首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different methods were compared for the determination of total flatoxins in corn and peanuts naturally contaminated with aflatoxins and in corn, peanuts, cottonseed, peanut butter, and poultry feed spiked with aflatoxins B1, B2, and G1. The 3 methods were an enzyme-linked immunosorbent assay (ELISA) screening test; a monoclonal antibody-affinity column-solid-phase separation method; and the AOAC official thin-layer chromatography (TLC) methods for all except poultry feed, for which Shannon's TLC method for mixed feed was used. The ELISA test is designed to provide only positive results for total aflatoxins at greater than or equal to 20 ng/g or negative results at less than 20 ng/g. The affinity column separation is coupled with either bromination solution fluorometry to estimate total aflatoxins or liquid chromatography (LC) to quantitate individual aflatoxins. Fluorodensitometry was used to determine aflatoxins in commodities analyzed by the TLC methods. The LC and TLC results were in good agreement for all the analyses. The results for the affinity column using bromination solution fluorometry were similar except those for cottonseed, which were about 60% higher. The ELISA screening method correctly identified naturally contaminated corn and peanut positive samples. No false positives were found for controls. The correct response for spiked corn, raw peanuts, peanut butter, and cottonseed at greater than or equal to 20 ng aflatoxins/g was about 90%. The correct response for spiked poultry feed at greater than or equal to 20 ng aflatoxins/g was about 50%.  相似文献   

2.
A liquid chromatographic (LC) technique has been developed that uses the Mycosep multifunctional cleanup (MFC) column. MFC columns provide a rapid 1-step extract purification. They are designed to retain particular groups of compounds that may create interferences in analytical methods. At the same time, MFC columns allow compounds of interest to pass through. In the method presented, test samples are extracted in a blender with acetonitrile-water (9 + 1). A portion of the extract is forced through an MFC column designed especially for analysis of numerous mycotoxins. Analytical interferences are retained, while aflatoxins pass through the column. Aflatoxins B1 and G1 are converted to their hemiacetals by heating a mixture of purified extract and water-trifluoroacetic acid-acetic acid (7 + 2 + 1) at 65 degrees C for 8.5 min. An aliquot of this mixture is analyzed by isocratic LC with acetonitrile-water mobile phase and fluorescence detection. A detection limit of less than 0.5 ng/g for aflatoxin B1 was obtained. Average recoveries greater than 95% total aflatoxins (B1, B2, G1, and G2) and coefficients of variation of less than 3% were obtained. The method was successfully applied to the following commodities: corn, almonds, pista-chios, walnuts, peanuts, Brazil nuts, milo, rice, cottonseed, corn meal, corn gluten meal, fig paste, and mixed feeds.  相似文献   

3.
A method is described for rapid cleanup followed by reverse-phase liquid chromatographic (LC) quantitation of aflatoxins in raw peanuts. A modified minicolumn cleanup is used for sample preparation, and a preliminary estimation of aflatoxin content by minicolumn can be made so that highly contaminated samples can be diluted before LC analysis. The use of the simple, quick minicolumn cleanup eliminates the need for further column or cartridge cleanup, thus greatly reducing sample preparation time. Sensitive quantitation is achieved using a phenyl column, a mobile phase of water-tetrahydrofuran (80 + 20, v/v), and postcolumn derivatization with water-saturated iodine followed by fluorescence detection. The recoveries of aflatoxins B1, B2, G1, and G2 from peanut meal spiked at 3 levels ranged from 71.7 to 88.3% (average 80%) with coefficients of variation from 2.7 to 10.4%.  相似文献   

