首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
试验旨在对基于基因分型测序(genotyping by sequencing,GBS)技术筛选出的马鹿特异性SNPs位点的准确性进行验证,为梅花鹿、马鹿及其杂交后代的鉴别提供可靠的分子遗传标记。随机选取30个马鹿特异性SNPs位点,根据SNPs位点前后各200 bp的序列,利用Primer Premier 6.0软件设计特异性引物,以随机选取的验证样本DNA作为模板进行PCR扩增,并进行Sanger测序,对测序结果利用BioEdit软件进行峰图的观察,利用Mega 6.0软件对测序得到的序列进行比对分析并观察每个特异性SNP位点在不同验证群体中的基因型,对每一个马鹿特异性位点的峰图和比对信息进行统计分析。结果表明,30个马鹿特异性位点中有28个和前期研究结果一致,其中1个SNP位点(SNP3)中G等位基因在梅花鹿中的基因频率为0.05,而G等位基因在马鹿中的基因频率为1,G等位基因在马鹿个体中的基因频率比在梅花鹿个体中高,同时,利用SPSS 22.0进行统计分析发现,该位点在马鹿和梅花鹿中基因型分布表现出显著性差异(P<0.05);另外1个SNP位点(SNP5)中T等位基因在梅花鹿的基因频率为0.15,而在马鹿中的基因频率为1,且这个SNP位点在梅花鹿和马鹿中基因型分布差异显著(P<0.05),所以这2个位点仍然可以作为马鹿的特异性SNPs位点。研究结果说明了GBS测序筛选出的马鹿特异性SNPs可以作为鉴定的分子标记,对梅花鹿、马鹿及其杂交后代的鉴别奠定了理论基础。  相似文献   

2.
旨在利用基因分型测序(genotyping by sequencing,GBS)技术对梅花鹿、马鹿及其杂交后代(F1、F2)基因组的SNP特征进行分析。本试验采用GBS技术对梅花鹿(63个)、马鹿(12个)及其杂交后代(F1代112个,F2代38个,未知类型个体1个)共226个个体的血液基因组DNA进行测序,并利用本实验室前期110只梅花鹿、197只马鹿和1只F1代杂交鹿的测序数据,以梅花鹿全基因组为参考序列进行比对分析。结果,226个个体共产生Clean data 322.683 Gb,平均每个样品1 427.802 Mb;将所有样本作为一个群体检测SNP变异,共检测出SNP位点23 943 582个,质控过滤后得到SNP位点31 630个。对31 630个SNPs使用最大似然(maximum likelihood,ML)法构建的分子进化树显示,梅花鹿、马鹿、F1及F2代区分明显。对梅花鹿和马鹿的SNPs进行比对分析,筛选出可用于鉴别马鹿、梅花鹿、F1、F2的物种特异SNP位点1 032个(马鹿特异SNP位点474个,梅花鹿特异SNP位点558个),计算结果显示,F1代个体包含马鹿特异SNPs的比例主要在40%~60%之间,F2代个体含马鹿特异SNPs的比例主要在10%~30%之间,马鹿个体中不含梅花鹿的特异SNPs,梅花鹿中55.49%的个体不含马鹿特异SNPs,17.34%的个体含马鹿特异SNPs的比例低于1%,13.29%的个体含马鹿特异SNPs的比例在1%~10%之间,其余个体含马鹿特异SNPs的比例为10%~20%(其中有一个个体含马鹿特异SNPs的比例为33.3%)。该研究为花马杂交鹿后代的鉴定提供了可靠标记,并定量估计了F1和F2代个体含马鹿特异SNPs的比例,马鹿个体中不含梅花鹿的特异SNPs,这对梅花鹿、马鹿及其杂交后代(F1、F2)的鉴别具有重要意义。  相似文献   

