首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为鉴定鸡羽髓上皮细胞感染马立克氏病病毒(MDV)前后差异表达的蛋白,本研究以MDV强毒GA株人工感染SPF鸡,并通过双向电泳技术进行分析.结果显示:在病毒感染后4 d、7 d、14 d和21 d显著差异表达的蛋白点分别有2个、8个、25个和9个;而通过质谱技术鉴定出29种蛋白质,其中包括能量代谢相关蛋白、增殖和凋亡相关蛋白、细胞骨架蛋白、信号传导蛋白、转录相关蛋白、免疫相关蛋白和其他功能蛋白质.本实验首次对鸡羽髓上皮细胞感染MDV后各时期蛋白表达水平的变化进行研究,鉴定了多种差异表达蛋白质,为进一步揭示MDV与宿主的相互关系、感染性病毒粒子的成熟和致病机制提供了依据.  相似文献   

2.
Marek’s disease virus (MDV) is a highly contagious herpesvirus which induces T-cell lymphoma in the chicken. This virus is still spreading in flocks despite forty years of vaccination, with important economical losses worldwide. The feather follicles, which anchor feathers into the skin and allow their morphogenesis, are considered as the unique source of MDV excretion, causing environmental contamination and disease transmission. Epithelial cells from the feather follicles are the only known cells in which high levels of infectious mature virions have been observed by transmission electron microscopy and from which cell-free infectious virions have been purified. Finally, feathers harvested on animals and dust are today considered excellent materials to monitor vaccination, spread of pathogenic viruses, and environmental contamination. This article reviews the current knowledge on MDV-skin interactions and discusses new approaches that could solve important issues in the future.  相似文献   

3.
Immuno- and enzyme-histochemical staining procedures were used to investigate in vivo the interaction of Marek's disease virus (MDV) with splenic non-lymphoid cells. The newly developed monoclonal antibody D-35.1, which recognizes all three MDV serotypes, was used to study the localization of MDV at various times after intramuscular inoculation of 1-day-old chicks with MDV strain K. The D-35.1-positive cells were detected in the bursa of Fabricius, spleen, thymus, proventriculus, and cecal tonsils, and the number of chickens showing the cells increased between days 4 and 10. From day 21, the skin of the chickens contained D-35.1-positive feather follicles. The D-35.1 monoclonal antibody did not stain any cells in peripheral blood, nerves, kidney, and gonads at any time. In addition, D-35.1-positive cells were not detected in lymphoproliferative lesions in visceral organs and peripheral nerves. Double staining procedures on serial sections using monoclonal antibody CVI-ChNL-68.2, specific for splenic ellipsoid-associated reticulum cells, revealed that the majority of D-35.1-positive cells were situated in the peri-capillary sheath of reticulum cells at day 10. The sheath of cells detected by monoclonal antibody CVI-ChNL-68.2 was disrupted, and they were clustered around D-35.1-positive cells. These results support the hypothesis that ellipsoid-associated reticulum cells are involved in the early pathogenesis of Marek's disease.  相似文献   

4.
Marek's disease (MD) remains a serious problem in the production of poultry. The disease is caused by Marek's disease virus (MDV), and despite the ubiquitous use of vaccination to control losses, MD still affects poultry farming worldwide. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) method for the simple and inexpensive detection of MDV in feather tips of chickens. Two pairs of specific primers complementary to the meq oncogene of MDV were designed, targeting the sequence of the very virulent MDV strain, RB1B. Bst polymerase was used for the isothermal amplification of viral DNA at 65 C for 90 min in a water bath. The fluorescence signal was identified in MDV-positive samples after the addition of SYBR Green and ultraviolet (UV) illumination. The sensitivity of LAMP was 2 log 10 plaque-forming units (PFU)/ml of HPRS16 and 10(3) copies/il of plasmid containing the target gene (meq) and was equal in sensitivity to PCR amplification. Due to the use of three sets of primers, LAMP was highly specific for MDV-1 DNA. The developed LAMP technique is a rapid and simple tool for the specific detection of MDV in samples of feathers taken from live chickens. Since the use of thermocyclers is not necessary for LAMP assay, it can be conducted by small laboratories and even field veterinarians.  相似文献   

