首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
【目的】试验旨在获得高效表达的鼠伤寒沙门菌SptP蛋白并进行生物信息学分析,为其功能研究和互作蛋白的筛选提供理论依据。【方法】通过PCR技术扩增SptP基因,并将该序列连接至pET-32a (+)载体,构建鼠伤寒沙门菌SptP基因原核表达载体pET32a-SptP。通过热激法将重组质粒导入大肠杆菌BL21(DE3)感受态细胞后经IPTG诱导表达、纯化重组蛋白,并经过SDS-PAGE和Western blotting验证;应用在线软件对SptP蛋白进行生物信息学分析。【结果】PCR成功扩增出大小为1 632 bp的SptP基因。SptP重组蛋白在大肠杆菌BL21(DE3)感受态细胞中成功诱导表达、纯化,得到分子质量为79.7 ku的蛋白。SptP蛋白分子式为C2625H4257N745O812S25,分子质量为60 047.68 u,无跨膜结构,无信号肽存在,理论等电点为8.75,有57个潜在的磷酸化位点,主要定位于细胞核、细胞质、高尔基体、细胞骨架、分泌系统的囊泡、质膜,占比分别为43.5%、34.8%、8.7%、4.3%、4.3%和4.3%。SptP蛋白二级结构由α-螺旋、延伸链、β-转角及无规则卷曲组成,占比分别为43.65%、14.92%、4.42%和37.02%。【结论】本研究构建了表达SptP蛋白的重组质粒pET32a-SptP,获得分子质量为79.7 ku的SptP重组蛋白,阐明了SptP蛋白的基本理化性质和生物学功能,为后续SptP蛋白与宿主细胞互作的作用机制及鼠伤寒沙门菌新疫苗的制备提供理论基础和试验依据。  相似文献   

2.
【目的】 扩增努比亚山羊LIM结构域基因1(LIM domain gene 1,LMCD1)并进行生物信息学分析,构建真核表达载体并检测LMCD1基因的表达情况,为研究努比亚山羊LMCD1基因功能及探究LMCD1基因在山羊骨骼肌肉发育中的作用提供依据。【方法】 从努比亚山羊背最长肌组织中提取总RNA,应用RT-PCR方法扩增LMCD1基因CDS区序列,并进行生物信息学分析;将LMCD1基因以同源重组的方式连接pEGFP-N1载体,经酶切、测序鉴定后重组阳性质粒命名为pEGFP-N1-LMCD1;将pEGFP-N1-LMCD1重组质粒转染至山羊骨骼肌卫星细胞,通过实时荧光定量PCR检测努比亚山羊LMCD1基因的表达情况。【结果】 努比亚山羊LMCD1基因CDS区序列全长1 092 bp,编码363个氨基酸。LMCD1蛋白分子式为C1775H2818N508O533S29,分子质量为40.73 ku。努比亚山羊LMCD1基因CDS区序列与山羊相似性最高(99.8%),与斑马鱼相似性最低(55.4%),与其他物种的相似性在87.0%~98.8%之间。LMCD1蛋白无信号肽,不存在跨膜结构域,为亲水性蛋白。通过构建努比亚山羊pEGFP-N1-LMCD1真核表达载体并转染至骨骼肌卫星细胞,过表达LMCD1基因,产生绿色荧光信号。【结论】 试验成功扩增LMCD1基因CDS区序列,构建了pEGFP-N1-LMCD1真核表达载体,并分析了生物学功能,为后续开展LMCD1基因在山羊骨骼肌肉发育中的机制研究提供了理论基础。  相似文献   

