首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The germplasm with exotic genomic components especially from Sea Island cotton (Gossypium barbadense L. Gb) is the dominant genetic resources to enhance fiber quality of upland cotton (G. hirsutum L., Gh). Due to low efficiency of phenotypic evaluation and selection on fiber quality, genetic dissection of favorable alleles using molecular markers is essential. Genetic dissection on putative Gb introgressions related to fiber traits were conducted by SSR markers with mapping populations derived from a cross between Luyuan343 (LY343), a superior fiber quality introgression line (IL) with genomic components from Gb, and an elite Upland cotton cv. Lumianyan#22 (LMY22). Among 82 polymorphic loci screened out from 4050 SSRs, 42 were identified as putative introgression alleles. A total of 29 fiber-related QTLs (23 for fiber quality and six for lint percentage) were detected and most of which clustered on the putative Gb introgression chromosomal segments of Chr.2, Chr.16, Chr.23 and Chr.25. As expected, a majority of favorable alleles of fiber quality QTLs (12/17, not considering the QTLs for fiber fineness) came from the IL parent and most of which (11/12) were conferred by the introgression genomic components while three of the six (3/6) favorable alleles for lint percentage came from the Gh parent. Validation of these QTLs using an F8 breeding population from the same cross made previously indicated that 13 out of 29 QTLs showed considerable stability. The results suggest that fiber quality improvement using the introgression components could be facilitated by marker-assisted selection in cotton breeding program.  相似文献   

2.
Low phosphorus availability is a major factor limiting rice productivity. In this study, a population of backcross recombinant inbred lines (BILs) derived from an inter-specific cross (Oryza sativa L. × O. rufipogon Griff.) was used for genetic linkage map construction and quantitative trait locus (QTL) mapping. The results showed that a linkage map consisting of 153 markers was constructed. Twenty-one out of 231 BILs were tolerant of low-phosphorus according to the index to P-deficiency tolerance. Twenty-three QTLs on chromosomes 1, 2, 3, 7, 8, 9 and 11 were detected, of which eight QTLs showed high (22.93–37.32%) contribution to phenotypic variation. In addition, most of QTLs in this study (18 out of 23 QTLs) were located and overlapped on the chromosome 1, 3 and 11, which individually explained 6.07–34.70% phenotypic variation, indicating that there might be multiple main effect QTLs related to P-deficiency tolerance in O. rufipogon, and these QTLs might cluster in the same region. These results would provide helpful information for cloning and utilizing the P-deficiency tolerance-responsive genes from O. rufipogon.  相似文献   

3.
A genetic analysis of blast resistance in upland rice variety is very crucial. In this study, we performed a linkage mapping of quantitative trait loci (QTLs) for blast resistance using an advanced backcross population from a cross between Way Rarem (susceptible indica variety) and Oryzica Llanos 5 (durable resistant indica variety). A transgressive segregation was observed in the advanced backcross population of Way Rarem//Oryzica Llanos 5. A total of 16 QTLs have been identified along chromosomes 1, 3, 5, 6, 7, 8, 9, and 11 against eight blast pathogen isolates. Each QTL accounted from 11.31 to 45.11% of the variation in blast resistance. Most QTLs showed race specificity, demonstrating the small effect of such QTLs. Unexpectedly, several superior blast resistance alleles were contributed by Way Rarem, the susceptible-recurrent parent. Among eight candidate defense response genes detected in several loci, a single gene (oxalate oxidase) present on chromosome 3 was found to be associated with blast resistance in upland indica rice. Ultimately, these advanced backcross lines with resistance to blast tagged by markers might be useful for pyramiding blast resistance alleles in upland rice.  相似文献   

