首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biological soil crusts (BSC), most notably lichen crusts, develop and diversify in the Gurbantunggut Desert, the largest fixed and semi-fixed desert in China. Four different successional stages of BSC, including bare sand, microalgal crusts, lichen crusts, and moss crusts, were selected to determine successional changes in microalgal species composition and biomass and formation of BSC. A 10 × 10-m observation plot was established in an interdune region of the Gurbantunggut Desert and data were collected over an 8-year study period. The main results were: (1) different successional stages of BSC significantly affected the content of soil organic C and total and available N but not the total and available P and K content of soil; (2) composition of microalgal communities differed among the four successional stages; (3) significant differences in microalgal biomass were observed among the four successional stages; (4) bare sand was mainly uncompacted sand gains; (5) filamentous cyanobacteria, particularly Microcoleus vaginatus, were the dominant species in the early phase of crust succession. The presence of fungal mycelium and moss rhizoids prevented water and wind erosion.  相似文献   

2.
Biological soil crusts (BSCs) cover up to 70% of the sparsely-vegetated areas in arid and semiarid regions throughout the world and play a vital role in dune stabilization in desert ecosystems. Soil enzyme activities could be used as significant bioindicators of soil recovery after sand burial. However, little is known about the relationship between BSCs and soil enzyme activities. The objective of this study was to determine whether BSCs could affect soil enzyme activities in revegetated areas of the Tengger Desert. The results showed that BSCs significantly promoted the activities of soil urease, invertase, catalase and dehydrogenase. The effects also varied with crust type and the elapsed time since sand dune stabilization. All the soil enzyme activities tested in this study were greater under moss crusts than under cyanobacteria–lichen crusts. The elapsed time since sand dune stabilization correlated positively with the four enzyme activities. The enzyme activities varied with soil depth and season, regardless of crust type. Cyanobacteria–lichen and moss crusts significantly enhanced all test enzyme activities in the 0–20 cm soil layer, but negatively correlated with soil depth. All four enzyme activities were greater in the summer and autumn than in spring and winter due to the vigorous growth of the crusts. Our study demonstrated that the colonization and development of BSCs could improve soil quality and promote soil recovery in degraded areas of the Tengger Desert.  相似文献   

3.
Biological soil crusts (BSCs) play an important role in the dune fixation and maintaining soil biota in arid desert systems. Free-living soil nematode communities could be used as significant bioindicators to reflect soil recover regime after sand burial. However, the relationship between BSCs and nematodes is rarely known. To examine the effects of BSCs on soil nematodes, 72 soil samples under cyanobacteria–lichen and moss crusts were collected to analyse nematode communities in the different aged vegetated areas at the southeastern edge of the Tengger Desert. Our results showed the colonization and development of BSCs significantly enhanced nematode diversity. Nematode abundances, generic richness, H′, MI, EI and SI were greater under crusts than those under noncrust. In particular, nematode abundances, generic richness, H′, MI, EI and SI were positively correlated with crust ages. The differences in nematode communities were also dependent upon crust types. Nematode abundances and generic richness under moss crusts were higher than those under cyanobacteria–lichen crusts. This can be contributed to the present and succession of BSCs that increased thickness of topsoil after dunes have been stabilized, namely, creating suitable habitats and providing an essential food source for nematodes.  相似文献   

4.
黄土高原生物土壤结皮研究进展与展望   总被引:3,自引:1,他引:2  
张丙昌  武志芳  李彬 《土壤学报》2021,58(5):1123-1131
黄土高原是典型的生态脆弱敏感区和世界上水土流失最为严重的地区,也是当今我国生态恢复和生态文明建设的重点区域。生物土壤结皮是细菌、藻类、真菌和孢子植物与土壤颗粒胶结而成的有机复合体,是干旱半干旱地区地表系统的重要组成部分,它们对黄土高原的水土保护、养分积累和生态恢复具有重要的生态功能。本文论述了生物土壤结皮类型与演替过程;系统总结了黄土高原不同环境中生物结皮微生物和藓类的物种多样性、生态功能、人工生物结皮培养与生态恢复的研究进展与存在问题,最后从黄土高原生物结皮微生物多样性和功能群、生物结皮不同生物类群之间及其与种子植物的种间关系、生物结皮人工培养和生态恢复方面提出了研究建议与展望,以期对黄土高原生物结皮的相关研究提供参考。  相似文献   