3.
【目的】 制备鸡环指蛋白165(RNF165)多克隆抗体并对RNF165蛋白进行生物信息学分析,以期为研究鸡RNF165的生物学功能提供参考。【方法】 以鸡胚成纤维细胞(DF-1)为试验材料,提取总RNA,反转录获得cDNA,通过PCR扩增RNF165基因,将其连接至pET-28a (+)质粒构建重组表达质粒pET-28a-RNF165。将测序正确的重组表达质粒转化大肠杆菌BL21感受态细胞进行诱导表达,将表达的融合蛋白纯化后按照制定的免疫程序免疫7周龄BALB/c雌鼠。第3次免疫7 d后,分离小鼠血清,用Western blotting检测鼠抗RNF165蛋白多克隆抗体的特异性,间接ELISA法测定其效价。使用在线生物信息学软件对RNF165蛋白理化性质、信号肽、磷酸化位点、亚细胞定位、跨膜结构、二级结构和保守结构域进行分析。【结果】 成功扩增得到大小为1 068 bp的RNF165基因。成功构建原核表达载体pET-28a-RNF165,并诱导表达出约43 ku的RNF165蛋白。Western blotting结果显示,制备的鼠抗RNF165蛋白多克隆抗体能特异性识别DF-1细胞中过表达的RNF165蛋白,效价为1:32 000。生物信息学分析结果显示,RNF165蛋白由350个氨基酸组成,分子质量为39.88 ku,等电点为7.13,不稳定指数为69.87,为亲水性蛋白,不含信号肽和跨膜结构域,有29个磷酸化位点;RNF165蛋白二级结构主要由无规则卷曲、α-螺旋、延伸链和β-转角组成;RNF165出现在细胞核内的概率最高,为47.8%;RNF165蛋白质C-端296―341位氨基酸残基为RING-Ubox超家族保守结构域。【结论】 本研究所制备的鼠抗RNF165多抗隆抗体具有较高的反应性和特异性,RNF165蛋白为亲水性蛋白,主要在细胞核内表达,结果可为研究RNF165蛋白的生物学功能提供材料支持。  相似文献   

4.
【目的】获得牛环形泰勒虫(Theileria annulata)新疆株enolase基因,并分析其生物学特性及反应原性。【方法】对牛环形泰勒虫enolase基因进行扩增和克隆,构建原核表达载体pGEX-4T-1-enolase,诱导表达enolase重组蛋白并进行蛋白纯化,通过Western blotting验证enolase重组蛋白反应原性。利用生物信息学方法对enolase基因编码蛋白的理化性质、亲疏水性、跨膜区、信号肽、磷酸化、亚细胞定位及蛋白互作网络进行预测分析。【结果】PCR扩增出大小为1 248 bp的牛环形泰勒虫enolase基因片段,enolase重组蛋白大小约70 ku;Western blotting结果表明,该重组蛋白与牛环形泰勒虫阳性血清发生反应。enolase基因编码416个氨基酸,理论等电点为5.91,有38个磷酸化位点;二级结构主要由α-螺旋(43.03%)和无规则卷曲(33.17%)组成;具有17个B细胞抗原表位,亚细胞定位主要位于细胞质中;enolase蛋白与磷酸甘油酸变位酶(PGAM)、二磷酸核苷激酶(NDK)、磷酸甘油酸激酶(PGK)、热休克蛋白70(HSP70)存在相互作用。【结论】本试验成功克隆出新疆牛环形泰勒虫enolase基因,蛋白互作网络预测其与糖酵解和能量代谢相关的蛋白相互作用。研究结果为牛环形泰勒虫能量代谢途径基因的相关研究奠定基础。  相似文献   

