首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study evaluated the effect of different environmental temperatures in the physiology of Lutjanus guttatus juveniles by analysing their thermoregulatory behaviour, thermal tolerance, oxygen consumption rates and thermal metabolic scope. Jointly, the effect of acclimation and critical temperatures on heat shock protein 70 (Hsp70) and lactate dehydrogenase (Ldh‐a) gene expressions were also analysed using acclimation temperatures of 20, 23, 26, 29 and 32°C. The results showed that the final preferred temperature in juvenile snapper was 26°C with a thermal window of 336.5°C2, which was related to an optimal temperature for their physiology determined by the routine metabolic rate and thermal metabolic scope. At temperatures from 20 to 26°C, the routine metabolic rate and Hsp70 and Ldh‐a genes had the lowest values related to a basal expression level. At acclimation temperatures from 29 to 32°C and after critical thermal maximum (CTmax) limit, the relative expression of Hsp70 and Ldh‐a genes increased significantly, but the main response at CTmax was the upregulation of Hsp70 gene.  相似文献   

2.
The microsporidian Loma morhua infects Atlantic cod (Gadus morhua) in the wild and in culture and results in the formation of xenomas within the gill filaments, heart and spleen. Given the importance of the two former organs to metabolic capacity and thermal tolerance, the cardiorespiratory performance of cod with a naturally acquired infection of Loma was measured during an acute temperature increase (2 °C h?1) from 10 °C to the fish's critical thermal maximum (CTMax). In addition, oxygen consumption and swimming performance were measured during two successive critical swimming speed (Ucrit) tests at 10 °C. While Loma infection had a negative impact on cod cardiac function at warm temperatures, and on metabolic capacity in both the CTMax and Ucrit tests (i.e. a reduction of 30–40%), it appears that the Atlantic cod can largely compensate for these Loma‐induced cardiorespiratory limitations. For example, (i) CTMax (21.0 ± 0.3 °C) and Ucrit (~1.75 BL s?1) were very comparable to those reported in previous studies using uninfected fish from the same founder population; and (ii) our data suggest that tissue oxygen extraction, and potentially the capacity for anaerobic metabolism, is enhanced in fish infected with this microsporidian.  相似文献   

3.
The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40 ± 0.30 g, n = 40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak − MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h−1 kg−1 (25°C) (P < 0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P < 0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P < 0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg−1). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.  相似文献   

4.
A 30-day acclimation trial was conducted using Tor putitora to elucidate its thermal tolerance, oxygen consumption, haemato-biochemical variables and selected enzymatic activities at five acclimation temperatures (AT). Juveniles of T. putitora were randomly distributed among five treatment groups (20, 23, 26, 29 and 32 ± 0.5 °C). There was a significant curvilinear increase in critical thermal maxima (CTmax) (y = ?0.0693x 2 + 1.7927x + 34.628, R 2 = 0.996) and lethal thermal maxima (LTmax) (y = ?0.1493x 2 + 2.3407x + 35.092, R 2 = 0.991) with increasing AT. The oxygen consumption rate increased significantly with increasing AT. The Q 10 values were 1.16 between 20 and 23 °C, 3.09 between 23 and 26 °C, 1.31 between 26 and 29 °C and 1.76 between 29 and 32 °C of AT. The acclimation response ratios were ranged between 0.37 and 0.59. Catalase, superoxide dismutase and ATPase activities were increased linearly in liver, gill and kidney, while brain acetylcholine esterase activity decreased linearly with increasing AT. Blood glucose remained unchanged up to AT of 26 °C and increased significantly at AT of 29 and 32 °C. Haemoglobin content was increased linearly with increasing AT. The highest WBC count was observed at 20 °C, and no significant changes found till AT of 26 °C and significantly decreased at 32 °C. Total serum protein and globulin were significantly decreased with increasing AT. Highest values were observed at 20 °C and remained consistent till 26 °C, then decreased significantly. There was no significant change in A/G ratio through the AT 20–29 °C and increased significantly at 32 °C. The increase in CTmax, LTmax and oxygen consumption rate with increasing AT may suggest that the thermal tolerance of T. putitora is dependent on its prior thermal exposure history, and it could adapt to higher AT by altering its haemato-biochemical variables.  相似文献   