4.
Grain protein content is an important analysis target to determine grain quality in rice. This study analyzed quantitative trait loci (QTLs) for the content of grain protein and amylose using the chromosomal segment substitution lines developed from ‘Koshihikari’ and ‘Nona Bokra’. It also evaluated the effects of target QTL on eating and cooking quality through the physical properties of cooked rice and its gel consistency. QTL analysis over 3 years detected the QTL on chromosome 12, TGP12, which consistently decreased total grain protein content via the ‘Nona Bokra’ allele. Selected CSSL with TGP12, CSSL-TGP12, showed a lower content of total grain protein in brown and milled rice, and had similar amylose content, grain size, and weight of brown rice, compared with ‘Koshihikari’. Based on the results of sodium dodecyl sulfate polyacrylamide gel electrophoresis, brown rice with CSSL-TGP12 had no remarkable decrease or loss in any specific protein. Regarding eating and cooking quality, CSSL-TGP12 did not show stable effects on physical properties, hardness, stickiness, or adherability of cooked rice or its gel consistency. These results suggest that TGP12 could be one of the key genetic factors for the alteration of grain protein content without an effect on eating or cooking quality.  相似文献   

5.
Eighty-two varieties of rice from different regions in Thailand were selected to explore the Waxy (Wx)gene diversity and indica-japonica differentiation of chloroplast DNA. A comparison of the 5 splice site in the first intron was made between glutinous and nonglutinous rice. It revealed that non-glutinous with low-amylose content and glutinous rice were characterized as the Wxb allele based on the G-to-T base substitution, whereas non-glutinous rice with intermediate and high amylose carried the Wxa allele. Four Wx microsatellite alleles, (CT)n repeat, (n = 16,17,18 and 19) were found in glutinous rice. In contrast, non-glutinous rice showed five Wx microsatellite alleles (n = 11, 16, 17, 18 and 19). The (CT)17 allele was prominent allele in Thai population, while the (CT)11 allele was found only in intermediate and high amylose rice varieties from southern Thailand. Almost all of upland rice grown by various ethnic groups in northern Thailand were characterized as japonica type based on their having the PstI-12 fragment in their cpDNA, whereas most of rainfed lowland varieties from other regions of Thailand were indica. This exploration of DNA-based genetic markers is important, as it enhances our ability to describe and manipulate sources of genetic variation for rice breeding programs.  相似文献   

6.
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors. Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance.  相似文献   

7.
Direct seeding of rice is increasingly being practiced in both rainfed and irrigated areas because of labor shortage for transplanting and opportunities for crop intensification. However, poor crop establishment remains a major obstacle facing its large-scale adoption in areas prone to flooding. Screening of over 8,000 gene bank accessions and breeding lines identified a few tolerant genotypes. One of these, Khao Hlan On, was selected for mapping QTLs associated with tolerance using a backcross population with IR64 as a recurrent parent. Survival of BC2F2 lines varied from 0 to 68%, and averaged about 28%. A linkage map of 1475.7 cM with an average interval of 11.9 cM was constructed using 135 polymorphic SSRs and 1 indel marker. Five putative QTLs were detected, on chromosomes 1 (qAG-1-2), 3 (qAG-3-1), 7 (qAG-7-2), and 9 (qAG-9-1 and qAG-9-2), explaining 17.9 to 33.5% of the phenotypic variation, and with LOD scores of 5.69–20.34. Khao Hlan On alleles increased tolerance of flooding during germination for all the QTLs. Graphical genotyping of the lines with highest and lowest survival verified the detected QTLs that control tolerance and some QTLs co-localize with previously identified QTLs for traits relevant to tolerance, which warrant further studies.  相似文献   

8.
M. Yamamori 《Euphytica》2009,165(3):607-614
In common and durum wheats (Triticum aestivum L. and T. durum Desf.), variant waxy (Wx) alleles have been reported for three Wx proteins (Wx-A1, -B1 and -D1), responsible for amylose synthesis in flour starch. Five variant alleles, Wx-A1c, -A1e, -B1c, -B1d and -D1c, were examined to elucidate their effects on amylose content in flour starch. Common wheat lines carrying a Wx protein produced by one variant (e.g., Wx-A1c) and one control (e.g., Wx-A1a) allele were bred and their starches were compared. Results showed that Wx-A1e did not produce amylose (waxy phenotype), whereas three alleles (Wx-A1c, -B1c and -B1d) reduced amylose, and -D1c might have increased it slightly. Most data on blue value, swelling power and starch paste clarity in water and dimethyl sulphoxide also suggested the variant Wx alleles either reduced or increased amylose content.  相似文献   