5.
【目的】 对毛囊角蛋白关联蛋白11.1(keratin associated protein 11.1,KAP11.1)基因进行克隆及原核表达,并对KAP11.1基因在不同品种绵羊皮肤毛囊中表达量进行比较,探究KAP11.1基因在南疆地方绵羊品种间表达差异及其对羊毛品质的影响。【方法】 以平原型和田羊、山区型和田羊和卡拉库尔羊体侧皮肤毛囊为研究材料,以GenBank中绵羊KAP11.1基因序列(登录号:HQ595347.1)为参照设计引物,对KAP11.1基因进行PCR扩增,构建pMD19-T-KAP11.1克隆质粒,双酶切鉴定后构建pET-28a (+)-KAP11.1原核重组表达质粒,经PCR和双酶切鉴定后测序并进行序列分析,转化大肠杆菌BL21(DE3)感受态细胞中表达,采用SDS-PAGE和Western blotting检测;利用实时荧光定量PCR技术检测KAP11.1基因在不同绵羊皮肤毛囊中的表达情况。【结果】 3种绵羊KAP11.1基因CDS区序列为480 bp,编码159个氨基酸,为不稳定的疏水蛋白。相似性比对结果发现,与参照基因相比,2种类型和田羊基因序列相似性均为99.79%,均在423 bp处发生突变,由C变为T,卡拉库尔羊基因序列相似性为99.38%,其69 bp处G变为T、93 bp处C变为T、423 bp处C变为T。系统进化树分析发现,3种绵羊和山羊亲缘关系最近,和瘤牛亲缘关系最远。KAP11.1蛋白二级结构主要由无规则卷曲组成。试验成功构建了pET-28a (+)-KAP11.1原核重组表达质粒,并纯化得到19 ku的KAP11.1蛋白。KAP11.1基因在山区型和田羊和卡拉库尔羊皮肤毛囊中的表达量均显著高于平原型和田羊(P<0.05),在山区型和田羊和卡拉库尔羊中差异不显著(P>0.05)。【结论】 克隆获得480 bp的绵羊KAP11.1基因CDS区序列,成功构建了pET-28a (+)-KAP11.1原核重组表达质粒,并获得19 ku的KAP11.1蛋白,且KAP11.1基因在3个品种绵羊皮肤毛囊中均有表达。  相似文献   

6.
为深入研究Ras同源基因家族成员A(Ras homolog gene family,member A,Rhoa)和环氧合酶2(cyclooxygenase 2,Ptgs2)分子在布鲁菌逃逸机体免疫中发挥的作用,试验对RAW264.7细胞RhoaPtgs2基因进行扩增与克隆,构建真核表达载体并预测生物信息学功能。根据GenBank数据库中公布的RAW264.7细胞RhoaPtgs2基因CDS区序列(登录号:JN971019.1和NM_011198)设计引物,提取RAW264.7细胞总RNA并反转录为cDNA,经RT-PCR扩增Rhoa和Ptgs2片段并测序,将纯化的Rhoa和Ptgs2片段分别与线性化pcDNA3.1质粒相连接,对重组质粒进行测序分析和双酶切鉴定后,利用LipofectamineTM 2000转染293T细胞,经实时荧光定量PCR和Western blotting验证RhoaPtgs2基因的表达情况,并应用生物信息学软件对RhoaPtgs2基因进行预测分析。结果显示,试验成功构建了RAW264.7细胞RhoaPtgs2基因的真核表达质粒;实时荧光定量PCR检测均在转录水平上表达;Western blotting可见Ptgs2蛋白在70 ku处有一明显条带,而Rhoa蛋白未出现条带。生物信息学预测显示,RhoaPtgs2基因核苷酸序列相似性较高,在不同物种之间较为保守;Rhoa不具有信号肽,为不稳定蛋白,而Ptgs2在第17-18位氨基酸处存在信号肽,为稳定蛋白;Rhoa和Ptgs2蛋白分别有12和53个潜在的磷酸化位点;二级结构、三级结构均以无规则卷曲为主。本研究成功构建了RAW264.7细胞RhoaPtgs2基因的真核表达载体,均在转录水平上表达,并分析了其生物学功能,为后续开展RAW264.7细胞RhoaPtgs2基因在布鲁菌免疫机制方面的研究提供了工具。  相似文献   