5.
The metabolic responses of the juvenile Miichthys miiuy in terms of oxygen consumption and ammonia excretion to changes in temperature (6–25°C) and salinity (16–31 ppt) were investigated. At a constant salinity of 26 ppt, the oxygen consumption rate (OCR) of the fish increased with an increase in temperature and ranged between 133.38 and 594.96 μg O2 h−1 g−1 DW. The effect of temperature on OCR was significant (P < 0.01). Q10 coefficients were 6.80, 1.41, 1.29 and 2.36 at temperatures of 6–10, 10–15, 15–20 and 20–25°C, respectively, suggesting that the juveniles of M. miiuy will be well adapted to the field temperature in the summer, but not in the winter. The ammonium excretion rates (AER) of the fish were also affected significantly by temperature (P < 0.01). The O:N ratio at temperatures of 6, 10, 15 and 20°C ranged from 13.12 to 20.91, which was indicative of a protein-dominated metabolism, whereas the O:N at a temperature of 25°C was 51.37, suggesting that protein-lipids were used as an energy substrate. At a constant temperature of 15°C, the OCRs of the fish ranged between 334.14 (at 31 ppt) and 409.68 (at 16 ppt) μg O2 h−1 g−1 DW. No significant differences were observed in the OCR and AER of the juveniles between salinities of 26 and 31 ppt (P > 0.05). The OCR and AER at 16 ppt were, however, significantly higher than those at 26 and 31 ppt (P < 0.05), indicating salinity lower than 16 ppt is presumably stressful to M. miiuy juveniles.  相似文献   

6.
  1. Climate change has emerged as an increasingly important threat to freshwater systems. To cope with rapidly changing thermal regimes, freshwater fishes must either relocate or adjust through genetic adaptation and/or phenotypic plasticity. Short-term responses to elevated water temperature have been well studied in freshwater fishes; however, far less is understood about change induced by long-term exposure. Furthermore, few studies have investigated the effects of temperature on already imperilled species, which may be more sensitive to environmental change.
  2. This study investigated the effects of rearing temperature on critical thermal maximum (CTmax), agitation temperature (Tag, temperature at which fish show behavioural signs of thermal stress) and gill size in pugnose shiner, Notropis anogenus, a threatened species in Canada. Juvenile pugnose shiner were reared for 4 months across five different ecologically relevant temperatures. CTmax and Tag were measured under normoxia and acute exposure to hypoxia to test for oxygen sensitivity of the upper thermal limits in this species.
  3. CTmax increased with elevated water temperature. Tag also increased with rearing temperature and occurred, on average, 4.3°C above acclimation temperatures. The CTmax and Tag were lower when fish were exposed acutely to hypoxia. Interestingly, gill size (e.g. total gill filament length) increased with rearing temperature, which may increase oxygen uptake capacity and support increased metabolic demands of warmer waters.
  4. Overall, pugnose shiner show plasticity in several traits in response to long-term exposure to elevated water temperature that may facilitate persistence in warmer waters. However, acute hypoxia exposure reduced thermal tolerance, stressing the importance of evaluating interactive effects of multiple stressors.
  5. Identifying source populations of pugnose shiner with greater thermal tolerance or implementing captive breeding under higher temperature regimes may improve the success of re-introduction efforts in the face of climate change, but the consequences to fitness of increased thermal tolerance should be examined.
  相似文献   

7.
The behavioural and metabolic responses of the largemouth bass Micropterus salmoides (Lacépède) to temperature were determined to define optimal thermal conditions. The final preferendum of largemouth bass juveniles determined with acute and gravitation methods was independent of the method (29.0–28.1 °C). The displacement velocity in the horizontal thermal gradient of bass juveniles was 22.4 cm h−1 in the light phase and 22.6 cm h−1 in the dark phase. Oxygen consumption rates in the largemouth bass increased significantly (P<0.05) from 48.8 to 69.4 mg O2 Kg−1 h−1 with an increase in the acclimation temperature from 20 to 33 °C. The temperature quotient (Q10) in the juveniles was 1.37–2.00 in the range of acclimation temperatures of 26–29 and 29–32 °C. The optimum temperature range for growth calculated using Jobling's equation was 28.1–28.6 °C and for Q10 values 26–29 °C. The results are discussed in relation to the use of this information in aquaculture.  相似文献   