3.
旨在利用基因分型测序(genotyping by sequencing,GBS)技术对梅花鹿、马鹿及其杂交后代(F1、F2)基因组的SNP特征进行分析。本试验采用GBS技术对梅花鹿(63个)、马鹿(12个)及其杂交后代(F1代112个,F2代38个,未知类型个体1个)共226个个体的血液基因组DNA进行测序,并利用本实验室前期110只梅花鹿、197只马鹿和1只F1代杂交鹿的测序数据,以梅花鹿全基因组为参考序列进行比对分析。结果,226个个体共产生Clean data 322.683 Gb,平均每个样品1 427.802 Mb;将所有样本作为一个群体检测SNP变异,共检测出SNP位点23 943 582个,质控过滤后得到SNP位点31 630个。对31 630个SNPs使用最大似然(maximum likelihood, ML)法构建的分子进化树显示,梅花鹿、马鹿、F1及F2代区分明显。对梅花鹿和马鹿的SNPs进行比对分析,筛选出可用于鉴别马鹿、梅花鹿、F1、F2的物种特异SNP位点1 032个(马鹿特异SNP位点474个,梅花鹿特异SNP位点558个),计算结果显示,F1代个体包含马鹿特异SNPs的比例主要在40%~60%之间,F2代个体含马鹿特异SNPs的比例主要在10%~30%之间,马鹿个体中不含梅花鹿的特异SNPs,梅花鹿中55.49%的个体不含马鹿特异SNPs,17.34%的个体含马鹿特异SNPs的比例低于1%,13.29%的个体含马鹿特异SNPs的比例在1%~10%之间,其余个体含马鹿特异SNPs的比例为10%~20%(其中有一个个体含马鹿特异SNPs的比例为33.3%)。该研究为花马杂交鹿后代的鉴定提供了可靠标记,并定量估计了F1和F2代个体含马鹿特异SNPs的比例,马鹿个体中不含梅花鹿的特异SNPs,这对梅花鹿、马鹿及其杂交后代(F1、F2)的鉴别具有重要意义。  相似文献   

4.
【目的】探究晋南牛优势性状所基于的遗传基础,为后续晋南牛种质资源利用以及分子育种提供参考。【方法】采集12头健康的纯种晋南牛耳缘组织,提取基因组DNA进行全基因组重测序,将测序数据以及NCBI数据库12头红安格斯牛基因组数据比对到牛参考基因组(ARS-UCD1.2),检测群体SNPs位点,采用ANNOVAR软件对变异位点进行注释;对晋南牛与红安格斯牛变异基因进行韦恩分析,筛选晋南牛特异性变异基因并进行GO功能和KEGG通路富集分析,采用Cytoscape软件将显著富集的变异基因进行功能互作分析。【结果】晋南牛基因组DNA测序共获取clean reads 2 621 153 222条,Q30平均值达93.5%,碱基分布均匀且无明显偏向性,平均测序深度11.19×,覆盖率(≥4×)平均值为92.64%;检测到SNPs位点117 773 201个,注释外显子区域获得nonsynonymous、stopgain/stoploss SNPs共405 506个,覆盖于16 690个基因,筛选出晋南牛特异性变异基因5 289个。GO功能和KEGG通路分析表明,基因广泛富集于线粒体、核糖体、细胞器膜相...  相似文献   

5.
试验旨在对西藏山羊常染色体的选择信号进行筛选,发掘重要的种质特性基因。基于西藏山羊、新疆山羊和太行山羊群体的Illumina 50K芯片分型数据,通过过滤等位基因频率较低和未定位的变异位点,得到高质量的SNPs标记;通过计算遗传分化系数(Fst)来分析群体遗传结构,同时对群体进行主成分分析(principal component analysis,PCA)和系统进化树构建以确定其群体结构;借助Di和XP-EHH两种不同的方法,以前5%为阈值,通过SNPs注释得到西藏山羊基因组受选择基因,并利用相关的生物信息学数据分析库对候选基因进行功能富集分析。结果显示,在3个群体中共鉴定出48 358个SNPs标记,3个群体有相近的遗传距离(Fst<0.05),西藏山羊的遗传分化程度(Fst=0.0376)明显高于新疆山羊(Fst=0.0256)、太行山羊(Fst=0.0257),表明西藏山羊群体已经产生一定程度的遗传分化。通过选择信号分析,在西藏山羊群体中共筛选到36个受到较强选择的位点和211个候选基因,其中EGFR、AKT1、PDHBPFKP等基因与高海拔适应性相关。这些基因主要富集在嘌呤代谢通路、代谢途径和HIF-1信号通路等。利用基因组SNP标记可以更全面地揭示西藏山羊高海拔适应性的选择进展,为种质资源的保护和利用提供重要参考。  相似文献   