7.
为研究鹅β-防御素1(AvBD1)的生物学特性以及初步尝试探寻其抗肠炎沙门菌的作用机理,利用RT-PCR方法从鹅骨髓组织中扩增到鹅AvBD1基因片段,并将该基因亚克隆到原核表达载体pGEX-6p-1的EcoRⅠ和SalⅠ双酶切位点上,构建重组表达质粒pGEX-goose AvBD1.将重组质粒转化大肠杆菌BL21,于37℃用IPTG诱导表达,SDS-PAGE电泳表明,重组鹅AvBD1蛋白在原核高效表达(相对分子质量约31 ku).该重组蛋白经纯化后测定其体外抗菌活性与理化特性.结果显示,鹅AvBD1基因cDNA片段大小为198 bp,编码65个氨基酸残基.经相似性分析发现鹅AvBD1氨基酸序列与鸵鸟AvBD1氨基酸序列相似性最高,为77.1%,而且重组鹅AvBD1蛋白具有广谱的抗菌活性,对12种细菌(包括革兰阳性菌和革兰阴性菌)均具有抑菌作用.高盐离子浓度显著降低重组鹅AvBD1蛋白的抗菌活性,且该重组蛋白的溶血活性极低.试验表明,肠炎沙门菌确实会诱导鹅AvBD1基因在鹅骨髓组织中的表达,说明鹅AvBD1起到了抗肠炎沙门菌感染的作用,而这种作用有可能与TLR4介导的信号转导有关.  相似文献   

8.
沙门菌血清D群3个血清型FliC蛋白氨基酸序列比对分析表明肠炎沙门菌与鸡伤寒沙门菌完全相同,二者与鸡白痢沙门菌存在第91位氨基酸位点差异。本研究旨在探究肠炎沙门菌FliC蛋白第91位精氨酸突变对鞭毛形态、细菌运动性和小鼠体内定植能力的影响。运用λ-Red同源重组技术删除肠炎沙门菌CICC10467 fliC基因,构建系列反式回补突变株,通过体外生长特性试验和Western blot试验分析各菌株生长和FliC蛋白表达情况,运动性试验分析各菌株在半固体琼脂中的泳动能力,电子显微镜观察各菌株鞭毛形态,细胞感染试验分析各菌株的细胞黏附和入侵能力,动物感染试验分析各菌株的组织侵染能力。结果表明,fliC基因缺失株及点突变回补株与野生株的体外生长能力无显著差异(P ≥ 0.05)。fliC基因缺失后肠炎沙门菌不表达鞭毛蛋白,各点突变回补株与野生株鞭毛蛋白表达量无明显差异。FliC蛋白R91S突变导致肠炎沙门菌鞭毛形态由超螺旋形态转变为钝直、柔韧度减弱,运动性显著降低(P<0.000 1),对RAW264.7和HCT116细胞的黏附入侵能力显著下降(P<0.001),对BALB/c小鼠的器官侵染能力显著减弱(P<0.001)。综上表明,FliC蛋白第91位精氨酸对维持细菌运动性至关重要,第91位精氨酸突变能够显著改变肠炎沙门菌鞭毛形态,减弱肠炎沙门菌在小鼠体内定植能力。  相似文献   

9.
【目的】 扩增牛妊娠相关蛋白19(bovine pregnancy-associated glycoprotein 19,BoPAG19)基因,构建真核表达载体,并检测其在HEK-293F细胞中的表达。【方法】 根据BoPAG19基因序列(GenBank登录号:NM_176628)体外合成BoPAG19基因,PCR扩增目的基因,经双酶切后与真核表达载体pcMV3连接,构建pcMV3-BoPAG19重组质粒。采用Lipofectamine®2000将重组质粒瞬时转染至HEK-293F细胞,SDS-PAGE法鉴定细胞培养上清中BoPAG19蛋白的表达,采用亲和层析法纯化BoPAG19蛋白。通过在线工具分析BoPAG19蛋白的疏水性、跨膜区域、信号肽、B细胞抗原、二级结构、三级结构和蛋白相互作用。【结果】 成功构建pcMV3-BoPAG19重组载体,目的基因长约1 200 bp,表达蛋白约60 ku。生物信息学分析显示,BoPAG19蛋白编码380个氨基酸,其中含量最高的是丝氨酸(Ser),占比9.2%,含量最低的是色氨酸(Trp),占比1.6%;分子式为C1937H3028N524O532S15,理论分子质量为41.8 ku,等电点为9.62,不稳定指数为40.75,在水中不稳定,脂肪系数为91.53,消光系数为52 370 mol-1·cm-1,具有水溶性;含有1个信号肽,无跨膜区域,有6个糖基化位点和11个B细胞表位;二级结构中α-螺旋、β-转角、无规则卷曲和延伸链占比分别为18.95%、6.32%、42.37%和32.37%,三级结构预测结果与二级结构一致。与BoPAG19互作的蛋白包括APLP2和APP,可能参与了妊娠期的神经调节。【结论】 试验成功表达、纯化了BoPAG19蛋白,并分析了BoPAG19的生物信息学特征,为BoPAG19蛋白的结构和功能研究,以及BoPAG19诊断奠定基础。  相似文献   