8.
The effects of temperature on growth and survival of juvenile blackfoot abalone, Haliotis iris, were investigated. Animals of 10, 30 or 60 mm initial shell length were exposed to ambient (6–10°C), 14, 18, 22 and 26°C for 112 days in a flow‐through culture system. Maximum growth occurred at 22°C for the 10 and 30 mm size classes and at 18°C for the 60 mm size class. Regression analysis identified the optimal temperature for growth (ToptG) at around 21°C for the 10 and 30 mm size classes and at 17–18°C for the largest size class. In a second experiment, the critical thermal maximum of H. iris was determined as a measure of thermal tolerance. Abalone were subjected to increasing water temperatures at a rate of 2°C h?1 until they detached from the substrate. Abalone of 10 mm displayed greater thermal tolerance than abalone of 30 and 60 mm in length. CT50 temperatures were 28.8, 27.7 and 27.8°C, yielding deduced ToptG values of 19.7, 18.3 and 18.4°C for the 10, 30 and 60 mm size classes respectively. The size‐dependent nature of the relationship between growth and temperature could be capitalized upon in recirculating aquaculture systems.  相似文献   

9.
Effect of temperature on the development of eggs of round herring Etrumeus teres was experimentally examined to construct a temperature-dependent egg development model. Mature fish were collected in the field and their eggs were artificially fertilized onboard. The eggs were incubated at nine temperatures set between 14.0 and 25.0°C. All eggs at the lowest three temperatures, 14.0°C, 15.0°C, and 16.0°C, ceased development and died at various stages before hatching. Durations required to hatching after fertilization ranged from 38.0 h at 25.0°C to 90.0 h at 17.5°C. The temperature-dependent egg development model, i.e., egg age in hours (y i,t ) at the ith stage and temperature t (°C), was expressed as: y i,t  = 4.604 × exp(−0.100 × t −0.129 × i) × i 2.593. From the application of the model to early-stage eggs collected in the field, it is concluded that round herring starts spawning immediately after sunset and almost completes spawning by midnight. The temperature-dependent egg development model and the daily pattern of spawning presented in this study are essential tools for developing the daily egg production method to estimate the spawning stock biomass.  相似文献   

10.
Standard oxygen consumption rate (MO2) was determined for 19 cownose rays (Rhinoptera bonasus) using flow-through respirometry. Rays ranged in size from 0.4 to 8.25 kg (350–790 mm DW). Respirometry experiments were conducted on seasonally acclimatized rays at temperatures from 19.0 to 28.8 °C. Estimates of mass-dependent MO2 ranged from 55.88 mg O2 kg−1 h−1 for an 8.25 kg ray to 332.75 mg O2 kg−1 h−1 for a 2.2 kg animal at 22–25°C. Multiple regression analysis examining the effect of temperature, salinity, and mass on standard mass-independent MO2 found temperature (P < 0.01), and mass (P < 0.0001) to have a significant effect on oxygen consumption, whereas salinity did not (P > 0.05). Q 10 was calculated as 2.33 (19–28 °C), falling between the estimates determined for two other batoid species, the bull ray (Myliobatos aquila; Q 10 = 1.87) and the bat ray (Myliobatis californica; Q 10 = 3.00). The difference in the Q 10 estimates may be attributed to the use of seasonally acclimatized as opposed to laboratory-acclimated animals.  相似文献   

11.
In this study, the energy budget of the Manila clam, Ruditapes philippinarum, was evaluated after one-week acclimation periods at 5, 10, 15, 20, and 25°C. Small clams (151 ± 12 mg DW) and large clams (353 ± 16 mg DW) were fed with the microalgae, Isochrysis galbana. Filtration rate, ingestion rate, assimilation efficiency, oxygen-consumption rate, and ammonia excretion rate were measured. Both filtration rate and ingestion rate of small and large clams were found to be related to temperature. The highest Q 10 values were measured in the range 15–20°C for both small and large clams. Assimilation efficiency of both small and large clams was not significantly influenced by temperature, although the maximum mean values were detected at 20°C. Oxygen consumption rate and ammonia excretion rate of small and large clams were found to be related directly to temperature over the entire range, with a maximum being detected at 25°C. The highest Q 10 value was estimated in the range 10–15°C with regard to oxygen consumption rate, and in the range of 15–20°C with regard to ammonia excretion rate. Scope for growth (SFG) was positive at all temperatures, achieving a maximum value at 20°C in both small and large clams, primarily as a consequence of the enhanced ingestion rate which offset the concomitant elevation in the metabolic rate. In this study we have estimated the thermal optimum for this species at 20°C.  相似文献   