4.
The method described will detect total aflatoxins (B1, B2, G1, and G2) in mixed feeds, grains nuts, and fruit products in samples containing as little as 5-15 mug/kg. In addition, the presence of aflatoxins in the positive samples can be confirmed and the toxins can be quantitatively measured, using the same extract as that used for the screening method. In the screening method, aflatoxins are extracted with acetone-water (85+15), and interferences are removed by adding cupric carbonate and ferric chloride gel. The aflatoxins are extracted from the aqueous phase with chloroform and the chloroform extract is washed with a basic aqueous solution. A Velasco-type minicolumn is used to further purify the extract and capture the aflatoxins in a tight band. The screening method has been successfully applied to 24 different agricultural commodities. Quantitative thin layer chromatography was also performed with extracts of each of these commodities. An average recovery of 94% B1, 108% B2, 130% G1, and 103% G2 was obtained compared to the official final action AOAC method for cottonseed products, 26.048-26.056. Within-laboratory coefficients of variation of 10-15% were obtained for each of the aflatoxins and total aflatoxins in a sample of peanut meal naturally contaminated with 11 mug B1+3 mug B2+11 mug G1+5 mug G2/kg.  相似文献   

5.
A collaborative study of a liquid chromatographic method for the determination of aflatoxins B1, B2, G1, and G2 was conducted in laboratories located in the United States, Canada, South Africa, and Switzerland. Twenty-one artificially contaminated raw peanuts, peanut butter, and corn samples containing varying amounts of aflatoxins B1, B2, G1, and G2 were distributed to participating laboratories. The test portion was extracted with methanol-0.1N HCl (4 + 1), filtered, defatted with hexane, and then partitioned with methylene chloride. The concentrated extract was passed through a silica gel column. Aflatoxins B1 and G1 were derivatized with trifluoroacetic acid, and the individual aflatoxins were determined by reverse-phase liquid chromatography with fluorescence detection. Statistical analysis of the data was performed to determine or confirm outliers, and to compute repeatability and reproducibility of the method. For corn, relative standard deviations for repeatability (RSDr) for aflatoxin B1 ranged from 27.2 to 8.3% for contamination levels from 5 through 50 ng/g. For raw peanuts and peanut butter, RSDr values for aflatoxin B1 were 35.0 to 41.2% and 11.2 to 19.1%, respectively, for contamination levels from 5 through 25 ng/g. RSDr values for aflatoxins B2, G1, and G2 were similar. Relative standard deviations for reproducibility (RSDr) for aflatoxin B1 ranged from 15.8 to 38.4%, 24.4 to 33.4%, and 43.9 to 54.0% for corn, peanut butter, and raw peanuts, respectively. The method has been adopted official first action for the determination of aflatoxins B1, B2, G1, and G2 in peanut butter and corn at concentrations greater than or equal to 13 ng total aflatoxins/g.  相似文献   

6.
An enzyme-linked immunosorbent assay (ELISA) screening test (CITE PROBE) was compared to liquid chromatography (LC) for the determination of aflatoxins in naturally contaminated corn samples. The CITE PROBE, with a positive/negative cutoff of 5 ng/g aflatoxin B1, was correct (based on LC results) on 47 of 51 samples. Two of the incorrect responses by the CITE PROBE were false positives on samples containing 4.4 ng/g and 4.1 ng/g aflatoxins by LC. Another incorrect response was a false negative on a sample containing 5.5 ng/g aflatoxins by LC. The fourth incorrect response was a false positive on a sample containing 1.9 ng/g aflatoxins by LC. On the basis of these results, the CITE PROBE was determined to be a reliable screening method for the detection of greater than or equal to 5 ng/g aflatoxins in corn.  相似文献   

7.
High pressure liquid chromatographic determination of aflatoxins in corn.   总被引:1,自引:0,他引:1  
A high pressure liquid chromatographic (HPLC) method is proposed for determining aflatoxins in corn. The sample is extracted with methanol-10% NaCl (4 + 1), pigments are precipitated with zinc acetate, and the extract is cleaned up on a small (2 g) silica gel column. Aflatoxins in the purified extract are resolved by normal phase HPLC on a microparticulate (10 micrometer) silica gel column with water-saturated chloroform-cyclohexane, acetonitrile solvent, and detected by fluorescence on a silica gel-packed flowcell. The method was compared with chloroform-water extraction of the official CB method on 15 samples of contaminated corn. In 5 of the 6 samples containing aflatoxins B1, B2, G1, and G2, methanol-10% NaCl extracted more aflatoxin than did cloroform-water, as measured both by HPLC and by thin layer chromatography. In samples containing only B1 and B2, the 2 extraction solvents were virtually equivalent. Agreement was good between HPLC and TLC for each extraction solvent. Average recovery of aflatoxins B1, B2, G1, and G2 added to yellow cornmeal at 3 levels was greater than 90%.  相似文献   