10.
【目的】克隆大白猪三基序结合蛋白3(tripartite motif-containing 3,TRIM3)基因,并对其进行生物信息学和组织表达分析。【方法】采用PCR技术扩增并克隆大白猪TRIM3基因CDS全长序列,连接pMD18-T载体并转化大肠杆菌DH5α感受态细胞,通过蓝白斑筛选阳性克隆,菌液PCR鉴定后测序,与不同物种TRIM3基因序列比对并构建系统进化树;应用多种在线软件对其编码蛋白进行生物信息学分析,并利用实时荧光定量PCR方法检测TRIM3基因在大白猪不同组织中的相对表达量。【结果】大白猪TRIM3基因CDS序列全长2 235 bp,编码744个氨基酸。相似性和遗传进化分析结果显示,大白猪与野猪的相似性最高,达99.7%,与鸭的相似性最低,为75.1%;大白猪TRIM3基因与野猪先聚为一类,与牛和山羊亲缘关系较近。生物信息学分析显示,大白猪TRIM3蛋白分子质量为80.58 ku,理论等电点(pI)为8.32,不稳定系数为40.85,为亲水性蛋白,但不是分泌蛋白,无糖基化位点,预测其有60个磷酸化位点,主要存在于细胞质内;在TRIM3蛋白二级结构中以无规则卷曲为主,占41.67%,三级结构模型预测结果与二级结构一致。组织表达分析表明,大白猪TRIM3基因在心脏、肝脏、脾脏、肺脏、肾脏、肌肉、气管、结肠中均有分布,肺脏中表达量最多且显著高于其他组织(P<0.05)。【结论】本研究成功克隆大白猪TRIM3基因CDS全长序列,并进行了生物信息学和组织表达分析,为进一步研究大白猪TRIM3蛋白的免疫学功能提供理论依据,对探究大白猪TRIM3基因参与先天性免疫和抗病毒感染分子机制具有重要意义。  相似文献   

11.
【目的】 分离张家口某地区羊源沙门氏菌并检测其血清型、毒力基因、耐药性及耐药基因,分析分离株表型和基因的相关性和差异性。【方法】 将样品用选择培养基增菌并纯化培养,挑选疑似的沙门氏菌单菌落进行革兰氏染色、镜检和生化鉴定。根据沙门氏菌属特异性基因invA的核苷酸序列进行PCR和血清型鉴定。利用SPF昆明小鼠对分离株进行致病性试验并测定其半数致死量。PCR扩增毒力岛基因hilA、avrA、sseL、ssaQ、mgtC、siiDsopB,肠毒素基因stn,质粒毒力基因spvR。采用Kirby-Bauer纸片扩散法进行药敏试验,PCR扩增β-内酰胺酶耐药基因blaTEMblaCMYblaOXA,氟喹诺酮耐药基因qnrS、oqxAoqxB,磺胺类耐药基因sul1、sul2和sul3,四环素类耐药基因tetB及氨基糖苷类耐药基因aadA1。根据PCR检测结果,将扩增的毒力基因和耐药基因进行测序,并与NCBI中相应的参照基因进行BLAST比对分析。【结果】 分离得到4株羊源沙门氏菌,血清型鉴定均为鼠伤寒沙门氏菌。分离株对小鼠具有致病性,4株分离株的半数致死量为5.67×107~6.45×107 CFU。分离株可检出毒力岛基因hilA、avrA、sseL、ssaQ、mgtC、siiDsopB,肠毒素基因stn及质粒毒力基因spvR,检出率均在50%以上。分离株对复方新诺明、利福平、林可霉素、青霉素、氨苄西林耐药,对庆大霉素、环丙沙星敏感。分离株可检出β-内酰胺类耐药基因blaTEM、氟喹诺酮耐药基因qnrS、磺胺类耐药基因sul1和sul2。【结论】 本研究分离的羊源沙门氏菌的毒力表型与染色体和质粒携带的毒力基因有关。分离菌株携带β-内酰胺类、磺胺类耐药基因,与耐药表型相符,临床上可将庆大霉素和环丙沙星作为首选药。  相似文献   