5.
Marek's disease (MD) is a disease of chickens that occurs worldwide and has serious economic consequences. MD can present as one of several forms, with the most commonly occurring forms being the lymphoproliferative diseases. Under experimental conditions, an early mortality syndrome has been recognized following infection by some but not all strains of MD virus (MDV). This is the first report of a confirmed case of mortality due to naturally occurring MDV infection in 1-week-old, nonvaccinated, chickens. Necrotizing lesions were observed in the bursa of Fabricius, lung, duodenum, jejunum, and proventriculus, and large intranuclear inclusion bodies were a striking feature in tissues with lesions in all birds. Immunohistochemical staining for the pp38 protein of MDV revealed abundant pp38 antigen in the affected tissues, confirming the presence of MDV within the lesions. PCR yielded an amplicon with 97% homology to the meq gene of MDV. No evidence of co-infection by either of the immunosuppressive agents chicken anemia virus and infectious bursal disease virus was detected.  相似文献   

6.
Turkey herpesvirus (HVT) and an attenuated Marek's disease virus (MDV) replicated in organ cultures of chick embryo skin as assessed by immunofluorescence and/or electron microscopy. HVT-specific immunofluorescent antigen was detected in the feather follicle epithelium (FFE) and in the surface layer of the skin epidermis. Electron microscopy of infected explants revealed herpes-type cytopathology. Immature particles of both viruses appeared first in the nucleus. Oval or horseshoe-shaped non-enveloped particles of HVT and enveloped virions of MDV were seen in the cytoplasm of some transitional cells. The difference in the ability of HVT and MDV to form an envelope was believed to account for the difference in their transmissibility in chickens. The results indicated that HVT replicated in the FFE and in the epidermis of the skin. However, attempts to localise the site(s) of MDV replication by electron microscopy were unsuccessful.  相似文献   

7.
The effects of passive immunization with immunoglobulin Y (IgY) on the pathogenesis of Marek's disease (MD) were examined in an experimental line of White Leghorn chickens highly susceptible to MD. Purified IgY with anti-MDV antibody activity, when injected into chicks, delayed the development of MDV viremia and lesions until 9 days postinoculation (PI) with Marek's disease virus (MDV). The blastogenic response of spleen cells to concanavallin-A was depressed at 6 days PI in the birds without passive immunization, whereas it was not totally depressed until 17 days in birds passively immunized with IgY anti-MDV antibody.  相似文献   

8.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

9.
A newly cloned serotype 2 Marek's disease virus (MDV), strain ML-6, was inoculated via the nasal cavity in specific-pathogen-free chicks to examine early virus replication and the expression of Marek's disease (MD)-related antigens. Following inoculation, viral intracellular antigens (VIAs) were detected in lymphoid organs (bursas and spleens) between 5 and 14 days post inoculation (PI), in feather follicles between 14 and 30 days PI, and in lungs at 3 days PI by the immunohistopathological staining of avidin-biotin-peroxidase complex method. But, very few VIAs were expressed in the thymuses between 5 and 14 days PI. However, MD tumor-associated surface antigens were not detected in any organs. Viruses were isolated from separated spleen cells at 14 and 30 days PI. Fluorescent antibodies of convalescent sera were also detected after 10 days PI. As most of the VIAs were detectable in B-cells in bursas and spleens. B-cells were considered to be the main first target cells for the serotype 2 MDV infection.  相似文献   

10.
鸡马立克病研究进展   总被引:2,自引:0,他引:2  
鸡马立克病是由马立克病病毒引起的一种淋巴细胞增生性传染病,通常以外周神经和包括虹膜和皮肤在内的其他各种器官和组织的单核细胞浸润为特征.目前,仍然严重威胁着养禽业的发展,疫苗虽然可以预防马立克病的发生,但免疫失败时有发生,常常导致本病的局部暴发.论文对该病的病原、流行病学、临床症状、病理变化、发病机理、诊断及防控等方面进行了综述.  相似文献   

11.
Bursa- and thymus-dependent functions were examined in Marek's disease (MD)-susceptible normal chickens and in chickens treated with 5 and 16 mg of cyclophosphamide (CY) at the time of hatching. Chickens not exposed to Marek's disease virus (MDV) and treated with CY temporarily lost mitogenic response to concanavalin A but regained full response after 5 weeks. Bursa-dependent functions, such as presence of germinal centers in spleen and cecal tonsils, morphologic features of bursa, and sheep red blood cell antibody response were completely lost in chickens treated with 16 mg of CY and only partly retained in chickens treated with 5 mg of CY. In chickens exposed to MDV, the degree of thymus-dependent spleen cell mitogenic response was directly related to frequency and severity of MD. Chickens treated with 16 mg of CY had a mild mitogenic depression and low frequency and severity of MD lesions, whereas those treated with 5 mg of CY and those not treated had marked mitogenic depression and high frequency and severity of MD. Suppressions of bursa- and thymus-dependent functions by MDV alone were also evident when comparing MDV-exposed and nonexposed chickens. The results also indicate that presence of small, residual amounts of humoral factor(s) may enhance MDV oncogenesis.  相似文献   

