首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解析鸡内皮素3(EDN3)基因启动子区序列的结构特征及其转录调控机制,本研究基于NCBI数据库中鸡EDN3基因5′侧翼区与外显子1共计2 052 bp核苷酸序列,利用不同在线软件对其核心启动子区域、顺式作用元件、转录因子结合位点及CpG岛等结构进行生物信息学预测分析,并通过DNASTAR Lasergene 17.3和MEGA 5.0软件进行不同物种EDN3基因启动子区序列相似性比对及系统进化树构建。结果表明:鸡EDN3基因起始密码子上游592~2 000 bp为可能的候选核心启动子区;5′侧翼区633 bp和1 547 bp存在2个潜在的转录起始位点T和A;该基因启动子区存在2个CAAT-box、3个GC-box、6个TATA-box、9个E-box和3个CpG岛结构域。综合多种在线软件预测,鸡EDN3基因启动子区存在Sp1、C/EBPα和NF-1等转录因子结合位点。鸡EDN3基因启动子区序列与环颈雉、鹌鹑、岩雷鸟、棕硬尾鸭、凤头潜鸭、山羊、绵羊、牛、猪和人的相似性为38.8%~90.3%;系统进化树表明,鸡与鹌鹑亲缘关系最近,与猪亲缘关系最远。研究结果为进一步探明鸡色素沉积关联E...  相似文献   

2.
为了找到水貂多巴色素异构酶(DCT)基因启动子活性区域及转录因子结合位点,试验采用PCR扩增与克隆,构建双荧光素酶报告基因重组质粒,分别转染到293T细胞和A375细胞,测定其活性,并利用在线软件对序列进行生物信息学分析,预测水貂DCT基因核心启动子区域的转录因子结合位点。结果表明:得到的6个不同长度的启动子片段均具有明显的启动子活性,且-1 292~+113 bp区域活性最高,提示其为水貂DCT基因核心启动子区域;成功筛选出337 bp水貂DCT基因活性较高的启动子片段,发现转录因子特异性蛋白1(Sp1)可能是调控启动子活性的重要转录因子。  相似文献   

3.
本研究旨在克隆和分析猪硒蛋白S基因(Selenoprotein S,SelS)启动子序列,并初步探讨潜在转录因子结合位点对其表达的影响.通过SON-PCR技术克隆猪SelS基因启动子序列,利用PromoterScan、Promoter 2.0等在线工具预测其启动子特征,利用细菌脂多糖(Lipopolysaccharides,LPS)刺激PK15细胞,研究NF-kappaB转录因子对猪SelS基因启动子活性的影响.试验获得了猪SelS基因约3kd的启动子序列,部分序列比对发现猪、人、牛和小鼠物种间相似性仅7%~51%.预测猪SelS基因转录起始位点在-398 bp,猪和人SelS基因启动子存在系列保守的转录因子结合位点,包括NF-kappaB、CCAAT box、SP1、USF等,但均未发现典型的TATA box.细胞试验表明,NF-kappaB转录因子可以上调猪SelS基因的表达.结果提示,物种间SelS基因启动子相似性较低,但猪和人SelS基因的转录因子非常保守,LPS诱导试验提示,猪SelS基因表达可能受NF-kappaB转录因子的调控.  相似文献   

4.
为研究猪miR-148a(ssc-miR-148a)的转录调控机制,对其启动子进行了克隆及分析。本试验首先设计特异性PCR扩增引物,分别得到ssc-miR-148a前体上游3个片段,并将其连接到荧光素酶报告载体pGL3-Basic上。通过生物信息学方法,在线分析ssc-miR-148a启动子大概区域、甲基化部位和转录因子结合部位。将重组报告质粒转染293T细胞,分析启动子活性。采用不同浓度碱性成纤维生长因子(bFGF)处理猪成纤维细胞和转染有重组报告质粒的猪成纤维细胞,检测ssc-miR-148a和DNA甲基化转移酶1(DNMT1)的表达,及其对启动子活性的影响。结果显示,克隆得到的ssc-miR-148a启动子区2 043bp片段具有启动子活性,该序列存在5个CpG岛、Sp1及AP2等转录因子结合位点。0、5和10ng·mL-1浓度bFGF处理猪成纤维细胞和转染重组报告质粒的猪成纤维细胞后,ssc-miR-148a表达均显著下降(P0.05),DNMT1 mRNA显著增加(P0.05)。启动子活性均显著下降(P0.05),5和10ng·mL-1浓度间无显著差异(P0.05)。结果表明,ssc-miR-148a启动子位于前体上游2 043bp片段内,启动子区域有转录因子SP1结合位点,其表达受bFGF的调控。  相似文献   