5.
As a key component of desert ecosystems, biological soil crusts (BSCs) play an important role in dune fixation and maintaining soil biota. Soil microbial properties associated with the colonization and development of BSCs may indicate soil quality changes, particularly following dune stabilization. However, very little is known about the influence of BSCs on soil microbes in sand dunes. We examined the influence of BSCs on soil microbial biomass and community composition in revegetated areas of the Tengger Desert. BSCs increased soil microbial biomass (biomass C and N), microbial phospholipid fatty acid (PLFA) concentrations and the ratio of fungal to bacterial PLFAs. The effects varied with crust type and crust age. Moss crusts had higher microbial biomass and microbial PLFA concentrations than cyanobacteria-lichen crusts. Crust age was positively correlated with microbial biomass C and N, microbial PLFA concentrations, bacterial PLFA concentrations, fungal PLFA concentrations and the ratio of fungal to bacterial PLFAs. BSCs significantly affected microbial biomass C and N in the 0–20 cm soil layers, showing a significant negative correlation with soil depth. The study demonstrated that the colonization and development of BSCs was beneficial for soil microbial properties and soil quality in the revegetated areas. This can be attributed to BSCs increasing topsoil thickness after dunes have been stabilized, creating suitable habitats and providing an essential food source for soil microbes.  相似文献   

6.
As vital components of desert systems, the roles of ants in arid ecological processes have been well documented, while little attention has been given to their effects on soil water. We conducted a six-year investigation in sand dune systems stabilized via revegetation, to explore the hydrological role of ants through comparing the influence of ant nests on rainfall infiltration in different-aged revegetated dunes. The presence of ant nests markedly enhanced infiltration due to weakening the rainfall interception by biological soil crusts (BSCs) in revegetated dunes. The distribution of ant nest was denser in older revegetated areas, due to better developed BSCs of later successional stages, compared to younger revegetated areas. Ants prefer later to early successional BSCs because the later lichen–moss dominated crusts were thicker and their surface was more stable than the early cyanobacteria dominated crusts. Conversely, the crustal rainfall interception was positively correlated with BSC thickness. These findings suggest that the occurrence of ant nests in older revegetated areas benefited to the planted shrubs with deeper root systems and maintain a relative constant cover of shrubs in artificial sand-binding vegetation following an increase in infiltration to deeper soil layers.  相似文献   

7.
Water and nutrients are scarce resources in arid and semiarid ecosystems. In these regions, biological soil crusts (BSCs) occupy a large part of the soil surface in the open spaces surrounding patches of vegetation. BSCs affect physicochemical soil properties, such as aggregate stability, water retention, organic carbon (OC) and nitrogen (N) content, associated with primary ecosystem processes like water availability and soil fertility. However, the way BSCs modify soil surface and subsurface properties greatly depends on the type of BSC. We hypothesised that physicochemical properties of soil crusts and of their underlying soils would improve with crust development stage. Physicochemical properties of various types of soil crusts (physical crusts and several BSC development stages) and of the underlying soil (soil layers 0–1 cm and 1–5 cm underneath the crusts) in two semiarid areas in SE Spain were analysed. The properties that differed significantly depending on crust development stage were aggregate stability, water content (WC) (at −33 kPa and −1500 kPa), OC and N content. Aggregate stability was higher under well-developed BSCs (cyanobacterial, lichen and moss crusts) than under physical crusts or incipient BSCs. WC, OC and N content significantly increased in the crust and its underlying soil with crust development, especially in the first centimetre of soil underneath the crust. Our results highlight the significant role of BSCs in water availability, soil stability and soil fertility in semiarid areas.  相似文献   

