT-method) and the MVC-method, respectively, and stored in liquid nitrogen after which they were warmed in sucrose solutions with cryoprotectants being subsequently removed in a stepwise manner. In Exp. 2, morulae were centrifuged with 7.5 microg/ml cytocharasin B at 12000 x g for 20 min to polarize the cytoplasmic lipid droplets that were then removed from the embryos by micromanipulation (delipation). Both those delipated at the morula stage and the intact embryos at the morula to blastocyst stages were vitrified by the MVC-method. In vitro survival of the vitrified embryos was assessed in both experiments by culturing in NCSU-23 + 10% FCS for 48 h. In vitro developments of vitrified embryos after warming to blastocysts were 20% (6/30) for the ST-method, 39% (18/46) for the GLT-method, and 60% (26/43) for the MVC-method. Embryo survival was further improved by vitrification after delipation (95%, 35/37) compared to intact vitrified morulae (24/42, 57%, P<0.001) and blastocysts (23/31, 74%, P<0.05). Moreover, the number of cells in blastocysts (92 +/- 25) derived from the delipated-vitrified morulae was comparable to those derived from intact control non-vitrified embryos (103 +/- 31). Our results demonstrate that vitrified porcine morulae have the highest survival when using the MVC-method in conjunction with delipation.  相似文献   

9.
We previously developed a new vitrification method (equilibrium vitrification) by which two-cell mouse embryos can be vitrified in liquid nitrogen in a highly dehydrated/concentrated state using low concentrations of cryoprotectants. In the present study, we examined whether this method is effective for mouse embryos at multiple developmental stages. Four-cell embryos, eight-cell embryos, morulae, and blastocysts were vitrified with EDFS10/10a, 10% (v/v) ethylene glycol and 10% (v/v) DMSO in FSa solution. The FSa solution was PB1 medium containing 30% (w/v) Ficoll PM-70 plus 0.5 M sucrose. The state of dehydration/concentration was assessed by examining the survival of vitrified embryos after storage at –80°C. When four-cell embryos and eight-cell embryos were vitrified with EDFS10/10a in liquid nitrogen and then stored at –80°C, the survival rate was high, even after 28 days, with relatively high developmental ability. On the other hand, the survival of morulae and blastocysts vitrified in liquid nitrogen and stored at –80°C for four days was low. Therefore, morulae and blastocysts cannot be vitrified in a highly dehydrated/concentrated state using the same method as with two-cell embryos. However, when blastocysts were shrunken artificially before vitrification, survival was high after storage at –80°C for four days with high developmental ability. In conclusion, the equilibrium vitrification method using low concentrations of cryoprotectants, which is effective for two-cell mouse embryos, is also useful for embryos at multiple stages. This method enables the convenient transportation of vitrified embryos using dry ice.  相似文献   

10.
The aim of this study was to evaluate the suitability of a commercial kit for bovine embryo vitrification for cryopreserving cat oocytes and to evaluate comparatively the effects of its use with slow freezing procedure on cryotolerance in terms of morphology and oocyte resumption of meiosis. Germinal vesicle stage oocytes isolated from cat ovaries were either vitrified (n = 72) using a vitrification kit for bovine embryo or slow frozen (n = 69) by exposing oocyte to ethylene glycol solution before being transferred to a programmable embryo freezer. After thawing and warming, oocytes were cultured for 48 h and then were examined for meiosis resumption using bisbenzimide fluorescent staining (Hoechst 33342). Fresh immature oocytes (n = 92) were used as the control group. The proportion of oocytes recovered in a morphologically normal state after thawing/warming was significantly higher in frozen oocytes (94.5%) than in the vitrified ones (75%, p < 0.01). Morphological integrity after culture was similar in vitrified (73.6%) and slow frozen oocytes (76.8%); however, only 37.5% of the morphologically normal oocytes resumed meiosis after vitrification compared to 60.9% of those submitted to slow freezing procedure (p < 0.01). Fresh oocytes showed higher morphological integrity (91.3%) and meiosis resumption rates (82.6%, p < 0.002) than cryopreserved oocytes, irrespective of the procedure used. These results suggest that immature cat oocytes vitrified with a kit for bovine embryos retain their capacity to resume meiosis after warming and culture, albeit at lower rates than slow frozen oocytes. Vitrification and slow freezing methods show similar proportions of oocytes with normal morphology after culture, which demonstrate that thawed and warmed oocytes that resist to cryodamage have the same chances to maintain their integrity after 48 h of culture.  相似文献   