5.
为探究miR-150在绵羊卵巢中的调控机制,本研究利用生物信息学方法对miR-150进行靶基因预测与分析。通过miRBase数据库获取miR-150成熟序列,进行序列比对和保守性分析;利用Ensemble数据库搜索miR-150前体序列,并利用PROMO在线软件对其上游2 000 bp的启动子区进行转录因子结合位点预测;通过TargetScan和miRwalk在线软件预测并取靶基因的交集,采用DAVID和KOBAS在线软件对预测靶基因进行GO功能和KEGG通路富集分析;利用Networkanalyst在线软件对靶基因进行功能性蛋白的互作分析,绘制miR-150靶基因参与的调控网络;利用YM500V2在线软件分析miR-150靶基因在不同组织和疾病中的差异表达水平。结果显示,miR-150成熟序列在不同物种间具有高度保守性;miR-150启动子区存在p53、ID1、FOXO4等转录因子结合位点。GO功能分析结果显示,主要富集在RNA聚合酶Ⅱ启动子转录的正调控等生物过程,锌离子结合、DNA结合、转录DNA模板等分子功能,以及核、核质、胞质、胞质核周区域等细胞组分。KEGG通路富集结果显示,主要富集在癌症通路、癌症中蛋白聚糖、人乳头瘤病毒感染、乳腺癌、调节干细胞多能性等信号通路。miR-150靶基因互作分析发现,靶基因PIK3R1、PIK3CBCTNNB1与其他蛋白存在较多靶向关系,参与了雌激素信号通路、细胞衰老、磷脂酰肌醇信号系统、TGF-β等通路。根据YM500V2在线软件分析miR-150在不同组织和疾病中的表达发现,在血液中表达水平最高,在卵巢、胰腺、淋巴和皮肤中表达水平相对较高,在脑和肾上腺皮质中表达水平很低或不表达。通过对绵羊miR-150靶基因的生物信息学分析,为其功能和调控机制研究提供参考依据,为绵羊miR-150在卵巢发育中的调控机制奠定基础。  相似文献   

6.
研究旨在揭示香猪卵巢组织中circ_CSPP1的潜在功能。利用CIRI-full拼接circ_CSPP1的序列,circBase数据库在线blat分析circ_CSPP1的保守性,采用RT-PCR和Sanger测序技术从香猪卵巢分离和鉴定circ_CSPP1,采用miRanda、RNAhybrid和PITA软件预测和分析circ_CSPP1结合的miRNA分子及miRNA的靶基因,对靶基因进行GO和KEGG富集分析。结果显示,分离到的circ_CSPP1是保守的,由CSPP1基因的外显子8~12组成,可作为ssc-miR-324、ssc-miR-10a-5p、ssc-miR-9847-3p、ssc-miR-365-5p、ssc-miR-92b-5p、ssc-miR-885-3p、ssc-miR-7139-3p、ssc-miR-9851-3p和ssc-miR-33b-3p等14个miRNAs的分子海绵,靶向755个蛋白编码基因。GO富集分析表明,circ_CSPP1的靶基因显著富集到153个GO条目,其中细胞成熟、细胞分裂位点、细胞迁移的负调控、Wnt信号通路、细胞周期蛋白结合、子宫发育、MAPK活性的激活、黏着斑和卵裂沟等条目与卵巢功能相关。KEGG富集分析表明,circ_CSPP1的靶基因富集到260个信号通路,其中显著富集的有29个信号通路,主要富集于癌症通路、细胞周期、雌激素信号通路、PI3K-AKT信号通路、卵巢类固醇生成、催产素信号通路和细胞凋亡等信号通路。综上,circ_CSPP1可作为许多miRNA的分子海绵调控香猪卵巢颗粒细胞的增殖与凋亡、卵泡成熟、排卵过程、卵巢类固醇生成和卵巢早衰等生物学过程。  相似文献   