6.
旨在从分子层面探究塔河马鹿种公鹿的遗传多样性和塔河马鹿的祖先类型。本研究在锯茸期采集新鲜血液并提取DNA,通过PCR扩增和直接测序的方法对38头塔河马鹿种公鹿Y染色体的AMELY2、DBY、SRY基因和mtDNA的ND1、COX1、ATP6、ND5、Cytb基因进行分析,计算碱基组成、核苷酸多样性(Pi)、平均核苷酸差异数(K)、Tajima’D值、单倍型数量(H)以及单倍型多样性(Hd)来评估塔河马鹿种公鹿的遗传多样性;构建单倍型网络图并计算各单倍型之间的遗传距离,以白唇鹿为外群构建系统进化树,分析塔河马鹿种公鹿父母系的类型。结果显示,Y染色体的AMELY2、DBY、SRY基因比对后拼接长度为3 577 bp,共检测出17个SNPs多态位点,定义4个单倍型,优势单倍型为Hap-1,所占频率为65.79%。核苷酸多样性为0.001 95,单倍型多样性为0.495 0,遗传多样性水平较低,基于Y染色体基因构建的系统进化树显示存在A、B两大分支。mtDNA的ND1、COX1、ATP6、ND5、Cytb基因比对后拼接长度为6 160 bp,共检测出41个SNPs多态位点,定义8个单倍型,优势...  相似文献   

7.
【目的】 通过基因组重测序技术对中畜草原白羽肉鸭与樱桃谷鸭的遗传差异进行分析,追溯两个品种鸭在不同人工选择下的基因组变异机制,以此阐明优异性状形成的遗传基础。【方法】 选择樱桃谷鸭商品代和中畜草原白羽肉鸭商品代各16只进行基因组重测序,过滤掉高缺失率与最小等位基因频率较低的位点,获得高质量SNPs用于后续分析;对两品种的基因型数据进行主成分分析(PCA)确定其遗传分化情况;采用群体遗传分化指数(Fst)和群体核酸多样性比值(Pi)两种分析方法综合筛选中畜草原白羽肉鸭和樱桃谷鸭的受选择信号。【结果】 主成分分析结果显示,中畜草原白羽肉鸭和樱桃谷鸭分化显著。以10 kb窗口5 kb步长分别计算FstPi分析值,取前1%作为阈值(Fst>0.177,Pi>0.885),在两种分析方法的信号重叠区域共筛选到410 kb候选区域,共注释到21个候选基因。对候选基因进行GO与KEGG富集分析发现,12个基因显著富集到细胞组分和分子功能两大类中(P<0.05),2个基因显著富集到代谢相关通路(P<0.05)。这些基因中,与脂质代谢、氨基酸代谢、免疫调控相关的基因包括PDE3APRKAR2BSEMA5ASHANK2、STXBP6与LOC101803508(GOLGB1)受到了强选择。【结论】 虽然樱桃谷鸭与中畜草原白羽肉鸭均源自北京鸭,但经过不同强度、不同方向持续的人工选育,2个品种明显分化,且中畜草原白羽肉鸭具有更高的遗传多态性。筛选到了2个品种间一系列遗传分化候选基因,并重点挖掘了参与白羽肉鸭风味肉品质调控的相关基因,为后续研究不同白羽肉鸭品种特征、筛选品种特异性分子标记提供了参考。  相似文献   

8.
【目的】基于10头黑安格斯牛和60头对照组牛的全基因组重测序数据,分析黑安格斯牛的纯度、遗传多样性及群体结构。【方法】全基因组重测序技术和生物信息学方法。【结果】通过对10头黑安格斯牛全基因组数据进行分析,共检测到15,064,459个SNP位点,其核苷酸多样性(pi)为0.0015,观测杂合度(Ho)为0.2381,期望杂合度(He)为0.2430,表明黑安格斯牛的遗传多样性较低;主成分分析和群体遗传结构分析发现,黑安格斯牛与欧洲普通牛聚为一类,其中有4头黑安格斯牛存在偏离情况,表明这4头牛主要与中国瘤牛与东亚普通牛韩牛之间存在杂交。【结论】10头黑安格斯牛中,6头为纯种黑安格斯牛,4头为杂种牛。  相似文献   