9.
Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is an important disease of wheat (Triticum aestivum L.) globally. Use of host resistance is an important strategy to manage the disease. The cultivar Flinor has temperature-sensitive resistance to stripe rust. To map quantitative trait loci (QTLs) for these temperature-sensitive resistances, Flinor was crossed with susceptible cultivar Ming Xian 169. The seedlings of the parents, and F1, F3 progeny were screened against Chinese yellow rust race CYR32 in controlled-temperature growth chambers under different temperature regimes. Genetic analysis confirmed two genes for temperature-sensitive stripe rust resistance. A linkage map of SSR markers was constructed using 130 F3 families derived from the cross. Two temperature-sensitive resistance QTLs were detected on chromosome 5B, designated QYr-tem-5B.1 and QYr-tem-5B.2, respectively, and are separated by a genetic distance of over 50 cM. The loci contributed 33.12 and 37.33% of the total phenotypic variation for infection type, respectively, and up to 70.45% collectively. Favorable alleles of these two QTLs came from Flinor. These two QTLs are temperature-sensitive resistance loci and different from previously reported QTLs for resistance to stripe rust.  相似文献   

10.
Late blight (Phytophthora infestans) can have devastating effects on tomato production over the whole world. Most of the commercial cultivars of tomato, Solanum lycopersicum, are susceptible. Qualitative and quantitative resistance has been described in wild relatives of tomato. In general qualitative resistance can more easily be overcome by newly evolved isolates. Screening of three S. habrochaites accessions (LA1033, LA2099 and LA1777) through a whole plant assay showed that accession LA1777 had a good level of resistance to several isolates of P. infestans. To explore the potential in this wild species, an introgression line (IL) population of S. habrochaites LA1777 was used to screen individual chromosome regions of the wild species by a detached leaf assay. Two major isolates (T1,2 and T1,2,4) were used and two parameters were measured: lesion size (LS), and disease incidence (DI). Substantial variation was observed between the individual lines. QTLs were identified for LS but not for DI. The presence of five QTLs derived from LA1777 (Rlbq4a, Rlbq4b, Rlbq7, Rlbq8 and Rlbq12) results in unambiguous higher levels of resistance. All QTLs co-localized with previously described QTLs from S. habrochaites LA2099 except QTL Rlbq4b, which is therefore a novel QTL.  相似文献   

11.
Rice seed storability is an important characteristic of seed quality so that the cultivars with strong seed storability are expected in the production of hybrid seeds. Presently, little is known about the genetic and physiological mechanisms controlling rice seed storability. In this study, a double haploid population derived from the cross between a japonica cultivar CJ06 and an indica cultivar TN1 was used to identify the quantitative trait loci (QTLs) for seed germination percentage (GP) and fatty acid content (FA) during natural storage or artificial aging. A total of 19 QTLs, including ten QTLs for GP and nine QTLs for FA, were identified on nine chromosomes with the phenotypic variations ranged from 2.1 to 22.7%. Besides, six and three pairs of epistatic interactions were identified for GP and FA, respectively. Moreover, qGP-9, a QTL for germination percentage, was delimited in an interval of 92.8 kb between two STS markers P6 and P8, which contains 15 putative open reading frames. These results provide important information for understanding the genetic mechanisms on rice seed storability, and will be useful for breeding new rice varieties with high seed storability.  相似文献   

12.
In a previous study a genetic map had been developed using a RIL population derived from a cross between the Pisum sativum ssp. syriacum accession P665 and the P. sativum ssp. sativum cv. Messire. This population segregated for several agricultural important traits and was successfully used to identify QTLs (Quantitative Trait Loci) controlling resistance to Mycosphaerella pinodes and Orobanche crenata, earliness, root length and aerial biomass. However, this map contained only a few markers in common with the international pea consensus map, hampering comparison with other pea maps. The objective of this study was to incorporate a set of common transferable and reproducible markers into the P665 × Messire map to favour comparative mapping and QTL validation. Seventy-eight out of the 248 SSRs assayed resulted polymorphic in the parental lines. Thirty-eight of them, uniformly distributed all over the genome, were genotyped in the whole population and included in the map. This SSR enriched map allowed identification of six new QTLs (three for resistance to M. pinodes, two for resistance to broomrape and one for root length). Inclusion of the SSRs confirmed the homology of some of the QTLs identified in the population P665 × Messire with other QTLs associated with related traits in different pea genetic backgrounds.  相似文献   