7.
课题组前期通过高通量测序技术发现,microRNAssc-miR-133a-5p在肥胖猪脂肪组织中表达水平显著下调,推测其可能在脂肪沉积过程中发挥了重要作用。分析ssc-miR-133a-5p序列保守性,利用TargetScan,miRDB和miRWalk在线分析工具预测其候选靶基因,进一步对候选靶基因进行蛋白质互作分析以及KEGG分析,最后将预测的靶基因与课题组前期筛选出的与猪脂肪沉积能力相关的基因取交集。结果表明ssc-miR-133a-5p候选靶基因PPARGC1A与RORA等,参与AMPK,TNF,与胰岛素分泌等信号通路。结果提示ssc-miR-133a-5p的候选靶基因可能通过多种信号通路发挥重要作用。文章的结果可为microRNA参与猪的脂肪生成调节机制提供科学依据。  相似文献   

8.
山羊脂肪酸合酶基因(FASN)启动子结构与功能的初步分析   总被引:1,自引:0,他引:1  
本研究旨在对山羊脂肪酸合酶基因(Fatty acid synthase,FASN)启动子进行结构与功能的初步分析,进而对其转录调控机制进行探讨。采用PCR技术从西农萨能羊基因组DNA中克隆FASN基因启动子,通过缺失分析,构建7个包含不同缺失片段的荧光素酶报告基因载体,转染山羊乳腺上皮细胞和MCF-7细胞,利用双荧光素酶系统检测不同片段的启动活性。结果表明,克隆得到FASN基因的启动调控序列2 589bp,生物信息学分析发现,该启动子序列含有典型的启动转录元件TATA-box和E-box,分别位于转录起始位点(+1)上游-41和-74bp处。报告基因分析表明,启动子核心区域定位在-293~-79bp,在线软件预测发现,该区域含有Sp1、NF-Y、USF和SREBP等转录因子结合位点。结果显示,FASN基因启动子前端存在负调控元件,Sp1、NF-Y、USF和SREBP等转录因子可能参与FASN基因的转录调控。  相似文献   

9.
试验旨在了解角蛋白5(keratin 5, K5)可能的调控序列。本研究根据UCSC公布的牛K5基因5'侧翼区设计PCR引物,扩增了内蒙古绒山羊K5基因部分启动子序列。通过产物纯化、连接、转化,并对测序结果进行了生物信息学分析。结果扩增得到内蒙古绒山羊K5基因启动子序列长度为1452 bp(GenBank登录号为:JQ277735),与牛和人相应序列的相似性分别为91.5%和74%。转录起始位点位于翻译起始密码子ATG上游-101 bp位置;含有两个TATA 盒,分别位于翻译起始位点上游-129—-124 bp(ATAAAA)和-178—-174 bp(TTAAT)位置;通过在线分析软件预测发现(按5'→3')SRY,MZF1,v-Myb,SRY,AP-1,CDP CR,HNF-4,AML-1a,HSF2,AP-4,AP2,AP2,Sp1,Nkx-2,Sp1和GATA-1转录因子结合位点。其中,转录因子SRY(TGTGTTT),和CDP CR(GATTGATGGC)是绒山羊特有的;转录因子HNF-4,AML-1a,HSF2,AP-4,AP2,Sp1,Nkx-2和GATA-1(AGCCATCATG)在绒山羊、牛和人K5启动子上的结合位点高度保守。两个最小增强子分别位于翻译起始位点ATG上游-140—-91 bp和-114—-67 bp位置,含有24 bp(GCGGCTCCCAGGTAACAGAGCCGC)重叠区,预测其与绒山羊K5基因的转录调控有关。试验确定了内蒙古绒山羊K5基因启动子的转录起始位置、转录因子结合位点及最小增强子序列,为进一步研究绒山羊K5基因的表达调控机制奠定了理论基础。  相似文献   

10.
心脏型脂肪酸结合蛋白(FABP3)是一种15 kDa的蛋白,涉及信号转导途径,参与长链脂肪酸的摄取及利用。本研究采用PCR技术扩增FABP3启动子序列,通过缺失分析构建了5个不同缺失片段荧光素酶报告基因载体,并转染奶山羊乳腺上皮细胞,通过双荧光素酶报告基因系统检测FABP3缺失片段启动子活性。结果表明:从奶山羊基因组中克隆得到2109 bp FABP3基因启动子序列(包括转录起始位点上游1985 bp),与牛(KJ649748.1)、猪(HM591296.1)和人(NG047049.1)的基因组序列同源性分别为90%、80%、75.08%。经转录因子在线软件预测分析发现,该启动子含有潜在的TATA框(TATA-box)、过氧化物酶增殖物激活受体反应元件(PPRE)、肝X受体反应元件(LXRE)、雌激素受体(ER)及两个环磷腺苷效应元件结合蛋白(CREB)的结合位点,分别位于-1632 bp和-189 bp。缺失突变研究发现,启动子片段-1801 ~ +124活性最高,同时这一片段含有两个CREB结合位点,而当缺失至-80位点时,活性显著下降(P < 0.05),且这一片段不包含CREB结合位点。表明CREB可能参与调控FABP3基因启动子的活性,为FABP3基因的转录调控研究提供理论依据。 [关键词] 心脏型脂肪酸结合蛋白(FABP3)|启动子|基因克隆|西农萨能奶山羊  相似文献   