9.
【目的】 挖掘影响地方鸡体尺性状的有效SNP位点及功能基因, 给儋州鸡育种工作提供有效的数据基础和理论支撑。【方法】 共采集200只儋州鸡血样并提取基因组DNA, 利用10×全基因组重测序技术获得全基因组SNP标记并对试验个体基因型进行分型。使用EMMAX软件基于混合线性模型对70日龄的儋州鸡体尺性状(胫长、胫围、体斜长、胸宽、髋骨宽、胸深、龙骨长)进行全基因组关联分析。【结果】 共发现与胫长性状和胫围性状基因组水平显著相关的SNPs位点有12和8个, 与胫长性状相关SNPs分别定位于1、2、4和8号染色体上; 与胫围性状相关的SNPs定位于2、4、8和13号染色体上。预测与胫长相关的候选基因为KCNA1、TPK1、EZH2、FSTL5和AMY2A基因, 与胫围相关的候选基因为TPK1、FSTL5、AMY2ATGFBILECT2和IL-9。通过KEGG通路分析和GO注释发现, 8个基因参与钾离子跨膜转运、硫胺素新陈代谢、细胞增殖、钙离子结合、骨骼肌卫星细胞维持与骨骼肌再生、细胞受体相互作用、生长因子活性等生物学进程。【结论】 本研究发现了20个与儋州鸡体尺性状关联的SNPs位点, 并筛选到8个目标性状候选基因, 为儋州鸡育种提供候选的分子标记, 为地方鸡标记辅助选择提供新的思路。  相似文献   

10.
【目的】阐明晋南牛的遗传结构特征,通过选择信号检测挖掘与晋南牛经济性状相关的候选基因,探究其在进化过程中的受选择情况。【方法】对晋南牛和红安格斯牛全基因组测序数据进行分析,鉴定2个群体的单核苷酸多态性(single nucleotide polymorphism, SNP)标记,分析其在基因组的位置及其结构特征,基于SNP信息进行主成分分析(PCA)、构建状态同源矩阵(IBS);采用群体遗传分化指数(Fst)和核苷酸多样性比值(θπ)方法联合筛选晋南牛基因组受到强烈选择的区域,并对筛选到的受选择基因进行数量性状基因座(QTL)定位、GO功能和KEGG通路富集分析。【结果】晋南牛群体SNPs位点主要分布于基因间区域,其次位于内含子区域。PCA和IBS分析结果表明,晋南牛和红安格斯牛2个群体间不存在杂交现象,且晋南牛群体中个体间遗传距离较远。通过Fst和θπ联合分析共筛选到188个潜在受选择区域。QTL分析结果表明晋南牛的选择信号多与生长、肉质及抗病性状相关。GO功能和KEGG通路富集分析显示,筛选到晋南牛强受选择的与经济性状相关的候选基因11个...  相似文献   

11.
【目的】探索梅花鹿成纤维细胞因子受体2(fibroblast growth factor receptor 2,FGFR2)基因多态性及其对茸重性状的影响。【方法】应用直接测序法对梅花鹿FGFR2基因的全部外显子进行测序分析,通过MassARRAY® SNP分型技术对314头24月龄梅花鹿进行基因分型和单倍型分析,分析FGFR2基因不同基因型和单倍型与茸重的关联性。【结果】在梅花鹿FGFR2基因中共发现12个多态性位点,其中5个位于外显子区域,且突变均未引起氨基酸改变,属于同义突变,其余7个位点均存在于内含子区域。分型结果显示,g.80975864 T>G位点未分型成功,后续对其余11个位点进行了分析,g.80943673 T>C、g.80943683 C>A及g.80938352 C>T 3个位点属于中度多态位点(0.25<P<0.5),其余位点均属于低度多态位点(P<0.25)。χ2检验结果表明,g.80998742 G>A和g.80987708 G>A 2个位点偏离Hardy-Weinberg平衡(P<0.05),其他9个位点均处于Hardy-Weinberg平衡(P>0.05)。关联分析结果表明,11个多态性位点各基因型之间的茸重差异均不显著(P>0.05)。单倍型结果显示,FGFR2基因存在5种单倍型,不同单倍型间梅花鹿茸重差异均不显著(P>0.05)。【结论】FGFR2基因的11个突变位点可能不是影响梅花鹿茸重性状的关键位点。  相似文献   