12.
This study describes the digestible protein (DP) and digestible energy (DE) utilization in juvenile mulloway, and determined the requirements for maintenance. This was achieved by feeding triplicate groups of fish weighing 40 or 129 g held at two temperatures (20 or 26°C), on a commercial diet (21.4 g DP mJ DE−1) at four different ration levels ranging from 0.25% of its initial body weight to apparent satiation over 8 weeks. Weight gain and protein and energy retention increased linearly with increasing feed intake. However, energy retention efficiency (ERE) and protein retention efficiency (PRE) responses were curvilinear with optimal values, depending on fish size, approaching or occurring at satiated feeding levels. Maximum predicted PRE was affected by body size, but not temperature; PRE values were 0.50 and 0.50 for small mulloway, and 0.41 and 0.43 for large mulloway, at 20 and 26°C respectively. ERE demonstrated a similar response, with values of 0.42 and 0.43 for small, and 0.32 and 0.34 for large mulloway at 20 and 26°C respectively. Utilization efficiencies for growth based on linear regression for DP (0.58) and DE (0.60) were independent of fish size and temperature. The partial utilization efficiencies of DE for protein (k p) and lipid (k l) deposition estimated using a factorial multiple regression approach were 0.49 and 0.75 respectively. Maintenance requirements estimated using linear regression were independent of temperature for DP (0.47 g DP kg−0.7 day−1) while maintenance requirements for DE increased with increasing temperature (44.2–49.6 kJ DE kg−0.8 day−1). Relative feed intake was greatest for small mulloway fed to satiation at 26°C and this corresponded to a greater increase in growth. Large mulloway fed to satiation ate significantly more at 26°C, but did not perform better than the corresponding satiated group held at 20°C. Mulloway should be fed to satiation to maximize growth potential if diets contain 21.4 g DP mJ DE−1.  相似文献   

13.
In order to clarify the respiratory responses strategy of Amur sturgeon Acipenser schrenckii exposed to water temperature changes, respiratory parameters of the fish were studied under two temperature regimes: fish acclimated at 13°C for Group I, temperature was increased to 16°C, 19°C, 22°C and 25°C and then returned stepwise to 22°C, 19°C, 16°C and 13°C; and fish acclimated at 25°C for Group II, the water temperature was reduced in steps to 22°C, 19°C, 16°C and 13°C, subsequently, returned to 16°C, 19°C, 22°C and 25°C. The results showed that the respiratory frequency (fR), oxygen consumption rate (VO2) and gill ventilation (VG) of the fish were directly dependent on the acute temperature in both acclimation groups (p < .05). The initial 25°C VO2 in Group II was significantly higher than the initial 13°C VO2 in Group I (p < .05), but was significantly lower than that at 25°C in Group I (p < .05). In Group I, respiratory stroke volume (VS.R) of fish significantly increased or decreased with the acute temperature increases or decreases, respectively (p < .05); oxygen consumption efficiencies (EO2) of fish did not significantly show differences when temperature increased to 25°C from 13°C (p > .05), but the EO2 significantly declined while returning to acclimation temperature (p < .05). In Group II, the VS.R of the fish did not significantly change with acute temperature fluctuations between 25 and 13°C (p > .05), while the EO2 increased with acute temperature increases (p < .05). The Q10 values for fR, VO2, VS.R, VG and EO2 were 1.53–1.72, 1.92–2.06, 1.07–1.60, 1.78–2.44 and 1.11–1.65 at 13–25°C of temperature interval respectively. Amur sturgeon showed partial metabolic compensation to temperature changes. The study results suggest that the ability of Amur sturgeon to regulate metabolism in response to acute temperature changes makes this species good adaptability in the aquaculture rearing.  相似文献   

14.
Patagonian red octopus, Enteroctopus megalocyathus, is a merobenthic octopus whose paralarvae have been successfully cultured up to juvenile octopuses. At present, high mortality during the paralarval period prevents the scaling from experimental rearing to commercial aquaculture. The aim of the study was to determine upper (CTMax) and lower (CTMin) thermal tolerance, acclimation response ratio (ARR) and thermal tolerance polygon of paralarvae from different culture conditions and subjected to seven acclimation temperatures (6, 8, 10, 12, 14, 16, 18°C) during the first 5 days of paralarval life. Culture conditions were two types of egg incubation (maternal care and artificial incubators) and two feeding regimes (fed or starved). Fed paralarvae showed thermal preferendum, while unfed paralarvae preferred much higher temperatures than those of acclimation. CTMin and CTMax increased along with the acclimation temperature. Lower values of ARR were obtained in paralarvae from artificial incubation, with this type of paralarva showing the least adaptability to thermal changes. Starved paralarvae showed the lowest values for thermal tolerance range (TTR) and smaller areas of thermal polygon than fed paralarvae. Rearing temperatures above 16°C may be considered suboptimal to paralarvae and affected by the conditions during the embryonic incubation. Rearing temperatures below 8°C may be considered suboptimal for all hatched paralarvae. Therefore, the other temperatures within this range could be used in the context of improving the culture management of paralarvae.  相似文献   