11.
The aim of this study was to determine the most efficient vitrification protocol for the cryopreservation of day 7 in vitro produced (IVP) porcine blastocysts. The post‐warm survival rate of blastocysts vitrified in control (17% dimethyl sulfoxide + 17% ethylene glycol [EG] + 0.4 mol/L sucrose) and commercial media did not differ, nor did the post‐warm survival rate of blastocysts vitrified in medium containing 1,2‐propandiol in place of EG. However, vitrifying embryos in EG alone decreased the cryosurvival rate (55.6% and 33.6%, respectively, p < .05). Furthermore, the post‐warm survival rates of blastocysts vitrified with either trehalose or sucrose as the non‐penetrating cryoprotectant did not differ. There was also no significant difference in post‐warm survival of blastocysts vitrified in control (38°C) media and room temperature (22°C) media with extended equilibration times, although when blastocysts were vitrified using control media at room temperature, the post‐warm survival rate increased (56.8%, 57.3%, 72.5%, respectively, p < .05). The findings show that most cryoprotectant combinations examined proved equally effective at supporting the post‐warm survival of IVP porcine blastocysts. The improved post‐warm survival rate of blastocysts vitrified using media held at room temperature suggests that the cryoprotectant toxicity exerted in 22°C media was reduced.  相似文献   

12.
The yak is one of the most important and economically useful animals for highlanders. The decline in the yak population requires effective measures for the conservation and multiplication of elite germplasm. A standardized protocol will simplify the freezing and warming of yak embryos in straw and facilitate embryo transfer. In this work, we investigated a one‐step protocol that uses a stable basal medium, which comprised a warming medium (1.08 M sucrose) and a freezing medium (EFS40). We also assessed the effects of the new transfer method on embryo survival. A total of 145 yak frozen embryos were thawed in a standard medium system. The one‐step protocol led to a high recovery percentage (84.93) of yak embryos that survived vitrification and warming. The in vitro survival rates of these embryos significantly different from those of embryos frozen–thawed via the conventional method. The 95 embryos frozen–thawed via our one‐step protocol were then implanted in selected recipients. Thirty‐six singleton pregnancies were established. In conclusion, the proposed one‐step method is a simple, safe, and standardized freezing–thawing protocol that ensures embryo survival and quality under field conditions. This study establishes new possibilities for the widespread use of embryo transfer in yaks.  相似文献   

13.
用不同冷冻载体(玻璃管、塑料管和0.25 mL细管)及不同冷冻方法(程序化冷冻和玻璃化冷冻)对小鼠3.5 d~4 d桑椹胚和囊胚进行冷冻保存,并与不做任何冷冻保存处理直接培养进行对比。结果表明,使用玻璃管、塑料管和0.25 mL细管作为胚胎的承载材料进行玻璃化冷冻,效果差异不显著;采用程序化冷冻与OPS玻璃化冷冻法,对小鼠胚胎进行冷冻保存可以取得较好的结果。从而得出,用不同材质的冷冻载体进行玻璃化冷冻,可以获得与程序化冷冻相同的良好效果。  相似文献   

14.
The aim of this work was to evaluate the efficiency of the cryoprotectants dimethylformamide and ethylene glycol for cryopreservation of ovine embryos using vitrification and conventional freezing. The recovered embryos were distributed randomly in three treatment groups: Gr. 1: conventional freezing (n = 44), Gr. 2: vitrification with ethylene glycol (n = 39) and Gr. 3: vitrification with dimethylformamide (n = 38). Quality of fresh embryos in control group as well as of frozen and vitrified embryos was examined by three methodologies: staining with propidium iodide and Hoechst 33258 and evaluation under fluorescent microscopy, evaluation of re‐expansion and hatching rates after culture, and determination of apoptotic index with TUNEL technique. It was established that re‐expansion rate in all treatment groups was similar. In the same time, hatching rates were higher in Gr. 1 (40.5%) and Gr. 2 (35.3%) in comparison with Gr. 3 (15.5%, p < 0.05). The number of dead cells in vitrified embryos of Gr. 2 and Gr. 3 was higher (42.6 ± 26.2 and 63.2 ± 34.65, respectively) in comparison with Gr. 1 (conventional freezing, 10.1 ± 8.5, p < 0.05). Embryos vitrified with dimethylformamide included the same quality of apoptotic cells that Gr. 1 (conventional freezing) and fresh embryos. In conclusion, the dimethylformamide and ethylene glycol used as cryoprotectant to vitrify ovine embryos, in the concentrations and exposition time tested in this work, were not as efficient as the conventional freezing for cryopreservation of ovine embryos Thus, the conventional freezing with ethylene glycol was the most efficient method to cryopreserve ovine embryos in comparison with vitrification.  相似文献   