11.
ZBED6是锌指蛋白家族的一员,在胎盘哺乳动物中极其保守,可通过对IGF2的调控参与骨骼肌生长。为进一步探究ZBED6基因自身的表达调控机制,本研究以民猪基因组DNA为模板,通过常规PCR扩增ZBED6基因启动子区系列截短片段,构建克隆质粒,通过双酶切和连接反应定向连入pGL3-basic载体,利用PK15细胞和双荧光素酶检测系统测定重组质粒的相对荧光素酶活性;利用在线软件预测启动子区的转录因子结合位点,使用重叠PCR定点缺失转录因子结合位点,构建突变载体并在PK15细胞中检测突变载体的相对荧光素酶活性。结果表明:ZBED6基因启动子区-2053^-1777 bp存在多个转录因子结合位点,尤其是-1808^-1777 bp,该片段缺失造成启动子活性下降(P<0.01);利用在线软件在该区间预测到3个转录因子HINFP、Adf-1和CREB3,经实验验证后发现这3个转录因子均可调控ZBED6基因的转录,其中Adf-1效果最为明显。据此推测,民猪ZBED6基因的转录调控机制较为复杂,其启动子区存在HINFP、Adf-1和CREB3等多个调控元件的结合位点。  相似文献   

12.
为揭示猪肌分化因子(myogenic differentiation 1,MyoD1)基因启动子区多态性,本试验分别以野猪×从江香猪二元杂交猪、杜×长×大外三元杂交猪及贵州宗地花猪为研究对象,采用DNA池和直接测序技术,筛选MyoD1基因5'UTR及部分第1外显子区SNP位点,利用生物信息学软件预测SNP位点对核心启动子区、CpG岛和转录因子结合位点的影响。结果表明,在MyoD1基因5'UTR及部分第1外显子区筛查到3个SNPs位点,分别为A-39G、T+150C和C+227G;生物信息学软件预测发现,A-39G位点附近出现重要转录因子结合位点消失和新位点生成;CpGIslandsearcher软件分析得到多态位点突变前后CpG岛大小及GC含量发生改变,据此推测猪MyoD1基因5'UTR区域的A-39G位点对调控启动子功能元件有重要影响。  相似文献   

13.
研究以从江香猪、杜×长×大外三元杂交猪及贵州宗地花猪为研究对象,采用混合DNA池结合直接测序技术筛选猪MEF2D基因5'UTR及第1外显子区SNPs位点;同时利用生物信息学软件分析SNPs位点对核心启动子区、Cp G岛和转录因子结合位点的影响。结果表明:在猪MEF2D基因5'UTR区共筛查到4个SNPs位点,分别为A-511G、T-453A、T-242G和T-180A;生物信息学软件预测发现T-453A和T-242G位点附近有重要转录因子结合位点消失和新位点生成,据此推测猪MEF2D基因5'UTR区的T-453A和T-242G位点对调控启动子功能元件可能存在重要影响。  相似文献   

14.
对鹿茸IGF-15’端调控序列进行生物信息学分析。提取鲜马鹿茸顶部组织基因组DNA,设计简并引物,利用PCR获得马鹿茸IGF-15’端调控序列及部分外显子(命名为CCS1074),用DNAMAN软件进行CCS1074与其他种属IGF-1基因的序列同源性分析;使用在线分析程序预测CCS1074的潜在转录因子结合位点并比较分析鹿茸区别于其他种属IGF-1的特有潜在转录因子,进行TATAbox、CpG岛、候选启动子区段及信号肽预测。结果获得了包含部分外显子的鹿茸IGF-1基因5’端(Genbank Accession No.DQ234266);序列同源性分析表明鹿茸IGF-1与牛、羊IGF-1基因5’端存在差异;生物信息学分析表明:在CCS1074180~310base处存在CpG岛,在142~192、238—288、874~924、1359~1409base处可能存在启动子,存在253个潜在的转录因子结合位点;比较发现,ZF5F/ZF5.01和HAND/HAND2-E12.01是鹿茸IGF-1区别于牛、羊、人、猪、家鼠、斑马鱼IGF-1启动子区域的潜在转录因子,这些潜在转录因子与鹿茸生长的关系尚待进一步试验证实;综合分析表明CCS1074〈1~1580base为鹿茸IGF-15’端区域,1581—1966base为外显子1,1903—1966base为信号肽,1967~〉2087base为内含子1。  相似文献   