13.
Genetic diversity analysis within a species is vital for understanding evolutionary processes at the population and genomic levels. We report a detailed study of molecular diversity, polymorphism and linkage disequilibrium in three groups of rice (Oryza) germplasm accessions based on 176 SSR markers. The first group included 65 rice (O. sativa L.) accessions introduced from seven countries, including five regions of China. The second group included 58 US rice varieties released in the past 25 years. The third group consisted of 54 accessions of rice wild relatives represented by ten different species. The number of alleles per SSR marker ranged from 4 to 32 with a mean of 16 alleles and the polymorphism information content values ranged from 0.43 to 0.91 with a mean of 0.70. The variation in SSR alleles was a significant contribution to the genetic discrimination of the 177 accessions within the three Oryza groups. Analysis of molecular variance identified deviation from Hardy–Weinberg equilibrium. Principal coordinates analysis clearly separated the accessions into their respective three groups. Neighbor-joining phylogenetic cluster reflects the ordination of each accession. Linkage disequilibrium (D′) averaged 0.75 in wild Oryza spp., and about 0.5 in both US and international O. sativa accessions. Our results showed that LD among adjacent loci in both O. sativa and Oryza spp. accessions is strong enough to be detecting marker-trait association via genome-wide scans.  相似文献   

14.
The non-transgenic manipulation of starch properties in common wheat (Triticum aestivum L.) generally implies combining mutant alleles of the particular gene copies in all three subgenomes (A, B and D). The redundancy of the hexaploid wheat chromosome set substantially complicates the identification of recessive mutations and breeding. Nevertheless, naturally occurring or induced genetic polymorphism has already been successfully exploited for the production of waxy (GBSSI-deficient) and elevated amylose (SSIIa-deficient) wheats. However, in order to achieve the amylose content above 50% of wheat endosperm starch, it may be necessary to inactivate the starch branching enzyme (SBEIIa) isoforms, as the RNAi repression results and gene expression data strongly suggest. The identification of null SBEIIa alleles and their combination in a single genotype is therefore a promising approach to the production of non-transgenic high-amylose wheat; however, wheat SBEIIa polymorphism has not been characterized as of yet. In order to develop an approach to SBEIIa mutation screening, we sequenced the SBEIIa central region (exons 9–12) from the three subgenomes of common wheat cv. Chinese Spring and the A genome of diploid einkorn T. monococcum. The genome-specific primers were developed that amplify the exons downstream from intron 11 selectively from each homeologous gene. Using a single-stranded DNA conformation polymorphism (SSCP) approach, we screened 60 wheat cultivars, landraces, and rare species for naturally occurring SNPs in exons 12, 13 and 14 of the three SBEIIa homeologs. In total, 13 SNPs were discovered in the A and B wheat genomes. Two of these SNPs affect the amino acid sequences of SBEIIa isoforms and may change the enzyme functional properties. The presence of restriction site polymorphism at SNP positions enables their easy genotyping with CAPS assays. Our results indicate that the mining for naturally occurring sequence polymorphism in starch biosynthesis genes of wheat can be successfully performed at the DNA level, providing the starting point for a search for SBEIIa mutants at a larger scale.  相似文献   

15.
Cadmium (Cd) is a non-essential element and toxic to plants. To investigate the genetics of Cd tolerance and accumulation in rice, quantitative trait loci (QTL) associated with Cd tolerance and accumulation at the seedling stage were mapped using a doubled haploid (DH) population derived from a cross between a japonica JX17 and an indica ZYQ8. A total of 22 QTLs were found to be associated with shoot height (SH), root length (RL), shoot dry weight (SDW), root dry weight (RDW), total dry weight (TDW) and chlorophyll content (CC), and 10 and 12 QTLs were identified under the control and Cd stress conditions, respectively. For Cd tolerant coefficient (CTC), 6 QTLs were detected on chromosomes 1, 3, 5, 8 and 10. Under Cd stress, 3 QTLs controlling root and shoot Cd concentrations were mapped on chromosome 6 and 7. One QTL for shoot/root rate of Cd concentration was identified on chromosome 3. The results indicated that Cd tolerance and accumulation were quantitatively inherited, and the detected QTLs may be useful for marker-assistant selection (MAS) and identification of the genes controlling Cd tolerance and accumulation in rice.  相似文献   