12.
Comparison of blood and feather pulp (FP) samples for the diagnosis of Marek's disease (MD) and for monitoring Marek's diseases vaccination in chickens (serotypes 2 and 3 vaccines) by real time-PCR was evaluated. For diagnosis of MD, quantification of serotype 1 Marek's disease virus (MDV) DNA load was evaluated in 21 chickens suffering from MD. For each chicken, samples of blood and FP were collected and MDV DNA load was quantified. Solid tumors are the sample of choice for MD diagnosis by real time-PCR and, hence, 14 solid tumors were included in the study as positive controls. Load of MDV DNA in FP was equivalent to that detected in solid tumors (threshold cycle [Ct] ratio above 1.7). MDV DNA load in blood samples was lower than in solid tumors and FP samples. Nonetheless, there was a statistically significant correlation of the results obtained from FP and blood (r = 0.92). Results of the Pearson correlation test showed that Ct ratio values of 1.7 in FP correspond to Ct ratio values of 1.2 in peripheral blood. For monitoring vaccines, serotypes 2 and 3 MDV DNA load was evaluated in blood and FP samples of vaccinated chickens. Serotype 2 MDV DNA load was evaluated in samples of blood and FP from 34 chickens vaccinated with SB-1 strain. Serotype 3 MDV DNA load was evaluated in blood and FP samples from 53 chickens vaccinated with HVT strain. For both serotypes, frequency of positive samples and load of vaccine DNA was higher in FP than in blood samples. There was not a statistically significant correlation between the load of SB-1 DNA (r = 0.17) or HVT DNA (r = -0.04) in FP and blood. Our results show that the load of serotypes 1, 2, and 3 DNA is higher in FP than in blood. Diagnosis of MD could be done using both FP and blood samples. Monitoring of MD vaccination by real time-PCR required the use of FP samples. There were a high percentage of false negative samples when using blood to detect serotypes 2 and 3 MDV by real time-PCR.  相似文献   

13.
Glycoproteins gB of Marek's disease virus (MDV) and herpesvirus of turkeys (HVT) related to virus neutralization were purified from HVT-infected cells by affinity chromatography. Immunization of chickens with purified glycoproteins gB resulted in partial protection against MD. Neutralizing antibodies were detected in chickens immunized with HVT-gB.  相似文献   

14.
A total of 114 male chickens from three sire families of a commercial cross of White Leghorn chickens were infected with RB-1B Marek's disease (MD) virus at 21 days of age by exposing them to chickens previously inoculated with MD virus. The presence of virus in feather tips, feather pulp, and MD viral antibodies indicated all chickens became infected. The first virus-positive chickens were observed at 12 days postexposure (dpe). The frequency reached a maximum at 27 dpe and then decreased. At 80 dpe, when the experiment was terminated, no viral DNA was detected in the feather pulp of the surviving chickens (82%). Death from MD was first observed at 38 dpe and reached 18% by the end of the experiment, with spleen lesions being the major MD lesion. The viral genome titers in spleen extracts of chickens with MD lesions was negatively correlated with the time of death, and, similar to feather pulp, none of the surviving chickens was virus positive at the end of the experiment. Quantization of the viral genome titers in feather tip extracts at 27 and 38 dpe revealed a positive correlation with the presence of MD lesions, but only in the declining phase (38 dpe) and not at the peak (27 dpe) of the viral titer. Sire effects were significant, indicating the presence of genetic factors that affect viral proliferation. Again, significance was only observed at 38 dpe and not at 27 dpe. The results indicate that, in this commercial line, 1) all chickens were susceptible to infection via contact exposure, 2) all surviving chickens recovered from the viral infection, and 3) it is not sufficient to measure viral titers at a single time point when using viral titers as an endpoint for MD susceptibility.  相似文献   

15.
The pathogenicity of Marek's disease (MD) strain CVI-988 vaccine, eight plaque-purified preparations originating from this strain, and the vaccine HVT FC126 (based on herpesvirus of turkeys) was determined by intramuscular administration of high virus doses to day-old specific-pathogen-free Rhode Island Red (RIR) chickens, which are extremely MD-susceptible. Paralysis and neuritis were observed in 88% of RIR chickens inoculated with MDV CVI-988 at the cell-passage level of the commercial vaccine. HVT FC126 caused paralysis in two of 39 RIR chickens tested, of which one had an endoneural lymphoma, and another three had endoneural inflammation. Five plaque-purified MDV CVI-988 virus preparations at various cell-culture-passage levels caused no lesions. Of another three clones, two caused inflammatory B-type lesions in the nerves of 1/10 chickens, and the third clone caused inflammatory nonneoplastic MD lesions in the liver of 1/11 chickens.  相似文献   