8.
In order to estimate the biomass of photoautotrophic organisms in biological soil crusts (BSCs), based on the extraction and determination of phytoplanktonic chlorophyll-a (Chl-a) in aquatic ecosystems, this paper comparatively studied the Chl-a extraction efficiencies in ethanol, acetone, N, N -dimethyl -formamide (DMF) and dimethyl sulphoxide (DMSO) from algae, lichen, and moss crusts, analyzed the effects of dominant organisms or development degree of BSCs, mass of sample, and soil characteristics on the extraction efficiency. The results showed that the extraction efficiencies of different organic solvents were significantly different, and such efficiencies declined with the increase of mass of sample. DMSO resulted in the greatest extraction efficiency, but was not suitable for lichen crusts; DMF strongly underestimated the Chl-a content of man-made crusts relative to the other extractants, and was particularly affected by interfering pigments from the well-developed crusts. Generally, the extraction efficiency of ethanol was greater than that of acetone, and ethanol method showed the greatest stability compared with other 3 solvents. In addition, Chl-a content showed an increasing trend with the succession of BSCs when it was expressed on an areal basis. On the basis of this and related experiments we suggest Chl-a content of BSCs be extracted by ethanol and expressed on an areal basis.  相似文献   

9.
Despite the critical role of biological soil crusts (BSCs) in arid and semi-arid ecosystem function, few studies are found concerning the most important environmental variables affecting their distribution and physiology. This study seeks to determine soil and microenvironmental factors affecting the spatial distribution and pigment production of BSC-forming lichens and mosses in open patches of a semi-arid Mediterranean kermes oak thicket. We measured late-successional BSC cover, shrub cover, distance to nearest kermes oak (to test for effects of kermes oak thicket microenvironment on BSC), and pigment concentration of one lichen (Cladonia foliacea) and one moss (Pleurochaete squarrosa) species in the Nature Reserve El Regajal-Mar de Ontígola (Central Spain). At the macroscale (>0.5 m), results showed that BSC distribution and pigments were tightly coupled to a suite of soil properties, in particular soil pH, Fe, and Ca. Specifically, soil pH had a positive relationship with the cover of five individual BSC-forming lichen species and was negatively related to pigment production in C. foliacea. When pH was excluded from the analysis, Ca appeared as the main soil variable and was correlated with total BSC cover and total lichen cover. The micronutrient Fe had a significant positive relationship with the concentration of eight pigments in P. squarrosa and was also coupled with the cover of two BSC-forming lichens. Manganese, previously proposed as a key limiting micronutrient for BSCs, affected lichen diversity in a negative way. At the microscale (∼0.5 m), kermes oak microenvironment, shrub cover, and moss cover were determinants of BSC distribution, and total lichen and total BSC cover were overrepresented on N and E-facing shrub microsites. Our findings suggest that soil chemical variability and microsite diversity created by neighbouring vegetation affect BSC distribution in complex and essential ways and that studies aiming to explore BSC-environment relationships should be conducted at various spatial scales. Studies based on species- or group-specific responses are, thus, inadequate to unveil the main factors determining the distribution of the diverse organisms that constitute BSCs and/or to propose potential tools aiming to restore BSC in arid and semiarid ecosystems.  相似文献   