15.
The objective of this study was to investigate the effects of beta‐mercaptoethanol (β‐ME) on post‐thaw embryo developmental competence and implantation rate of mouse pronuclear (PN) embryos that were cryopreserved after slow freezing, solid surface vitrification (SSV) or open‐pulled straw (OPS) vitrification methods. Mouse PN embryos were cryopreserved by using slow freezing, SSV and OPS methods. After cryopreservation, freeze–thawed PN embryos were cultured up to blastocyst stage in a defined medium supplemented without or with 50 μm β‐ME. The blastocyst formation rate of embryos that were cryopreserved by slow freezing method (40.0%) or vitrified by OPS method (18.3%) were lower than those vitrified by SSV method (55.6%) and fresh embryos (61.9%) in the absence of 50 β‐ME in the culture media (p < 0.05). The blastocyst formation rate of embryos that were cryopreserved by slow freezing method (53.1%) or by OPS method (41.9%) were lower than those vitrified by SSV method (79.5%) and that of fresh (85.7%) in the presence of β‐ME in the culture media (p < 0.05). The embryos transfer results revealed that the implantation rate of blastocyst derived from mouse PN embryos vitrified by SSV method (31.9% vs 51.2%) was similar to that of the control (39.0% vs 52.5%), but higher than those cryopreserved by slow freezing (28.2% vs 52.0%) and by OPS method (0.0% vs 51.2%) (p < 0.05). In conclusion, supplementation of β‐ME in an in vitro culture medium was shown to increase survival of embryo development and implantation rate of frozen–thawed mouse PN embryos after different cryopreservation protocols.  相似文献   

16.
The objective of our present study was to determine the effects of insulin‐like growth factor I (IGF‐I) on the development of yak (Bos grunniens) embryos after cumulus–oocyte complex (COC) vitrification and warming followed by in vitro fertilization (IVF). In Experiment 1, the yak COCs underwent vitrification and then IVF. Embryos were incubated in synthetic oviductal fluid (SOF) supplemented with four concentrations (0, 50, 100 and 200 ng/ml) of IGF‐I, while the yak COCs without vitrification or IGF‐I supplementation acted as the control group; the BAX, BCL‐2, AQP3mRNA and aquaporin 3 (AQP3) protein expression levels in the five groups of blastocysts were evaluated using quantitative real‐time PCR and immunofluorescence analyses. In Experiment 2, the groups described above were fertilized and incubated. The cleavage rate, blastocyst rate, total cell count per blastocyst and the rate of growth of the inner cell mass (ICM) and trophectoderm (TE) were evaluated. The results were as follows: (1) the AQP3 gene expression and protein expression in the control and 100 ng/ml IGF‐I treatment groups were the highest. (2) The BAX gene expression was the lowest and the BCL‐2 gene expression was the highest in the control and 100 ng/ml IGF‐I treatment groups. (3) The rates of cleavage and blastocysts in the control and 100 ng/ml IGF‐I groups were higher than those in the other three groups. The total cell count per blastocyst in the vitrified and warmed 100 ng/ml IGF‐I group (106.7 ± 4.9) and the control group (107.3 ± 4.2) was higher than that in the vitrified and warmed 0 ng/ml IGF‐I (91.2 ± 3.1), 50 ng/ml IGF‐I (92.3 ± 3.7) and 200 ng/ml IGF‐I (92.4 ± 3.7) groups. Therefore, we conclude that IGF‐I can improve yak blastocyst developmental ability, cytomembrane permeability and formation of the blastocyst cavity after COC vitrification by improving the BAX, BCL‐2 and AQP3 expression levels.  相似文献   

17.
Improving pregnancy rates associated with the use of cryopreserved human oocytes would be an important advance in human assisted reproductive technology (ART). Vitrification allows glasslike solidification of a solution without ice crystal formation in the living cells. We have attempted to improve the survival rates of oocytes by a vitrification technique using bovine models. In vitro matured oocytes with or without cumulus cells were vitrified with either 15.0% (v/v) ethylene glycol (EG) + 15% (v/v) dimethylsulfoxide (DMSO) + 0.5 M sucrose or 15% (v/v) EG + 15% (v/v) 1,2-propanediol (PROH) + 0.5 M sucrose, using 'Cryotop' or 'thin plastic sticker', respectively. The oocyte survival rates after vitrifying-warming, and the capacity for fertilization and embryonic development were examined in vitro. The rate of embryonic development to blastocyst was significantly higher (P<0.05) in the oocytes vitrified with 15% (v/v) EG + 15% (v/v) PROH + 0.5 M sucrose than in the oocytes vitrified with 15% (v/v) EG + 15% (v/v) DMSO + 0.5 M sucrose (7.4% +/- 4.1 vs. 1.7% +/- 3.0, respectively). Oocytes vitrified without cumulus cells had a higher survival rate after thawing and a superior embryonic developmental capacity compared with oocytes vitrified with cumulus cells. Prolonged pre-incubation time after thawing adversely affected the rates of embryonic cleavage and development. These results indicate that in vitro matured bovine oocytes can be vitrified successfully with the mixture of the cryoprotectants, EG + PROH, the absence of cumulus cells for vitrification does not affect oocyte survival rate after warming, and vitrified and warmed oocytes do not require pre-incubation before in vitro fertilization.  相似文献   