8.
A direct competitive enzyme-linked immunosorbent assay (ELISA) screening method for aflatoxins at 20 ng/g was studied by 12 collaborators. Test samples of peanut butter were extracted by blending with methanol-water-hexane (55 + 45 + 100) and heating the test extracts on a steam bath; test samples of the other commodities were extracted by blending with methanol-water (80 + 20). All test extracts were filtered and the filtrates were diluted with buffer to a final methanol concentration of less than 30%. Each diluted filtrate was applied to a cup containing a filter with immobilized polyclonal antibodies specific to aflatoxins B1, B2, and G1. Aflatoxin B1-peroxidase conjugate was added, the cup was washed with water, and a mixture of hydrogen peroxide and tetramethylbenzidine was added. The test sample was judged to contain greater than or equal to 20 ng aflatoxins/g when, after exactly 1 min, no color was observed on the filter; when a blue or gray color developed, the test sample was judged to contain less than 20 ng aflatoxins/g. All collaborators correctly identified naturally contaminated corn and raw peanut positive test samples. No false positives were found for controls containing less than 2 ng aflatoxins/g. The correct responses for positive test samples spiked at levels of 10, 20, and greater than or equal to 30 ng aflatoxins/g (the ratio of B1:B2:G1 was 10:1:3) were 52, 86, and 96%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A simple, rapid, and solvent-efficient method for determining aflatoxins in corn and peanut butter is described. Aflatoxins B1, B2, G1, and G2 were extracted from 50 g sample with 200 mL methanol-water (85 + 15). A portion of the extract was diluted with 10% NaCl solution to a final concentration of 50% methanol, and then defatted with hexane. The aflatoxins were partitioned into chloroform. The chloroform solution was evaporated, and the residue was placed on a 0.5 g disposable silica gel column. The column was washed with 3 mL each of hexane, ethyl ether, and methylene chloride. Aflatoxins were eluted with 6 mL chloroform-acetone (9 + 1). The solvent was removed by evaporation on a steam bath, and the aflatoxins were determined using thin layer chromatography (TLC) with silica gel plates and a chloroform-acetone (9 + 1) developing solvent. Overall average recovery of aflatoxin B1 from corn was 82%, and the limit of determination was 2 ng/g. For mass spectrometric (MS) confirmation, aflatoxin B1 in the extract from 3 g sample (20 ng/g) was purified by TLC and applied by direct on-column injection at 40 degrees C into a 6 m fused silica capillary gas chromatographic column. The column was connected directly to the ion source. After injection, the temperature was rapidly raised to 250 degrees C, and the purified extract was analyzed by negative ion chemical ionization MS.  相似文献   

10.
A chemical cleanup procedure for low-level quantitative determination of aflatoxins in major economically important agricultural commodities using HPLC has been developed. Aflatoxins were extracted from a ground sample with MeOH/H2O (80:20, v/v), and after a cleanup step on a minicolumn packed with Florisil, aflatoxins were quantified by HPLC equipped with a C18 column, a photochemical reactor, and a fluorescence detector. Water/MeOH (63:37, v/v) served as the mobile phase. Recoveries of aflatoxins B1, B2, G1, and G2 from peanuts spiked at 5, 1.7, 5, and 1.7 ng/g were 89.5+/-2.2, 94.7+/-2.5, 90.4+/-1.0, and 98.2+/-1.1, respectively (mean+/-SD, %, n=3). Similar recoveries, precision, and accuracy were achieved for corn, brown and white rice, cottonseed, almonds, Brazil nuts, pistachios, walnuts, and hazelnuts. The quantitation limits for aflatoxins in peanuts were 50 pg/g for aflatoxin B1 and 17 pg/g for aflatoxin B2. The minimal cost of the minicolumn allows for substantial savings compared with available commercial aflatoxin cleanup devices.  相似文献   