12.
【目的】 在分子水平上探讨大围山微型鸡的遗传进化。【方法】 以大围山微型鸡与其他18个地方鸡品种及2个国外引进品种为研究对象,每个品种选取公鸡10只,母鸡20只,采血,提取全基因组DNA,进行简化基因组测序(RAD-Seq),鉴定21个品种基因组SNP,计算大围山微型鸡遗传统计量,分析遗传多样性和遗传结构、筛选受选择基因并进行功能富集分析。【结果】 在大围山微型鸡群体中鉴定出331 892个SNPs。大围山微型鸡的平均杂合度(Ho)为0.219、核苷酸多样度(Pi)为0.245,近交系数(Fis)为0.107,与其他18个地方鸡种相比遗传多样性呈中度多态。聚类分析发现,大围山微型鸡与瓢鸡、茶花鸡和藏鸡聚为一类,亲缘关系较近,且与瓢鸡的群体分化指数(Fst)最低(0.0929),亲缘关系最近,与河南斗鸡的Fst最高(0.2179),亲缘关系最远。共筛选出200个受选择基因。GO分析结果显示,这些受选择基因主要富集在运动、刺激应答、信号传导等生物学过程;KEGG分析结果表明,这些受选择基因主要富集在代谢、肌动蛋白细胞骨架的调节、MAPK等信号通路。【结论】 大围山微型鸡遗传多样性呈中度多态,与瓢鸡亲缘关系最近,本研究筛选出了200个受到选择的基因,这些基因在代谢、信号传导、颅骨发育等多个方面发挥作用。  相似文献   

13.
【目的】 本研究旨在探索梅花鹿甲硫氨酸亚砜还原酶B3(methionine sulfoxide reductase B3,MSRB3)基因多态性及其与茸重性状的关联性。【方法】 选取高、低产茸量的梅花鹿各8只,应用DNA直接测序法检测基因变异位点。采用MassARRAY® SNP分型技术对314头24月龄梅花鹿MSRB3基因进行基因分型,并结合梅花鹿茸重性状数据进行了关联分析和单倍型分析。【结果】 在梅花鹿MSRB3基因中共发现6个SNPs位点,其中2个SNPs位点位于外显子区域,且突变均未引起氨基酸改变,属于同义突变,其余4个SNPs位点均存在于内含子区域。分型结果显示4个样本未分型成功,其余310个样本进行后续分析。各位点观测杂合度和期望杂合度基本一致,g.44455582 T>C、g.44455759 C>T、g.44414424 T>C、g.44350306 T>C及g.44340836 G>A等5个位点的杂合度较高,均属于中度多态(0.25<PIC<0.5),g.44340734 G>C位点杂合度较低,属于低度多态(PIC<0.25)。卡方检验结果表明,g.44455759 C>T位点偏离Hardy-Weinberg平衡状态(P<0.05),其他5个位点均处于Hardy-Weinberg平衡状态(P>0.05)。对6个SNPs位点的不同基因型与梅花鹿茸重的关联分析结果表明,g.44455582 T>C位点的TT基因型个体茸重极显著高于CC和TC基因型(P<0.01)。单倍型分析结果显示,g.44340734 G>C和g.44350306 T>C、g.44455582 T>C和g.44455759 C>T位点存在强连锁,各产生3种单倍型,在Block 2区块中单倍型TC茸重显著高于单倍型CT (P<0.05)。【结论】 MSRB3基因与梅花鹿茸重性状密切相关,g.44455582 T>C位点和单倍型TC可作为筛选高产梅花鹿的分子标记。  相似文献   

14.
This study was aimed to screen the selection signatures on autosome of Tibetan goats and discover genes with important germplasm characteristics.Based on the Illumina 50K chip genotyping data of Tibetan goats,Xinjiang goats and Taihang goats,high quality SNP markers were obtained after filtering out SNPs with low allele frequency and not located.The genetic structure was analyzed by genetic differentiation coefficients (Fst).Meanwhile,the principal component analysis (PCA) and phylogenetic tree construction were conducted to determine the population structure.The selected genes in Tibetan goats were also identified through genome selective signals testing,which contained Di and XP-EHH with top 5% valued as a significant threshold.To identify the genes that were under selection,bioinformatics databases were examined that contained relevant data on goats.The results showed that 48 358 SNPs were identified in these three populations.Population genetic analysis showed that the three groups had similar genetic distance (Fst<0.05),but the degree of genetic differentiation of Tibetan goats (Fst=0.0376) was significantly higher than that of Xinjiang goats (Fst=0.0256) and Taihang goats (Fst=0.0257),indicating that Tibetan goats breed had already generated a certain degree of genetic differentiation.Based on these SNPs,36 SNPs and 211 genes were identified in Tibetan goats by Fst and XP-EHH.Among them,EGFR,AKT1,PDHB and PFKP genes were related to high altitude adaptation.These genes were found to be mainly enriched in purine metabolism pathway,metabolic pathway and HIF-1 signaling pathway.In conclusion,the genomic SNPs had more advantage in revealing the selection of Tibetan goats in high-altitude adaptability,and provided new theoretical references for the protection and utilization of germplasm resources.  相似文献   