18.
Although embryo cryobanking was applied to Syrian golden and to Campbell's hamsters, no attempt has been made at freezing embryos in Djungarian hamsters. Four‐cell stage embryos were flushed from the reproductive ducts of pregnant females before noon of the third‐day post coitum and frozen in 0.25‐ml straws according to standard procedures of slow cooling. A mixture of permeating (ethylene glycol) and non‐permeating (sucrose) cryoprotectants was used. The thawing was performed by incubating at RT for 40 s followed by 40 s in a water bath at 30.0°C. Most (66.7%) of the non‐frozen four‐cell embryos developed up to the morula stage in rat one‐cell embryo culture medium (R1ECM). The use of hamster embryo culture medium (HECM) yielded fewer morulas (18.2%) during the same 24‐h period of culture. The rate of embryo's surviving the freezing–thawing procedures, as estimated by light microscopy, was 60.7–68.8%. After 24‐h culturing in R1ECM, 64.7% of frozen–thawed four‐cell embryos developed and all of them reached the morula stage. Supplementation of R1ECM with GM‐CSF (2 ng/ml) improved the rate of Djungarian hamster frozen–thawed embryo development: 100% of the four‐cell stage embryos developed, 50% of them achieved the morula stage, and 50% developed even further and reached the blastocyst stage within 24 h of culturing. This study reports the world's first successful transfer of frozen–thawed Djungarian hamster embryos yielding term pups. Taken together, the results of this study demonstrate the possibility of applying some key reproductive technologies, that is, embryo freezing/cryopreservation and in vitro culture, to Djungarian hamsters.  相似文献   

19.
In the present study, we aimed to determine the applicability of a paper container for the vitrification of in vitro matured (IVM) bovine oocytes. In experiment 1, IVM oocytes were exposed to vitrification solution (20% dimethylsulfoxide (DMSO), 20% ethylene glycol (EG), and 5 mol/L sucrose), using a two‐step method, for 30 s; loaded onto either a paper container or Cryotop; and stored in liquid nitrogen. No significant difference (< 0.05) in the survival and blastocyst formation rates after in vitro vitrification was observed between the paper container and Cryotop. In experiment 2, IVM oocytes were exposed to either a two‐ or three‐step vitrification solution. The three‐step vitrification solution was not significantly different from the two‐step solution in terms of oocyte survival, cleavage and blastocyst rates. In experiment 3, in vitro produced blastocysts were graded according to the manual of the International Embryo Transfer Society (grades 1 and 2) and vitrified using the two‐ and three‐step methods. For grade 2 blastocysts, the three‐step method showed significantly higher (P < 0.05) survival and hatched blastocyst rates than the two‐step method, whereas for grade 1 blastocysts, no significant difference was observed. In conclusion, the paper device and three‐step technique are suitable for oocytes and embryo vitrification.  相似文献   

20.
Cryopreservation is the process of freezing and preserving cells and tissues at low temperatures. Controlled slow freezing and vitrification have successfully been used for cryopreservation of mammalian embryos. We investigated the effect of these two cryopreservation methods on in vitro produced four‐cell stage bovine embryos which were classified according to their quality and separated into three groups. The first group was maintained as untreated controls (n = 350). Embryos of the second (n = 385) and the third (n = 385) groups were cryopreserved either by controlled slow freezing or by vitrification. Embryos in groups 2 and 3 were thawed after 1 day. Hundred embryos were randomly selected from the control group, and 100 morphologically intact embryos from the second and third group were thawed after 1 day and cultured to observe the development up to the blastocyst stage. The blastocyst development rate was 22% in the control group, 1% in the slow‐freezing group and 3% in the vitrification group. Remaining embryos of all three groups were examined by light microscopy, transmission electron microscopy and immunofluorescence confocal microscopy with subsequent histological staining procedures. Cryopreservation caused degenerative changes at the ultra‐structural level. Compared with vitrification, slow freezing caused an increased mitochondrial degeneration, cytoplasmic vacuolization, disruption of the nuclear and plasma membrane integrity, organelle disintegration, cytoskeletal damage, a reduced thickness of the zona pellucida and a formation of fractures in the zona pellucida. Further studies are required to understand and decrease the harmful effects of cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号