15.
Respiratory parameters of grass carp were studied during dissolved oxygen (DO) changes from normal DO to hypoxia, then return to normal DO at 15, 25, and 30 °C acclimation, respectively. The results showed that with increases of acclimation temperature at normoxia the respiratory frequency (fR), oxygen consumption rate (VO2), respiratory stroke volume (VS.R), gill ventilation (VG), and VG/VO2 of grass carp increased significantly, but the oxygen extraction efficiency (EO2) of fish decreased significantly (P < 0.05). With declines of DO levels, the fR, VS.R, VG, and VG/VO2 of fish increased significantly at different acclimation temperatures (P < 0.05). A slight increase was found in VO2, and the EO2 of fish remained almost constant above DO levels of 3.09, 2.91, and 2.54 mg l?1 at 15, 25, and 30 °C, while the VO2 and EO2 began to decrease significantly with further reductions in DO levels (P < 0.05). After 0.5 h of recovery to normoxia from hypoxia at three acclimation, the fR, VS.R, VG, and VG/VO2 of the fish decreased sharply; meanwhile, the VO2 and EO2 increased sharply (P < 0.05). The respiratory parameters of fish gradually approached initial values with prolonged recovery time to normoxia, and reached their initial values in 2.5 h at 25 and 30 °C acclimation. The critical oxygen concentrations (Cc) of fish for VO2 were 2.42 mg l?1 at 15 °C, 2.02 mg l?1 at 25 °C, and 1.84 mg l?1 at 30 °C, respectively. The results suggest that grass carp are highly adapted to varied DO and short-term hypoxia environments.  相似文献   

16.
Grouper have to face varied environmental stressors as a result of drastic changes to water conditions during the storm season. We aimed to test the response of brown-marbled grouper to drastic and gradual changes in temperature and salinity to understand the grouper’s basic stress response. The results can improve the culture of grouper. Brown-marbled grouper, Epinephelus fuscoguttatus (6.2 ± 0.8 g) were examined for temperature and salinity tolerances at nine different environmental regimes (10, 20, and 33 ‰ combined with 20, 26 and 32 °C), in which the fish were subjected to both gradual and sudden changes in temperature and salinity. The critical thermal maximum (50 % CTMAX) and the upper incipient lethal temperature (UILT) were in the ranges of 35.9–38.3 and 32.7–36.5 °C, respectively. The critical thermal minimum (50 % CTMIN) and the lower incipient lethal temperature (LILT) were in the ranges of 9.8–12.2 and 14.9–22.3 °C, respectively. The critical salinity maximum (50 % CSMAX) and the upper incipient lethal salinity (UILS) were in the ranges of 67.0–75.5 and 54.2–64.8 ‰, respectively. Fish at temperature of 20 °C and a salinity of 33 ‰ tolerated temperatures as low as 10 °C when the temperature was gradually decreased. Fish acclimated at salinities of 10–33 ‰ and a temperature of 32 °C tolerated salinities of as high as 75–79 ‰. All fish survived from accumulating salinity after acute transfer to 20, 10, 5, and 3 ‰. But all fish died while transferred to 0 ‰. Relationships among the UILT, LILT, 50 % CTMAX, 50 % CTMIN, UILS, 50 % CSMAX, salinity, and temperature were examined. The grouper’s temperature and salinity tolerance elevated by increasing acclimation temperature and salinity. On the contrary, the grouper’s temperature and salinity tolerance degraded by decreasing acclimation temperature and salinity. The tolerance of temperature and salinity on grouper in gradual changes were higher than in drastic changes.  相似文献   