11.
A liquid chromatographic (LC) method was developed for the determination of aflatoxins in feedstuffs containing citrus pulp. The feed-stuff sample is extracted with chloroform, followed by Sep-Pak Florisil cartridge cleanup and Sep-Pak C18 cartridge cleanup. The final eluate (water-acetone, 85 + 15, v/v) is submitted to reverse-phase liquid chromatography with water-methanol-acetonitrile (130 + 70 + 40, v/v/v) as mobile phase and postcolumn derivatization with iodine. Citrus components are removed from the extract efficiently. The limit of detection for aflatoxin B1 is less than 1 microgram/kg. Other aflatoxins can also be detected and measured. Recoveries of aflatoxins B1, B2, G1, and G2 for dairy rations spiked at 13, 5, 10, and 4 micrograms/kg were 87, 86, 81, and 82%, respectively. Corresponding coefficients of variation were 3.1, 3.6, 5.2, and 3.8%, respectively.  相似文献   

12.
An international collaborative study involving 14 collaborators from 5 different countries was conducted to test a rapid liquid chromatographic (LC) method for detecting aflatoxins M1 and M2 in fluid milk. Each collaborator prepared artificially contaminated milk samples (0.078-1.31 ng M1/mL and 0.030-0.13 ng M2/mL) by adding solutions containing various concentrations of aflatoxins M1 and M2 to fresh milk. Recoveries ranged from 85.2 to 102.5% (av. 93.7%) for aflatoxin M1 and from 99.5 to 126.7% (av. 109.8%) for aflatoxin M2. Coefficients of variation averaged 21.4% (M1) and 35.9% (M2). An analysis of variance was calculated from combined data to determine variance components. The within-laboratory variations (So) (repeatability) were 27.9% (M1) and 23.9% (M2), and the among-laboratory variations (Sx) (reproducibility) were 44.5% (M1) and 64.7% (M2). No visual differences were determined between normal or reverse phase LC for contaminated samples; however, there were an insufficient number of collaborators using normal phase to give meaningful separate statistical data. For 26 observations of uncontaminated milk, 3 false M1 positives were reported for normal phase LC determinations and 2 false M1 positives were reported for reverse phase LC determinations. Three normal phase and 11 reverse phase false M2 positives were reported for 104 observations in uncontaminated milk. The reverse phase LC method for determination of aflatoxins M1 and M2 in fluid milk has been adopted official first action.  相似文献   

13.
A simple, rapid enzyme-linked immunoassay (ELISA) was used to evaluate the performance of each step (extraction, filtration, solvent partition, and silica gel column chromatography) of a solvent-efficient thin-layer chromatographic (TLC) method which is undergoing interlaboratory collaborative study for the determination of aflatoxin B1 in corn, raw peanuts, and peanut butter. The apparent average recoveries using the ELISA method were about 30 to 50% higher than those using the TLC method if only the amount of B1 added to the samples was used in the calculations. After the cross-reaction of the antibody with other aflatoxins added to the samples was considered, the amounts recovered approached the levels of aflatoxins added in all 3 commodities tested. With no cleanup treatment, ELISA recoveries at aflatoxin B1 levels above 7.5 ng/g were 84, 79, and 103% for corn, raw peanuts, and peanut butter, respectively. The coefficients of variation were between 5.2 and 25.2%. With each cleanup step in the TLC method, ELISA detected a progressive decrease in recovery from 150.5 to 105.3% (before correction for the presence of other aflatoxins) or from 93.5 to 65.4% (after correction for other aflatoxins) of B1 added to the samples. The ELISA data support the conclusion obtained from previous studies that cleanup treatments were not necessary in the ELISA. When large amounts of other aflatoxins are present, an understanding of the cross-reactivity of antibody with other aflatoxins in the ELISA is essential for final interpretation of the data.  相似文献   