16.
Root traits are key components of plant adaptation to drought environment. By using a 120 recombined inbred lines (RILs) rice population derived from a cross between IRAT109, a japonica upland rice cultivar and Yuefu, a japonica lowland rice cultivar, a complete genetic linkage map with 201 molecular markers covering 1,833.8 cM was constructed and quantitative trait loci (QTLs) associated with basal root thickness (BRT) were identified. A major QTL, conferring thicker BRT, located on chromosome 4, designated brt4, explained phenotypic variance of 20.6%, was selected as target QTL to study the effects of marker-assisted selection (MAS) using two early segregating populations derived from crosses between IRAT109 and two lowland rice cultivars. The results showed that the flanking markers of brt4 were genetically stable in populations with different genetic backgrounds. In the two populations under upland conditions, the difference between the means of BRT of plants carrying positive and negative favorable alleles at brt4 flanking markers loci was significant. Phenotypic effects of BRT QTL brt4 were 5.05–8.16%. When selected plants for two generations were planted at Beijing and Hainan locations under upland conditions, MAS effects for BRT QTL brt4 were 4.56–18.56% and 15.46–26.52% respectively. The means of BRT for the homozygous plants were greater than that of heterozygous plants. This major QTL might be useful for rice drought tolerance breeding. L. Liu and P. Mu are contributed equally to this work.  相似文献   

17.
The cultivated sugarcane (Saccharum spp. hybrids, 2n = 100–130) is one crop for which interspecific hybridization involving wild germplasm has provided a major breakthrough in its improvement. Few clones were used in the initial hybridization event leading to a narrow genetic base for continued cultivar development. Molecular breeding would facilitate the identification and introgression of novel alleles/genes from the wild germplasm into cultivated sugarcane. We report the identification of molecular markers associated with sugar-related traits using an F1 population derived from a cross between S. officinarum ‘Louisiana Striped’ × S. spontaneum ‘SES 147B’, the two major progenitor species of cultivated sugarcane. Genetic linkage maps of the S. officinarum and S. spontaneum parents were produced using the AFLP, SRAP and TRAP molecular marker techniques. The mapping population was evaluated for sugar-related traits namely, Brix (B) and pol (P) at the early (E) and late (L) plant growing season in the plant cane (04) and first ratoon (05) crops (04EB, 04LB, 04LP, 05EB and 05EP). For S. officinarum, combined across all the traits, a total of 30 putative QTLs was observed with LOD scores ranging from 2.51 to 7.48. The phenotypic variation (adj. R2) explained by all QTLs per trait ranged from 22.1% (04LP) to 48.4% (04EB). For S. spontaneum, a total of 11 putative QTLs was observed with LOD scores ranging from 2.62 to 4.70 and adj. R2 ranging from 9.3% (04LP) to 43.0% (04LB). Nine digenic interactions (iQTL) were observed in S. officinarum whereas only three were observed in S. spontaneum. About half of the QTLs contributed by both progenitor species were associated with effects on the trait that was contrary to expectations based on the phenotype of the parent contributing the allele. Quantitative trait loci and their associated effects were consistent across crop-years and growing seasons with very few QTLs being unique to the early season. When the data were reanalyzed using the non-parametric discriminant analysis (DA) approach, significant marker-trait associations were detected for markers that were either identical to or in the vicinity of markers previously identified using the traditional QTL approach. Discriminant analysis also pointed to previously unidentified markers some of which remained unlinked on the map. These preliminary results suggest that DA could be used as a complementary approach to traditional QTL analysis in a crop like sugarcane for which saturated linkage maps are unavailable or difficult to obtain.  相似文献   