15.
甘露聚糖结合凝集素C(mannose binding lectin C,MBL-C)是C型(Ca2+依赖型)凝集素超家族的成员,其作为一种急性期蛋白,具有抗细菌感染的功能,参与机体的天然免疫反应。为鉴定出结合在MBL2基因启动子区(1 009 bp)的重要转录因子,探寻该基因的转录调控机制,本研究选取海南黑山羊MBL2基因的启动子序列1 009 bp,采用DNA重组技术克隆6个转录起始位点上游1 009 bp的启动子5'端侧翼缺失序列,克隆片段经双酶切后连接至pGL3-Basic载体。重组质粒转染至293T细胞中,结合双荧光素酶活性检测系统筛选MBL2基因的核心启动子区域。通过在线生物信息学软件预测山羊MBL2基因的核心启动子区域的转录因子结合位点,利用点突变技术构建转录因子结合位点缺失的载体,转染293T细胞后结合双荧光素酶活性检测系统分析其转录活性。结果表明,海南黑山羊MBL2基因的核心启动子区域位于转录起始位点上游-304~-45 bp范围内,在线软件分析该区域存在RELA、NF-κB2、MZF1等3种转录因子结合位点。双荧光素酶报告分析结果表明,RELA和NF-κB2的结合位点缺失后均使山羊MBL2基因的转录活性极显著下降(P < 0.01)。结果提示,RELA和NF-κB2对山羊MBL2基因的转录活性可能具有重要的正调控作用。该研究为进一步探寻海南黑山羊MBL2基因的功能提供理论依据。  相似文献   

16.
【目的】探究秦川牛多形性腺瘤基因1(pleomorphic adenoma gene 1,PLAG1)的组织表达规律,并克隆其启动子区序列,预测分析其关键转录因子结合位点,为探究其转录调控机制提供理论参考。【方法】采集3头20月龄秦川牛成年公牛心脏、肝脏、脾脏、肺脏、肾脏、皮下脂肪、背最长肌、瘤胃组织,用实时荧光定量PCR方法检测PLAG1基因在不同组织中的相对表达量,同时克隆PLAG1基因上游启动子区序列,利用生物信息学软件预测PLAG1基因转录起始位点及启动子核心区域,分析、筛选核心启动子区域的关键转录因子结合位点。【结果】PLAG1基因在秦川牛各组织中均有表达,且在背最长肌中的表达量显著高于其他组织(P<0.05)。PLAG1基因启动子序列全长1 861 bp,生物信息学预测分析发现PLAG1基因核心启动子区位于-297―+42 bp,存在高度保守的Krüppel样因子5(KLF5)、cAMP反应元件结合蛋白1(CREB1)和早期生长反应因子1(EGR1)转录因子结合位点,且CpG岛位于PLAG1基因核心启动子区域内。【结论】PLAG1基因在肌肉组织中高表达,其核心启动子区...  相似文献   

17.
牛GDF5基因启动子的克隆与序列分析   总被引:4,自引:1,他引:3  
旨在了解生长分化因子5(GDF5)可能的调控序列。本研究通过基因组比对,扩增了牛GDF5基因5′侧翼区,并通过产物纯化、连接、转化及测序比对,确定了2043bp的启动子序列。同时综合考虑已经证实的人GDF5基因启动子结构及应用启动子在线分析软件,对该序列进行分析。结果发现,牛GDF5基因5′侧翼区没有CpG岛,序列比对发现,牛和人GDF5基因启动子区域同源性为78%;牛GDF5基因启动子没有TATAbox或CAATbox结构,其转录起始位点位于翻译起始密码子ATG上游-359bp位置,其潜在的转录因子有AML-la,Ap-1,AmL-la,CdxA,SRY,CdxA,TATA,AmL-la,GTATA-1,MZF1,CdxA,Nkx-2,CdxA,S8和SRY,其中Ap-1,AmL-la,SRY,Nkx-2,S8和SRY高度保守,与人的序列完全一致;推测发现牛GDF5基因启动子-457至-423bp序列中的GT重复序列可以增强启动子的活性,且最小增强子处于-458和-377bp之间。研究结果推测判定了牛GDF5基因启动子的转录起始位置、转录结合位点、活性序列及最小增强子序列,为以后深入研究GDF5基因在牛软骨细胞中的表达机制提供了理论基础。  相似文献   