14.
A method is described for simple and rapid determination of aflatoxins in corn, buckwheat, peanuts, and cheese. Aflatoxins were extracted with chloroform-water and were purified by a Florisil column chromatographic procedure. Column eluates were concentrated and spotted on a high performance thin layer chromatographic (HPTLC) plate, which was then developed in chloroform-acetone (9 + 1) and/or ether-methanol-water (94 + 4.5 + 1.5) or chloroform-isopropanol-acetone (85 + 5 + 10). Each aflatoxin was quantitated by densitometry. The minimum detectable aflatoxin concentrations (micrograms/kg) in various test materials were 0.2, B1; 0.1, B2; 0.2, G1; 0.1, G2; and 0.1, M1. Recoveries of the aflatoxins added to corn, peanut, and cheese samples at 10-30 micrograms/kg were greater than 69% (aflatoxin G2) and averaged 91%, B1; 89%, B2; 91%, G1; 78%, G2; and 92%, M1. The simple method described was compared with the AOAC CB method, AOAC BF method, and AOAC milk and cheese method. These methods were applied to corn, peanut, and cheese composites spiked with known amounts of aflatoxins, and to naturally contaminated buckwheat and cheese. Recoveries were much lower for the BF method compared with our simple method and the CB method.  相似文献   

15.
A high pressure liquid chromatographic method has been developed for determining aflatoxins B1, B2, G1, and G2 in peanut butter. The method is based on extraction with acidified aqueous methanol, partition of the aflatoxin into methylene chloride, and purification of the extract on a 2 g silica gel column. The extracted aflatoxins are resolved on a microparticulate (10 micrometer) porous silica gel column in ca 10 min with a water-washed chloroform-cyclohexane-acetonitrile solvent that contains 2% isopropanol. The fluorescence detection system determines aflatoxins B1, B2, G1, and G2 at low levels, i.e., 0.25 ppb B1, 0.5 ppb G1, and 0.2 ppb B2 and G2. Multiple assays of 5 samples of naturally contaminated peanut butters containing total aflatoxins (B1 + B2 + G1 + G2) at levels of 1, 2, 3, 9, and 17 ppb gave intralaboratory coefficients of variation of 7, 4, 4, 11, and 3%, respectively. Samples spiked at levels of 5, 9, and 17 ppb total aflatoxins showed recoveries of 79, 81, and 81%, respectively.  相似文献   

16.
A screening method for aflatoxins was collaboratively tested on 11 different agricultural and food products: white and yellow corn, peanuts, peanut butter, pistachio nuts, peanut meal, cottonseed meal, chicken, pig, and turkey starter rations, and dairy cattle feed. The method involves a rapid extraction and cleanup procedure followed by the detection of total aflatoxins (B1 + B2 + G1 + G2) as a fluorescent band on the Florisil layer of a Velasco-type minicolumn. The results of 32 collaborators from 10 different countries are presented. Samples containing 0, 5, 10, 15, 20, and 25 mug aflatoxins/kg were analyzed. Eighty-four per cent of the negative samples and 89% of the samples containing 10-25 mug total aflatoxins/kg were correctly identified. This method has been adopted as official first action for the detection of aflatoxins in corn, peanuts, peanut butter, peanut meal, cottonseed meal, mixed feeds, and pistachio nuts.  相似文献   