12.
【目的】构建炭疽芽孢杆菌弱毒株C40-202PA-LF1融合基因表达载体并对其进行原核表达和反应原性检测,为炭疽亚单位疫苗制备、炭疽诊断和疫苗免疫效果检测提供依据。【方法】根据GenBank中登录的炭疽芽孢杆菌PALF基因序列设计2对引物,利用PCR方法从炭疽芽孢杆菌弱毒株C40-202中分别扩增出PALF1基因片段,经XhoⅠ限制性内切酶消化后,通过黏性末端进行连接,获得PA-LF1融合基因片段,利用SWISS-MODEL分析软件分别对PA、LF1和PA-LF1融合蛋白进行三级结构预测;将融合基因片段克隆至pET32a(+)质粒中,构建重组质粒pET32a-PA-LF1,并将重组质粒pET32a-PA-LF1转化大肠杆菌BL21(DE3)感受态细胞进行诱导表达,SDS-PAGE分析重组蛋白表达,Western blotting鉴定融合蛋白并分析其反应原性。【结果】从炭疽芽孢杆菌弱毒C40-202株成功扩增出PA、LF1和PA-LF1融合基因;成功构建了炭疽芽孢杆菌PA-LF1融合基因表达质粒pET32a-PA-LF1,融合蛋白三级结构预测可折叠为正确的空间构象;构建的重组质粒经诱导表达、纯化和SDS-PAGE,获得分子质量为96 ku的融合蛋白,以包涵体形式表达;经Western blotting验证,纯化后的重组蛋白与经Ⅱ号炭疽芽孢苗免疫后的绵羊血清发生特异性结合,表明其具有良好的反应原性。【结论】PA-LF1融合蛋白具有良好的反应原性,可为炭疽诊断和疫苗免疫效果检测提供理论依据,同时也可作为一种炭疽亚单位疫苗的候选组分。  相似文献   

13.
【目的】 探索猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)截短M蛋白的序列结构特征与原核表达情况。【方法】 根据已公布的PEDV M基因序列设计1对特异性引物,以从阳性病料提取的RNA为模板,通过RT-PCR扩增并克隆PEDV截短的M基因(rM),应用在线生物信息学软件预测rM蛋白的结构特征。将得到的截短的M基因克隆至原核表达载体pET-28a(+)中,构建原核表达质粒pET-28a-rM,将鉴定正确的pET-28a-rM转化大肠杆菌BL21(DE3)感受态细胞,成功构建重组菌株BL21(pET-28a-rM),并对重组菌株进行IPTG诱导表达,优化重组蛋白的表达条件,重组蛋白经亲和层析纯化后进行SDS-PAGE及Western blotting检测,同时应用重组蛋白制备兔抗rM多克隆抗体。【结果】 试验克隆得到大小为366 bp的截短的M基因,重组蛋白由121个氨基酸组成,预测蛋白分子质量大小约为12.8 ku。该蛋白的二级结构由无规则卷曲、延伸链、β-转角和α-螺旋组成,占比分别为48.76%、33.88%、9.09%和8.26%。该蛋白不含信号肽,但有跨膜区,包含21个磷酸化位点。SDS-PAGE结果显示,重组蛋白大小约为15 ku,以包涵体蛋白形式存在,在37 ℃、1 mmol/L IPTG诱导12 h时蛋白的表达量最高。Western blotting检测结果表明,重组蛋白与PEDV阳性血清具有较好的反应原性,纯化的重组蛋白免疫新西兰大白兔获得的高免血清效价高于1∶51 200。【结论】 本研究成功克隆PEDV 截短的M基因,对rM蛋白进行了生物信息学分析,获得了高纯度的rM蛋白,为猪流行性腹泻治疗及检测用生物制品的开发奠定了基础。  相似文献   