18.
旨在初步探索DKK1基因转录调控机制,本研究利用启动子在线预测软件分析了该基因启动子区序列特征,根据Ensembl数据库已公布的猪DKK1基因的5′侧翼区序列,设计特异性PCR引物进行扩增、测序,进而构建启动子区不同缺失片段的pGL3-DKK1双荧光素酶表达载体,分别转染293T细胞和Hela细胞,并进行双荧光素酶报告基因检测。结果显示,DKK1基因启动子中含有1个TATA-box、多种转录因子和1个CpG岛;DKK1基因启动子对239T细胞具有偏好性,其中p-1 679/+292bp启动子片段活性最高,且显著高于其他缺失片段(P0.01)。-953~-1 679bp为核心启动子区域,-586~-953bp区域可能存在负调控元件,在-953~-1 679bp区域可能存在正调控元件。本试验通过对DKK1基因进行生物信息学分析并结合不同长度启动子片段双报告基因活性检测,证实了DKK1基因的5′侧翼区序列具有启动子转录活性,并初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究DKK1基因转录调控机制奠定基础。  相似文献   

19.
旨在筛选牛CART基因核心启动子区并鉴定调控CART表达的转录因子,探究其转录调控机制。本研究采集3头健康母牛下丘脑组织,提取基因组DNA,通过PCR扩增、测序获得牛CART启动子序列,EMBOSS、MethPrimer、New PLACE数据库分析启动子结构特征;构建4个包含不同截短长度的CART启动子报告基因载体,双荧光素酶报告基因活性检测鉴定核心启动子区;应用DNA pull down结合质谱分析(n=3),功能聚类及结合位点预测分析筛选核心启动子区候选转录因子;构建转录因子过表达载体,转染至293T细胞,分析转录因子对牛CART核心启动子区的转录调控功能(n=3)。结果表明,牛CART基因-1 200 bp~+22 bp区域存在CpG岛和TATA box、CAAT box等顺式作用元件;构建的4个截短启动子报告基因载体均具有转录起始活性,-292 bp~+22 bp片段转录起始活性最强,为牛CART基因核心启动子区;转录因子RFX5、CREB、RFX1、JUND、TEAD4、TFAP2D、RELA可与牛CART基因核心启动子区特异性结合;进一步研究证实RFX5、RFX1、TEA...  相似文献   

20.
张凤  李鑫  陈明新 《中国畜牧兽医》2019,46(6):1730-1738
本研究旨在对猪SEPW1基因的潜在启动子区进行克隆及转录活性分析,获得其核心启动子区域,并进一步分析转录因子SP1对SEPW1基因转录活性的影响,为探索SEPW1基因在猪肉质性状方面的功能奠定基础。利用实时荧光定量PCR检测SEPW1基因在大白猪各组织中的表达量,构建空间表达谱;通过PCR技术克隆得到6个逐级缺失的SEPW1基因启动子片段,构建6个双荧光素酶报告载体,通过检测各载体的双荧光素酶活性获得SEPW1基因的核心启动子区域;对核心启动子区进行生物信息学分析,发现潜在的SP1转录因子结合位点;通过过表达、抑制表达、定点突变及凝胶迁移试验(EMSA)确认SP1转录因子结合位点的存在及其对SEPW1基因转录活性的影响。结果显示,SEPW1基因在所检测的4月龄大白猪12个组织中均有表达,其中在腓肠肌及心脏中的表达量较高。双荧光素酶活性显示,猪SEPW1基因5'侧翼区-443~-231 bp为其核心启动子区,且-378~-306 bp存在1个潜在的SP1结合位点。过表达和抑制表达SP1基因结果显示,转录因子SP1能够促进SEPW1基因的转录;定点突变及EMSA试验确认,转录因子SP1可直接与SEPW1基因启动子区的SP1结合位点(-348~-339 bp)相结合。综合以上结果表明,转录因子SP1可直接靶向SEPW1基因的启动子区并促进SEPW1基因的转录。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号