16.
For the easy survey of Marek's disease virus (MDV), feather tip-derived DNA from MDV-infected chickens can be used because feather tips are easy to collect and feather follicle epithelium is known to be the only site of productive replication of cell-free MDV. To develop a diagnostic method to differentiate highly virulent strains of MDV from the attenuated MDV vaccine strain, CVI988, which is widely used, nested polymerase chain reaction (PCR) was performed to detect a segment of the meq gene in feather tip samples of chickens experimentally infected with MDV. In chickens infected with Md5, a strain of oncogenic MDV, the meq gene was consistently detected, whereas the L-meq gene, in which a 180-base pair (180-bp) sequence is inserted into the meq gene, was detected in CVI988-infected chickens. Moreover, the meq gene was mainly detected even in chickens co-infected with both Md5 and CVI988. These results suggest that this method is appropriate for the surveillance of the highly virulent MDV infection in the field.  相似文献   

17.
In a certain area of Shandong province, Marek's disease (MD) occurred in diseased chickens that had been vaccinated by turkey herpesvirus.In order to isolate the virus strain and detect the virus pathogenicity, agar diffusion test, cell culture and indirect immunofluorescence assay (IFA) were used to isolate the Marek's virus from chicken's blood and feather marrow.The isolated strain was adapted to grow in chick embryo fibroblasts (CEF).Genes involved in pathogenesis of MDV, such as meq, pp38 and 132 bp repeat sequence were amplified by PCR.The obtained sequences were compared with that of standard strains published in GenBank by DNAStar software.The results showed that pp38 gene of the SDAU-1 shared homology from 100% with standard virulent sequence.Analysis of 132 bp repeat sequence and meq gene sequences of the viral genome showed that the isolated virus belongs to the highly virulent MDV strains.  相似文献   

18.
Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.  相似文献   

19.
Marek’s disease virus (MDV) is an alpha-herpesvirus causing Marek’s disease in chickens, mostly associated with T-cell lymphoma. VP22 is a tegument protein abundantly expressed in cells during the lytic cycle, which is essential for MDV spread in culture. Our aim was to generate a pathogenic MDV expressing a green fluorescent protein (EGFP) fused to the N-terminus of VP22 to better decipher the role of VP22 in vivo and monitor MDV morphogenesis in tumors cells. In culture, rRB-1B EGFP22 led to 1.6-fold smaller plaques than the parental virus. In chickens, the rRB-1B EGFP22 virus was impaired in its ability to induce lymphoma and to spread in contact birds. The MDV genome copy number in blood and feathers during the time course of infection indicated that rRB-1B EGFP22 reached its two major target cells, but had a growth defect in these two tissues. Therefore, the integrity of VP22 is critical for an efficient replication in vivo, for tumor formation and horizontal transmission. An examination of EGFP fluorescence in rRB-1B EGFP22-induced tumors showed that about 0.1% of the cells were in lytic phase. EGFP-positive tumor cells were selected by cytometry and analyzed for MDV morphogenesis by transmission electron microscopy. Only few particles were present per cell, and all types of virions (except mature enveloped virions) were detected unequivocally inside tumor lymphoid cells. These results indicate that MDV morphogenesis in tumor cells is more similar to the morphorgenesis in fibroblastic cells in culture, albeit poorly efficient, than in feather follicle epithelial cells.  相似文献   

20.
山东省某地区鸡马立克氏病疫苗免疫鸡群暴发马立克氏病(MD),为分离得到致病毒株,检测其致病性,采用琼脂扩散试验、细胞培养和间接免疫荧光试验(IFA)等方法从发病鸡的血液及羽髓中分离到一株适应鸡胚成纤维细胞(CEF)生长的马立克氏病病毒。采用PCR方法扩增分离毒株的meq、pp38、132bp重复序列等病毒致病相关基因,所得序列用DNAStar软件与GenBank上登录的参考毒株进行比对分析。结果显示,该分离株SDAU-1的pp38基因与标准强毒序列同源性为100%,132bp重复序列的拷贝数及meq基因的变异均符合MDV强毒株的序列特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号