15.
【目的】 通过高通量混池重测序和选择清除分析比较鸭不同产蛋量组间基因组显著差异区域内的SNP和基因差异,以筛选和鉴定出鸭产蛋量相关的遗传变异位点和功能基因,为通过分子遗传育种手段提高鸭产蛋性能提供依据。【方法】 根据金定鸭群体开产后150 d内个体产蛋量情况,选择2种极端表型,分为高产蛋组(CH)和低产蛋组(CL)。基于混池全基因组重测序和选择清除分析技术筛选不同鸭产蛋量组间基因组显著差异区域内的SNP及相关功能基因,通过单个样本PCR扩增子测序对筛选的产蛋量相关SNP进行验证,对筛选的候选基因进行GO功能和KEGG通路富集分析,确定候选基因参与的最主要生化代谢途径和信号转导途径,并分析不同基因型间产蛋量高低差异。【结果】 在低产蛋量组和高产蛋量组分别获得192 071 438和229 836 820条的clean reads,共定位到的SNP差异极显著区间为1 368个,受选择候选基因为214个,而且这些区间和基因主要位于Z号染色体,主要包括KDM4CLURAP1LPTCH1、PRUNE2、TRPM3和VPS13AD等基因。验证结果表明重测序结果准确。GO功能分析表明,受选择基因在分子功能、细胞组分和生物过程3个本体中均有富集。KEGG通路富集分析表明,受选择基因主要富集到代谢途径、肌动蛋白骨架调节、真核生物核糖体发生等信号通路。鉴定出候选基因KDM4C上Z-28286537、Z-28286879、Z-28288421、Z-28434122和Z-28436368位点,LURAP1L基因上Z-30802227位点、TRPM3基因上Z-36500134、Z-36503668、Z-36534782、Z-36684262、Z-36710928和Z-36732487位点,VPS13A基因上Z-37498270和Z-37513004位点,PTCH1基因上Z-41510597位点显著影响鸭的产蛋量(P<0.05)。【结论】 鸭Z号染色体上存在多个与鸭产蛋量显著相关的SNPs位点及相关基因,本研究结果为通过分子遗传育种手段提高蛋鸭产蛋性能提供了依据。  相似文献   

16.
试验旨在从分子水平上研究中国马鹿的父系起源结构和遗传多样性水平,判断各种群间的系统发育关系和亲缘关系远近。通过DNA提取、PCR扩增和直接测序的方法,对天山马鹿、阿尔泰马鹿、塔河马鹿、东北马鹿等11个群体共159头马鹿的SRY基因序列进行了检测和分析,计算碱基组成、核苷酸多样性(Pi)、单倍型多样性(Hd)以评估遗传多样性,构建单倍型网络图;以白唇鹿为外群,用邻接法(NJ)和最大似然法(ML)构建系统进化树,探讨马鹿的聚类及遗传多样性。结果显示,所获序列长度为1 615 bp,在基因中共鉴定出18个SNPs多态性位点,占核苷酸总数的1.11%,根据多态性位点鉴定出14个单倍型,优势单倍型为Hap-1,所占频率35.84%,为天山马鹿、阿尔泰马鹿、阿拉善马鹿、塔河马鹿、东北马鹿、甘肃马鹿、北美马鹿和高产鹿王种群的共有单倍型。其中,阿拉善马鹿、塔河马鹿、甘肃马鹿、川藏马鹿、北美马鹿和高产鹿王均具有独有单倍型。单倍型多样性介于0~0.857,核苷酸多样性介于0~0.00272,各亚种间遗传距离最大的是塔河马鹿与西藏马鹿(0.002406),最小的是阿拉善马鹿与青海马鹿(0.000124)。基于邻接法和最大似然法构建的系统进化树一致,显示11个野生马鹿种群间共存在3个分支,支系S1包含全部马鹿种群,塔河马鹿、甘肃马鹿、北美马鹿和高产鹿王构成支系S2,北美马鹿构成支系S3,单倍型最小网络图与系统进化树一致。表明各马鹿种群之间的遗传多样性存在差异,塔河马鹿、高产鹿王和甘肃马鹿分别存在2个父系类型,北美马鹿存在3个父系类型,其他马鹿种群只存在1个父系类型,Hap-1在单倍型组S1中处于核心位置,其他单倍型分散分布于其周围,推测Hap-1为马鹿种群中较为原始的单倍型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号