18.
Developing chromosome segments substitution lines (CSSLs) is an effective method for broadening the cotton germplasm resource, and improving the fiber quality and yield traits. In this study, the 1054 F2 individual plants and 116 F2:3 lineages were generated from the two parents of MBI9749 and MBI9915 selected from BC5F3:5 lines which originated from hybridization of CCRI36 and Hai1, and advanced backcrossing and repeated selfing. Genotypes of the parents and F2 population were analyzed. The results showed that 19 segments were introgressed for MBI9749 and 12 segments were introgressed for MBI9915, distributing on 17 linkage groups. The average background recovery rate to the recurrent parent CCRI36 was 96.70% for the two parents. An average of 16.46 segments was introgressed in F2 population. The average recovery rate of 1054 individual plants was 96.85%, and the mean length of sea island introgression segments was 157.18 cM, accounting for 3.15% of detection length. QTL mapping analysis detected 22 QTLs associated with fiber quality and yield traits in the F2 and F2:3 populations. These QTLs distributed on seven chromosomes, and the phenotypic variation was explained ranging from 1.20 to 14.61%. Four stable QTLs were detected in F2 and F2:3 populations, simultaneously. We found that eight QTLs were in agreement with the previous research. Six QTL-clusters were identified for fiber quality and yield traits, in which five QTL-clusters were on chromosome20. The results indicated that most of QTL-clusters always improve the fiber quality and have negative additive effect for yield related traits. This study demonstrated that CSSLs provide basis for fine mapping of the fiber quality and yield traits in future, and could be efficiently used for pyramiding favourable alleles to develop the new germplasms for breeding by molecular marker-assisted selection.  相似文献   

19.
A recombinant inbred line (RIL) population with 305 lines derived from a cross of Hanxuan 10 × Lumai 14 was used to identify the dynamic quantitative trait loci (QTL) for plant height (PH) in wheat (Triticum aestivum L.). Plant heights of RILs were measured at five stages in three environments. Total of seven genomic regions covering PH QTL clusters on different chromosomes identified from a DH population derived from the same cross as the RIL were used as the candidate QTLs and extensively analyzed. Five additive QTLs and eight pairs of epistatic QTLs significantly affecting plant height development were detected by unconditional QTL mapping method. Six additive QTLs and four pairs of epistatic QTLs were identified using conditional mapping approach. Among them, three additive QTLs (QPh.cgb-1B.3, QPh.cgb-4D.1, QPh.cgb-5B.2) and three pairs of epistatic QTLs (QPh.cgb-1B.1QPh.cgb-1B.3, QPh.cgb-2A.1QPh.cgb-2D.1, QPh.cgb-2D.1QPh.cgb-5B.2) were common QTLs detected by both methods. Three QTLs (QPh.cgb-4D.1, QPh.cgb-5B.3, QPh.cgb-5B.4) were expressed under both drought and well-water conditions. The present data are useful for wheat genetic manipulations through molecular marker-assisted selection (MAS), and provides new insights into understanding the genetic mechanism and regulation network underlying the development of plant height in crops. Our result in this study indicated that combining unconditional and conditional mapping methods could make it possible to reveal not only the stable/conserved QTLs for the developmental traits such as plant height but also the dynamic expression feature of the QTLs.  相似文献   

20.
Molecular markers have been successfully used in rice breeding however available markers based on Oryza sativa sequences are not efficient to monitor alien introgression from distant genomes of Oryza. We developed O. minuta (2n = 48, BBCC)-specific clones comprising of 105 clones (266–715 bp) from the initial library composed of 1,920 clones against O. sativa by representational difference analysis (RDA), a subtractive cloning method and validated through Southern blot hybridization. Chromosomal location of O. minuta-specific clones was identified by hybridization with the genomic DNA of eight monosomic alien additional lines (MAALs). The 37 clones were located either on chromosomes 6, 7, or 12. Different hybridization patterns between O. minuta-specific clones and wild species such as O. punctata, O. officinalis, O. rhizomatis, O. australiensis, and O. ridleyi were observed indicating conservation of the O. minuta fragments across Oryza spp. A highly repetitive clone, OmSC45 hybridized with O. minuta and O. australiensis (EE), and was found in 6,500 and 9,000 copies, respectively, suggesting an independent and exponential amplification of the fragment in both species during the evolution of Oryza. Hybridization of 105 O. minuta specific clones with BB- and CC-genome wild Oryza species resulted in the identification of 4 BB-genome-specific and 14 CC-genome-specific clones. OmSC45 was identified as a fragment of RIRE1, an LTR-retrotransposon. Furthermore this clone was introgressed from O. minuta into the advanced breeding lines of O. sativa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号