10.
彭俊伟  申民翀  董元华  李建刚 《土壤》2021,53(2):321-328
本文利用十字花科白菜型和芥菜型籽粕作为土壤绿色熏蒸剂,研究了籽粕对哈密瓜土传病害的防治效果以及该过程中真核微生物群落在哈密瓜整个生育期的动态变化。研究结果表明两种籽粕对病害有显著防控效果,与化学熏蒸剂棉隆效果相似,但对土壤中微生物群落的扰动以及根际微生物的富集方面存在明显不同。白菜型和芥菜型籽粕均能显著降低土壤中真核微生物的丰富度和多样性,并有选择性的促进土壤中某些特定微生物的恢复和富集,使得有益微生物在根际定殖。在整个过程中,子囊菌门(Ascomycota)真菌主导了微生物群落结构的变化,且在根际有益微生物的群落构建中起到了重要作用,其下属曲霉属(Aspergillus)和毛壳菌属(Chaetomium)中的慢性曲霉(Aspergillus lentulus)和未知物种(OTU_213)与发病率间呈现出显著负相关关系,可能抑制了病原菌群在根际的定殖。而棉隆处理对根际有益微生物的富集方面影响较小,对土壤微生物群落结构的作用也不显著。  相似文献   

11.
Many studies have shown that changes in nitrogen (N) availability affect the diversity and composition of soil microbial community in a variety of terrestrial systems, but less is known about the responses of microbes specific to biological soil crusts (BSCs) to increasing N additions. After seven years of field experiment, the bacterial diversity in lichen-dominated crusts decreased linearly with increasing inorganic N additions (ambient N deposition; low N addition, 3.5 g N m−2 y−1; medium N addition, 7.0 g N m−2 y−1; high N addition, 14.0 g N m−2 y−1), whereas the fungal diversity exhibited a distinctive pattern, with the low N-added crust containing a higher diversity than the other crusts. Pyrosequencing data revealed that the bacterial community shifted to more Cyanobacteria with modest N additions (low N and medium N) and to more Actinobacteria and Proteobacteria and much less Cyanobacteria with excess N addition (high N). Our results suggest that soil pH, together with soil organic carbon (C), structures the bacterial communities with N additions. Among the fungal communities, the relative abundance of Ascomycota increased with modest N but decreased with excess N. However, increasing N additions favored Basidiomycota, which may be ascribed to increases in substrate availability with low lignin and high cellulose contents under elevated N conditions. Bacteria/fungi ratios were higher in the N-added samples than in the control, suggesting that the bacterial biomass tends to dominate over that of fungi in lichen-dominated crusts after N additions, which is especially evident in the excess N condition. Because bacteria and fungi are important components and important decomposers in BSCs, the alterations of the bacterial and fungal communities may have implications in the formation and persistence of BSCs and the cycling and storage of C in desert ecosystems.  相似文献   

12.
Biological soil crusts are essential components of arid ecosystems. We examined the variations in microfungal communities inhabiting different biological crust types in the vicinity of the Shapotou Research Station in the Tengger Desert, China. A total of 134 species from 66 genera were isolated using the soil dilution plate method. The mycobiota of the crusts from the Tengger Desert, similar to that of the Negev Desert in Israel, was dominated by melanin-containing species with large multicellular spores. Abundance of these xeric species increased spatially with increasing xeric conditions from moss-dominated to cyanobacterial crusts. Density of microfungal isolates displayed the opposite trend and was positively correlated with chlorophyll content, indicating the possible significant influence of organic matter content and wetness duration on fungal biomass. Within a chronosequence of the localities of different periods after sand stabilization with revegetation, little variations were revealed in species composition and isolate density of the crust microfungal communities, while a tendency towards a decrease in the community diversity level with the crust age was noted. Microfungal communities from stabilized localities differed from those of the natural localities in abundance of the dominant and some frequent species, and in the fluctuations of diversity characteristics between the cyanobacterial and moss-dominated crusts. The variations in mycobiotic parameters in the soil crusts of the Tengger Desert were apparently associated with the topographically induced variations in abiotic conditions, while the differences in microfungal community of soil crusts between the Tengger and Negev deserts, such as the significantly higher abundance of thermotolerant species in the crusts of the Tengger Deserts, were caused by the principal differences in their precipitation regimes, associated with different rainy seasons, winter and summer in the Negev and Tengger deserts, respectively.  相似文献   