14.
【目的】确定云南某蛋鸡场送检的疑似沙门氏菌病病料中的主要病原菌种类,并测定其致病性及药物敏感性。【方法】通过细菌分离培养、形态观察、生化试验、血清学鉴定及分子学方法进行细菌分离鉴定;通过对鸡的致病性试验及毒力基因检测分析分离菌的致病性;通过药物敏感性试验检测分离菌耐药情况。【结果】分离菌株在沙门氏菌显色培养基上形成紫色菌落,镜检为革兰氏阴性短杆菌,疑为沙门氏菌,命名为S2;生化试验结果显示,菌株S2赖氨酸脱羧酶、硫化氢、卫矛醇试验结果均为阳性;靛基质、尿素酶、氰化钾、山梨醇、水杨苷、β-半乳糖苷、丙二酸盐生化试验结果均为阴性,判断菌株S2为典型沙门氏菌属;血清学鉴定结果显示,菌株S2属于D群肠炎沙门氏菌,其抗原式为1,9,12:g,m;遗传进化分析结果显示,菌株S2与肠炎沙门氏菌MT621365处于同一分支,自展值为99%;致病性试验结果表明,分离菌株对雏鸡有较强的致病性,感染6 d后雏鸡全部死亡(10/10);毒力基因检测结果显示,菌株S2携带invJhilAssaBmisLmgtCorf319、sopBspvAspvBspvCspvRstnfimA毒力基因,不携带sopAfliC毒力基因;菌株S2对多数抗菌药敏感程度很高,对阿莫西林-克拉维酸、头孢西丁、四环素等12种抗菌药均敏感,对甲氧嘧啶、复方新诺明和林可霉素耐药。【结论】本研究分离到了1株肠炎沙门氏菌,其毒力较强,可造成雏鸡较高的死亡率,对大部分常用抗菌药敏感,对甲氧嘧啶、复方新诺明和林可霉素具有耐药性。本研究结果可为沙门氏菌病的临床诊断和药物有效性评价提供一定参考依据。  相似文献   

15.
【目的】本研究旨在研究锥虫入侵宿主细胞的机制并为其检测方法的建立奠定基础。【方法】采用已分离保存的伊氏锥虫在昆明白小鼠体内进行培养繁殖,对其鞭毛束旁棒(PFR)基因进行克隆,并构建系统发育树。通过生物信息学方法分析和预测PFR蛋白的理化特性、亲疏水性、跨膜区结构、二级结构和三级结构;构建原核表达载体pET28a-PFR,用Western blotting检测PFR重组蛋白的反应原性。【结果】在昆明白小鼠体内成功扩繁伊氏锥虫伊犁株,第5天染虫率达到最高;PFR基因PCR扩增片段大小为834 bp,与冈比亚布氏锥虫PFR基因(XP_011775815.1)相似性为99.52%,基于PFR蛋白氨基酸序列的进化树显示,该虫株与冈比亚布氏锥虫的亲缘关系也最近。PFR蛋白分子式为C1416H2286N416O442S11,理论等电点为5.74,是一种碱性、亲水性及不稳定蛋白,没有跨膜区和信号肽,有10个潜在抗原表位;主要定位于细胞质中;PFR蛋白二级结构主要由α-螺旋组成(占92.34%)...  相似文献   