17.
Aflatoxins are a group of very carcinogenic mycotoxins that can be found on a wide range of food commodities including nuts, cereals, and spices. In this study, the first LC-MS/MS stable isotope dilution assay (SIDA) for the determination of aflatoxins in foods was developed. The development of this method was enabled by easily accessible isotope-labeled (deuterated) aflatoxins B2 and G2, which were synthesized by catalytic deuteration of aflatoxin B1 and G1, purified, and well-characterized by NMR and MS. All four aflatoxins of interest (B1, B2, G1, and G2) were quantified in food samples by using these two labeled internal standards. The response factors (RF) of the linear calibrations were revealed to be matrix independent for labeled aflatoxin B2/aflatoxin B2 and labeled aflatoxin G2/aflatoxin G2. For labeled aflatoxin B 2/aflatoxin B 1 and labeled aflatoxin B2/aflatoxin G1 matrix-matched calibration was performed for the model matrices almonds and wheat flour, showing significant differences of the RFs. Limits of detection (LOD) were determined by applying a statistical approach in the presence of the two model matrices, yielding 0.31 microg/kg (aflatoxin B1), 0.09 microg/kg (aflatoxin B2), 0.38 microg/kg (aflatoxin G1), and 0.32 microg/kg (aflatoxin G2) for almonds (similar LODs were obtained for wheat flour). Recovery rates were between 90 and 105% for all analytes. Coefficients of variation (CV) of 12% (aflatoxin B1), 3.6% (aflatoxin B2), 14% (aflatoxin G1), and 4.8% (aflatoxin G2) were obtained from interassay studies. For further validation, a NIST standard reference food sample was analyzed for aflatoxins B1 and B2. The method was successfully applied to determine trace levels of aflatoxins in diverse food matrices such as peanuts, nuts, grains, and spices. Aflatoxin contents in these samples ranged from about 0.5 to 6 microg/kg.  相似文献   

18.
A joint AOAC/IUPAC (International Union of Pure and Applied Chemistry) interlaboratory study of an enzyme-linked immunosorbent screening assay (ELISA) for aflatoxins was conducted in laboratories in Canada, France, Japan, South Africa, Switzerland, The Netherlands, Tunisia, and the United States. Twenty-eight samples of raw and roasted peanuts, corn, whole cottonseed, cottonseed meal, ammoniated cottonseed meal, and poultry feed containing various quantities of natural aflatoxins and supplemented when appropriate with aflatoxin B1 were distributed to participating laboratories for testing. The assay is based on conjugation of pure aflatoxin B1 to an enzyme and the competition between this conjugate and (free) aflatoxins in the product for aflatoxin-specific antibodies coated onto microtiter well walls. After a wash step to remove all unbound aflatoxins, a substrate, added to each well, is catalyzed from a colorless to a green solution by any bound enzyme-conjugated aflatoxin B1 present. The intensity of the color decreases as the amount of free aflatoxin B1 in the product increases. Overall correlation was good between ELISA and thin-layer chromatographic (TLC) results for cottonseed products and mixed feed. Variable results were reported for corn and peanut product samples. Although some positive samples (greater than 15 ng/g) of cottonseed products and mixed feed were reported to contain less than 15 ng/g by visual determination, a review of data for absorbance measurements showed that the contamination level was close to the greater than or equal to 15 ng/g standard and would not have been reported as negative under routine screening.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A comparative study on the natural occurrence of aflatoxins and Fusarium toxins was conducted with corn samples from high- and low-incidence areas for human primary hepatocellular carcinoma (PHC) in Guangxi, China. In samples from the high-risk area, aflatoxin B(1) was the predominant toxin detected in terms of quantity and frequency, with its concentration ranging between 9 and 2496 microg/kg and an 85% incidence of contamination. Among the samples, 13 (76%) exceeded the Chinese regulation of 20 microg/kg for aflatoxin B(1) in corn and corn-based products intended for human consumption. Significant differences in aflatoxin B(1), B(2), and G(1) and total aflatoxin concentrations in corn between the areas were found (P < 0.05). The average daily intake of aflatoxin B(1) from corn in the high-risk area was 184.1 microg, and the probable daily intake is estimated to be 3.68 microg/kg of body weight/day, 3.20 times the TD(50) in rats. Corn samples from both areas were simultaneously contaminated with fumonisins B(1), B(2), and B(3). Aflatoxin B(1) may play an important role in the development of PHC in Guangxi.  相似文献   

20.
The difference between the CB and Best Foods methods in extracting aflatoxins from peanut products has been studied. The CB method yields 60, 121, 35, and 22% higher results for aflatoxins B1, B2, G1, and G2, respectively for 4 samples of peanut meal and 6 samples of peanut butter studied. Both reverse phase liquid chromatography and thin layer chromatography were used to quantitate the extracted aflatoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号