13.
In arid and semi-arid regions, pioneer organisms form complex communities that penetrate the upper millimetres of the bare substrate, creating biological soil crusts (BSC). These thin crusts play a vital role in whole ecosystem functioning because they enrich bare surfaces with organic matter, initiate biogeochemical cycling of elements, modify hydrological cycles, etc., thus enabling the ground to be colonized by vascular plants. Various hydrolase enzymes involved in the carbon (cellulase, β-glucosidase and invertase activities), nitrogen (casein-protease and BAA-protease activities) and phosphorus (alkaline phosphomonoesterase activity) cycles were studied at three levels (crust, middle and deep layers) of three types of BSCs from the Tabernas Desert (SE Spain), representing an ecological gradient ranging from crusts predominated by cyanobacteria to crusts predominated by lichens (Diploschistes diacapsis, Lepraria crassissima). All enzyme activities were higher in all layers of all BSCs than in the bare substrate. The enzymes that hydrolyze low molecular weight substrates were more active than those that hydrolyze high molecular weight substrates (cellulase, casein-protease), highlighting the pioneering characteristics of the BSCs. The hydrolytic capacity developed in parallel to that of ecological succession, and the BSCs in which enzyme activity was highest were those under L. crassissima. The enzyme activity per unit of total organic C was extremely high; the highest values occurred in the BSCs formed by cyanobacteria and the lowest in those formed by lichens, which indicates the fundamental role that the primary colonizers (cyanobacteria) play in enriching the geological substrate with enzymes that enable degradation of organic remains and the establishment of more developed BSCs. The results of the study combine information on different enzyme activities and provide a clear vision of how biogeochemical cycles are established in BSCs, thus confirming the usefulness of enzyme assays as key tools for examining the relationship between biodiversity and ecosystem function in biological soil crusts.  相似文献   

14.
Biological soil crusts (BSCs) are increasingly recognized as common features in arid and semiarid ecosystems and play an important role in the hydrological and ecological functioning of these ecosystems. However, BSCs are very vulnerable to, in particular, human disturbance. This results in a complex spatial pattern of BSCs in various stages of development. Such patterns, to a large extent, determine runoff and erosion processes in arid and semiarid ecosystems. In recent years, visible and near infrared (Vis‐NIR) diffuse reflectance spectroscopy has been used for large‐scale mapping of the distribution of BSCs. Our goals were (i) to demonstrate the efficiency of Vis‐NIR spectroscopy in discriminating vegetation, physical soil crusts, various developmental stages of BSCs, and various types of disturbance on BSCs and (ii) to develop a classification system for these types of ground cover based on Vis‐NIR spectroscopy. Spectral measurements were taken of vegetation, physical crusts and various types of BSCs prior to, and following, trampling or removal with a scraper in two semiarid areas in SE Spain. The main spectral differences were: (i) absorption by water at about 1450 nm, more intense in the spectra of vegetation than in those of physical crusts or BSCs, (ii) absorption features at about 500 and 680 nm for the BSCs, which were absent or very weak for physical crusts, (iii) a shallower slope between about 750 and 980 nm for physical crusts and early‐successional BSCs than for later‐successional BSCs and (iv) a steeper slope between about 680 and 750 nm for the most developed BSCs. A partial least squares regression‐linear discriminant analysis of the spectral data resulted in a reliable classification (Kappa coefficients over 0.90) of the various types of ground cover and types of BSC disturbance. The distinctive spectral features of vegetation, physical crusts and the various developmental stages of BSCs were used to develop a classification system. This will be a promising tool for mapping BSCs with hyperspectral remote sensing.  相似文献   