16.
【目的】构建新型猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)乳酸菌活菌疫苗载体。【方法】应用DNA重组技术将嗜酸乳杆菌S-层蛋白(SLP)基因及PEDV S2基因B细胞表位(EpitopeS2)融合基因(SLP-EpitopeS2)克隆到乳酸杆菌表达载体pTRK892中,构建重组载体pTRK-SLP-EpitopeS2,通过电转化方法将重组质粒导入副干酪乳杆菌中,获得重组副干酪乳杆菌。分别用SDS-PAGE、Western blotting和免疫荧光试验(IFA)鉴定目的蛋白在副干酪乳杆菌中的表达。【结果】PCR结果显示,成功扩增出大小为1 400 bp的目的条带,与插入融合基因大小一致,双酶切结果出现大小分别为1 400和4 700 bp的2条带,基因测序结果显示无碱基缺失和突变等,从而确定重组质粒pTRK-SLP-EpitopeS2构建正确。SDS-PAGE、Western blotting结果显示,在48 ku处出现与理论值大小一致的目的蛋白条带,表明融合基因SLP-EpitopeS2在副干酪乳杆菌中得到有效表达。IFA结果显示,与对照组副干酪乳杆菌相比,重组副干酪乳杆菌均能被激发出特异性绿色荧光信号,与高浓度氯化锂(LiCl)洗脱下来的菌体膜蛋白样品补充鉴定试验结果相吻合。表明融合蛋白SLP-EpitopeS2可能在副干酪乳杆菌的菌体表面表达。【结论】成功构建了PEDV EpitopeS2及嗜酸乳杆菌SLP嵌入型融合表达载体pTRK-SLP-EpitopeS2,为乳杆菌活菌载体疫苗相关研究奠定了基础。  相似文献   

17.
【目的】利用原核表达系统体外表达牛病毒性腹泻病毒(Bovine viral diarrhea virus,BVDV)NS5A基因,获得非结构蛋白NS5A,对其进行核苷酸、氨基酸序列分析,以解析BVDV非结构蛋白NS5A的功能。【方法】参考BVDV-1型毒株V006的NS5A基因序列(GenBank登录号:KX170647)设计并合成1对特异性引物,以分离到的牦牛BVDV GSTZ毒株cDNA为模板,PCR扩增NS5A基因片段,并克隆至表达载体pET-28a (+)中,构建重组原核表达载体pET28a-NS5A。经酶切初步鉴定及测序鉴定正确后,转化大肠杆菌BL21(DE3)感受态细胞,然后利用IPTG诱导表达。经10% SDS-PAGE电泳及Western blotting分析鉴定重组蛋白的表达,并根据NS5A基因的序列构建遗传发育进化树,利用DNAStar软件预测NS5A蛋白的亲水性、表面可塑性和抗原性等特性,并结合二级结构的预测对NS5A蛋白的B细胞抗原表位进行预测。【结果】PCR扩增NS5A目的基因片段为1 488 bp,双酶切和测序鉴定结果证明,重组质粒pET28a-NS5A构建成功。经10% SDS-PAGE电泳及Western blotting鉴定重组蛋白,表达出了大小为55 ku的目的蛋白,大小与预期结果相符。通过对不同BVDV毒株NS5A基因序列构建遗传发育进化树,显示GSTZ毒株NS5A在遗传进化特征上属于BVDV-1型。NS5A蛋白的亲水性主要位于12—21、32—69、75—113、120—135、143—147、152—163、165—180、215—230、265—274、296—340、348—378、389—447、455—463、469—495位氨基酸处,表面可塑性主要位于14—18、37—42、76—81、86—109、154—160、169—178、218—228、297—309、348—358、365—373、414—442、430—437、454—460位氨基酸处,柔性区域较多,主要位于14—21、37—43、67—82、86—93、97—110、152—158、169—179、218—231、240—255、296—310、313—328、344—359、364—373、413—422和472—483位氨基酸处。NS5A蛋白的B细胞抗原表位主要位于15—18、76—81、154—158、169—178、218—228、297—309、348—358、365—373和414—422位氨基酸处。【结论】成功表达并鉴定了牦牛源BVDV的非结构蛋白NS5A,系统发育进化树表明BVDV GSTZ株基因型属于BVDV-1型,NS5A蛋白具有良好的抗原性,为深入解析BVDV非结构蛋白NS5A的自身结构功能、免疫学特性以及进一步研究非结构蛋白对病毒复制的影响提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号