17.
California halibut, Paralichthys californicus (Ayres, 1859) juveniles were studied to ascertain the thermal tolerance and the compatibility zone where these species can be cultivated. Juvenile halibut acclimated at 15, 18, 21 and 24 °C preferred temperatures of 15.1, 18.2, 18.5 and 24.7 °C respectively. The final preferendum (FP) was 18.4 °C, equivalent to the temperature where the physiological processes are more efficient and the optimum growth temperature of 18.02 °C was calculated using the Jobling (1981) equation. The maximum average weekly temperature that must not be exceeded in a juvenile cultivation system is 22.6 °C. Juveniles avoided temperatures of 10.8 and 29.1 °C if they were acclimated between 15 and 24 °C. The thermal tolerance range of the juvenile halibut, having low and high lethal temperatures of 5.0 and 31 °C, characterizes it as a eurythermic organism. The tolerance of the halibut did not increase with the acclimation temperature corresponding to the ultimate upper incipient lethal temperature of 31 °C that differed by only 0.83 °C to the value calculated using the Jobling (1981) equation. The thermal tolerance and compatibility zone for the California halibut were 242.8 and 121.5 (°C)2, respectively; they characterize the thermal niche that includes the FP supporting an optimal growth of juveniles.  相似文献   

18.
Effects of different rearing temperatures (16, 21 and 26°C) on growth, metabolic performance and thermal tolerance of juvenile sea cucumber Apostichopus japonicus (initial body weight 7.72 ± 0.96 g, mean ±SD) were investigated in this study. During the 40‐day experiment, growth, metabolic performance, food intake and energy budget at different reared temperatures were determined. Sea cucumbers rearing at 16°C obtained better growth (final body weight 11.96 ± 0.35 g) than those reared at 21 (10.33 ± 0.41 g) and 26°C (8.31 ± 0.19 g) (< 0.05), and more energy was allocated for growth at 16°C (162.73 ±11.85 J g?1 d?1) than those at 21(79.61 ± 6.76 J g?1 d?1) and 26°C (27.07 ± 4.30 J g?1 d?1) (< 0.05). Critical thermal maxima (CTmax) values of juvenile sea cucumbers reared at 16, 21 and 26°C were 33.1, 34.1 and 36.6°C, respectively, and the upregulation of hsps in sea cucumbers reared at 26°C was higher than those acclimated at lower temperatures (16 and 21°C), indicating that temperature acclimation could change the thermal tolerance of the sea cucumber, and CTmax and hsps were sensitive indicators of the sea cucumber's thermal tolerance.  相似文献   

19.
The purpose of this experiment was to observe the impact of stocking density on growth and food consumption of juvenile Sepia pharaonis reared at 23 and 28°C. Two groups of 32 cuttlefish each were reared in closed recirculating seawater systems with water temperatures of 23°C (group A) and 28°C (group B). Each group was divided into three treatments with two replicates per treatment: low-density (equivalent to 20 cuttlefish m−2), medium-density (equivalent to 100 cuttlefish m−2), and high-density (equivalent to 200 cuttlefish m−2). Measured amounts of live food were added three times a day and the wet body weight of each cuttlefish was measured once a week during the 42-day study. Cuttlefish in group B had higher growth rates and food consumption than cuttlefish in group A. The different stocking densities in group B affected the size of the cuttlefish whereas the stocking densities of the cuttlefish in group A treatments did not lead to different sizes between densities. Overall, the gross growth efficiency of the high-density treatments was lower than that of the low-density treatments, as was the weight of the cuttlefish in the high-density treatment. Although the wet weights of group A treatments were not significantly different (P > 0.05), the wet weights of the cuttlefish in the high-density, group B, treatment were lower than those in the low and medium density treatments. This decrease in individual size suggests that stocking densities of 100 to 200 cuttlefish m−2 may interfere with growth.  相似文献   

20.
Diacronema vlkianum was grown in polyethylene bags at two different temperatures (18 and 26°C) in the laboratory. The biochemical composition level decreased when the temperature increased from 18 to 26°C. The maximum cell number at 18°C was 11.9 × 106 cells ml−1, while maximum cell number at 26°C was 1.6 × 106 cells ml−1. The maximum level of α-tocopherol was 257.7 ± 21.6 μg g−1 dry weight (DW) at 18°C. The highest total carotenoids and chlorophylls were 6.5 mg g−1 DW and 4.3 mg g−1 DW, respectively, and the main pigments were determined as astaxanthin and lutein. Polyunsaturated fatty acids were found to be the predominant group, reaching 39.5% of the total fatty acids at 18°C. This comprised 20:5(n − 3) as the main polyunsaturated fatty acids (20.4%, at 18°C) followed by 22:6(n − 3) (4.8%, at 18°C). The results suggest that D. vlkianum can be successfully used as feed in shellfish hatcheries or aquaculture hatcheries, either as a substitute or in association with other microalgae, when this algae is cultured at 18°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号