15.
Biological soil crusts (BSCs) are highly specialized topsoil microbial communities commonly found in arid and semiarid environments, permeated by a polymeric matrix of polysaccharides. BSCs can in principle influence edaphic properties such as texture, pore formation and water retention, which in turn determine water distribution and biological activity in dry lands. This paper investigates the influence of biotic and abiotic factors on BSC hydraulic conductivity, a parameter gauging the ease with which water can move through the pore spaces. Texture, phototroph abundance, microbial composition, and extracellular carbohydrate content were considered as potentially relevant parameters in a correlational study of BSC samples that spanned 1.5 orders of magnitude in hydraulic conductivity. A newly developed, non-destructive extraction method enabled us to directly quantify the specific role of extracellular polysaccharides on soil permeability on a variety of samples. Hydraulic conductivity showed a strongest correlation with texture (positive with sand content, negative with silt and clay). A weaker negative correlation with carbohydrate content, especially with polysaccharides having a molecular weight < 100 kDa, was also detected. In multiple regression analyses texture (silt content) was sufficient to explain most of the variation in hydraulic conductivity However, experimental removal of polymeric carbohydrates, resulted invariably in a substantial decrease in hydraulic conductivity for any given sample (between 1.7 and 3.3 fold). Our results suggest that while soil texture determines overall hydraulic conductivity in BSCs, the presence of exopolysaccharides can significantly enhance it, likely by conferring a spongy structure to a BSC thus increasing the number of waterways within it.  相似文献   

16.
以沙坡头生物结皮(BSC)为研究对象,采用Biolog鉴定系统,通过碳源利用分析、功能多样性分析和聚类分析,对BSC微生物的多样性进行了研究。结果表明:BSC微生物群落代谢的平均颜色变化率(AWCD)在培养初期(0~24h)值很小处于适应期,中后期(24~168 h)AWCD值逐渐增强处于指数期,可能由于监测时间不是足够长,所以稳定期和衰亡期表现得不明显;BSC微生物能够利用羧酸类、聚合物类、碳水化合物类、酚类化合物类、氨基酸类和胺类6类碳源,其中对羧酸类碳源的利用率最高,对胺类碳源的利用率最低;BSC中微生物群落多样性指数为3.99,微生物群落均匀度指数为1.44;指纹聚类分析表明,当聚合水平>8.6时,BSC微生物可分为6类。研究表明,Biolog技术能够简便、快速、有效地反映BSC中的微生物活性及其变化情况。  相似文献   

17.
毛乌素沙地人为干扰苔藓结皮的土壤水分和风蚀效应   总被引:1,自引:1,他引:1  
[目的]为了探讨在毛乌素沙地人为干扰生物结皮的必要性与可行性,并为该区生物结皮的高效利用提供实验依据。[方法]在毛乌素沙地东南缘设置裸沙、苔藓结皮、干扰苔藓结皮、沙蒿、沙蒿+苔藓结皮以及沙蒿+干扰苔藓结皮6个处理小区,通过动态监测各小区土壤水分及风蚀变化过程,分析人为干扰苔藓结皮对土壤水分及风蚀过程的影响。[结果](1)沙地苔藓结皮能够显著提高浅层土壤含水量,降低深层土壤含水量。(2)人为干扰苔藓结皮会引起浅层土壤含水量的降低和降雨入渗深度的增加。(3)与裸沙对照相比,几种处理的减蚀效率大小顺序为:沙蒿+苔藓结皮(97.01%)沙蒿+干扰苔藓结皮(90.87%)苔藓结皮(89.63%)干扰苔藓结皮(69.50%)沙蒿(64.62%)。[结论]植被覆盖度较高时,对苔藓结皮进行适当破坏,能够在不加剧土壤风蚀的前提下,一定程度上改善土壤水分状况。而在无植被或低植被覆盖的地块,要禁止对苔藓结皮的干扰破坏。  相似文献   

18.
Biological soil crusts (BSCs) and the soils directly below crusts (SDBCs) (0–5 mm) were collected in the Negev Desert (Israel) during the wet and dry seasons of 2007 and 2008, gently separated, and microbial basal respiration, microbial biomass carbon (Cmic), carbon (C) source utilization rates, and catabolic diversity were analyzed using MicroRespTM plates. The seasonal-change patterns of these parameters were similar to those of soil organic C (Corg) in the BSCs, i.e., increases were observed during the dry seasons relative to the wet seasons. Few seasonal variations in qCO2 and Cmic/Corg in the BSCs indicated that the increases in crustal organism basal respiration and C source utilization rates can be attributed to microbial propagation as a result of the increases in available C during the dry seasons. High frequency of rain events, with precipitation higher than 0.1 mm during spring, can enable crustal organisms to maintain photosynthetic activity and can facilitate microbial propagation and Corg accumulation in the BSCs. The seasonal dynamics of the four biotic parameters in the SDBCs were the opposite of those of the BSCs, and C source utilization rates and catabolic diversity were higher than in the BSCs during the wet seasons. Downward migration of exopolysaccharides, crustal organism cell contents, and intracellular solutes with water infiltration can increase C and nutrient availability and enhance microbial catabolic activities and propagation in the SDBCs.  相似文献   

19.
Arid areas are highly sensitive to climate change and are ideal model systems to study the potential impact of climate change on species' community structure. Biological soil crust (BSC) formation plays an ecological role in a number of key processes in the development of dry ecosystems. It was hypothesized that BSC succession and function are affected by aridity level and limited by rainfall. Furthermore, it is possible to infer the direction of the BSC succession based on aridity level, and the latter can imitate future climate change scenarios. The objectives of this study were to investigate the microbial biomass and diversity of the BSC structure in three sites differing in aridity level (semiarid, arid and hyper-arid), by combining physical and biophysiological measurements with 16S rRNA gene fragment and phospholipid fatty acid (PLFA) analyses. Physical and biophysiological parameters of the BSC were significantly influenced by aridity level. Total protein and polysaccharide contents were strongly correlated with total PLFA-based microbial biomass. Gram-positive biomarkers and microbial biomass were significantly higher in the wettest (semiarid) site than in the driest (hyper-arid) one. Multivariate-analysis based ordination of the PLFA data segregated the cluster of semiarid data from that of the hyper-arid site, while data from the arid site were dispersed between the two. The phylogenetic distribution of prominent 16S rRNA bacterial gene sequences along the aridity levels was in agreement with the PLFA analysis: the hyper-arid site was dominated by the cyanobacterium Microcoleus vaginatus, while diverse populations of cyanobacteria and soil bacteria were found in the other sites. These complementary tools allowed a simple and sensitive measurement of the influence of aridity levels on BSC successional stage. The results demonstrate that different aridity levels correspond to different BSC successional stages and those differences can be used as parameters for global change scenarios.  相似文献   

20.
Despite intensive study in recent decades, soil respiration rate (Rs) and its evolution accompanying vegetation succession remain perplexing. Using a 50-year chronosequence of sand-fixing revegetation in the Tengger Desert of China, we took intact soil columns of 20 cm in depth, incubated them at 12 levels of soil water content (0–0.4 m3 m?3) and at nine temperatures (5–45°C) in a growth chamber, and measured Rs. The results showed that Rs increased rapidly 15 to 20 years following revegetation but stabilized after 25 years. Rs for soils covered with moss crusts were markedly higher than those covered with algal crusts. Further, Rs correlated significantly with sand content (negatively) and fine particle contents (positively), and increased exponentially with increased soil organic matter (SOM) and total nitrogen (TN) contents. Soil texture had a stronger influence on Rs than did SOM and TN. Also, Rs increased linearly with increased coverage and depth of biological soil crusts, which had a more pronounced influence on Rs than did soil physicochemical properties. Our results suggest that the capacity of carbon sequestration likely increases during the 50-year period after revegetation because the linear increase in SOM outweighs the limited sigmoidal increase in Rs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号