首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
伪狂犬病弱毒株的分离鉴定及生物学特性的研究   总被引:3,自引:1,他引:2  
在流行病学调查中分离到1株病毒,经鉴定为伪狂犬病弱毒株,定名为F971株。分离病毒经克隆纯化后测得其毒价为10^7.59TCID50/ml,通过细胞中和试验表明分离病毒能也有效地被猪伪狂犬病毒闽A株阳性血清中和。病毒在电镜下可以清楚地观察到囊膜及外周纤突。分离株对3日龄乳鼠有一定的致病力,但对家兔、3日龄乳猪及妊娠母猪都有很高的安全性。用不同的剂量10^0、10^-1、10^-2肌肉注射3日龄乳猪后14天用10^5.7TCID50伪狂犬病强毒攻击,所有试验仔猪均得到保护。用分离株免疫母猪,其后代可获高滴度的母源抗体,15日龄的仔猪能抵御10^5.7TCID50强毒的攻击。用ELISA普查试剂盒测定免疫猪抗体,结果均为阳性,而用g^1-ELISA试剂盒测定抗体时,结果均为阴性。证明分离株具有缺损g^1糖蛋白的特性。综合上述特性,确定F971为1株g^1糖蛋白缺损的猪伪狂犬病弱毒株。  相似文献   

2.
伪狂犬病病毒弱毒株LY株的分离鉴定   总被引:3,自引:1,他引:2  
从辽阳某猪场的10日龄仔猪中分离到1株病毒,经纯化后测得其毒价为107.29TCID50/mL.细胞中和试验表明,该病毒能被猪伪狂犬病病毒标准阳性血清所中和.电镜下可见到典型的疱疹病毒粒子,具有囊膜及外周纤突.所分离的病毒对氯仿、胰蛋白酶、乙醚敏感,在pH5.0~9.0下稳定,56℃ 30 min可以灭活.应用特异性引物,通过PCR能扩增出伪狂犬病病毒1 240 bp的gD基因.分离病毒对3日龄乳鼠有一定的致病力,但对家兔、3~5日龄仔猪及妊娠母猪都有很高的安全性.用不同剂量的病毒培养液肌肉注射于3~5日龄仔猪,14 d后用105.7TCID50伪狂犬病病毒强毒攻击,所有试验仔猪均可得到有效保护.用分离毒免疫母猪,其后代可获高滴度的母源抗体,15日龄的仔猪能抵抗105.7TCID50强毒的攻击.试验的结果初步说明,所分离的病毒为伪狂犬病病毒(命名为PRV LY株),并可能是一株弱毒株,而且具有很好的免疫保护作用.  相似文献   

3.
使用 SPF鸡胚成纤维细胞从蛋用种鸡的病料中分离到一株病毒.经禽白血病病毒(ALV) p-27抗原ELISA检测、病毒培养、反转录-聚合酶链式反应(RT-PCR)鉴定、群特异性抗血清中和试验和动物回归试验等证明,该株病毒属于禽白血病病毒.  相似文献   

4.
应用MDCK细胞从吉林某地犬瘟热(Canine distemper,CD)疑似发病犬肺脏组织中分离出1株病毒,该分离毒株经MDCK细胞传至第6代时出现典型的合胞体细胞病变(CPE)。经病毒形态观察、理化特性鉴定、RT-PCR和直接免疫荧光鉴定可知该分离毒株为犬瘟热病毒(CDV),命名为CDV-JT1;动物试验表明,试验犬接种CDV-JT1后21 d内都出现典型的犬瘟热症状;H基因序列分析表明,CDV-JT1株的H基因与中国分离株CDTaiChung株、TN株、SHLJ(07)1株、日本Hamamatsu株、Ueno株、Yanaka株和KDK-1株在基因型上同属于Asia-1型。CDV-JT1株含有包括CDV野毒株特有的309~311位在内的8个潜在的N-连接天冬酰氨糖基化位点。CDV-JT1强毒株的分离成功,对进一步开展疫苗研发、流行病学调查以及致病机理等方面的研究具有重要意义。  相似文献   

5.
The first case of porcine reproductive and respiratory syndrome (PRRS) in Denmark was diagnosed in March 1992 by the detection of specific antibodies against PRRS virus in serum samples originating from sows in a herd located on the island of Als. Subsequently, PRRS virus was isolated from a 200-sow farrow-to-finish herd with clinical signs consistent with PRRS. The virus was isolated by inoculation of pleural fluid from a stillborn piglet onto porcine pulmonary alveolar macrophages. The isolate was identified as PRRS virus by staining with a specific antiserum. By electron microscopy, the virus particle was found to be spherical and enveloped, measuring 45–55 nm in diameter and containing a 30–35 nm nucleocapsid. Only minor antigenic differences were found between the Danish and a Dutch isolate. Following intranasal inoculation of 3 pregnant gilts with the Danish isolate transplacental infection was demonstrated by the re-isolation of PRRS virus from approximately 45% of the piglets from the experimentally infected gilts. However, the experimental infection produced no significant reproductive disorders or other clinical signs. At autopsy, histopathological examination revealed slight interstitial pneumonia in a few piglets.  相似文献   

6.
本研究从疑似牛病毒性腹泻病毒(bovine viral diarrhea virus,BVDV)感染牛的分泌物与排泄物中分离鉴定1株牛病毒性腹泻病毒,并进行E2基因序列分析。结果表明,分离株病毒命名为JN株;Reed-Muench法测定分离株病毒TCID50为10-7.5/0.1 mL;病毒中和试验结果表明,BVDV JN分离株可被BVDV阳性血清特异性中和,而不能被BVDV阴性血清中和;分离株病毒E2基因序列测序结果表明,该分离毒株属于BVDVⅠa亚型。  相似文献   

7.
The virulence of two isolates of the classical swine fever virus (CSFV) was studied in experimentally infected wild boars of different ages. The isolates, originating from wild boars shot in Mecklenburg-Western Pomerania (isolate '1829-NVP') and in Rhineland-Palatinate (isolate '11722-WIL'), belong to the genetic subgroup 2.3 Rostock. Clinical picture, transient viraemia, virus excretion and gross lesions at necropsy as well as a failure of virus detection at the end of the experiment revealed that this virus subtype was only moderately virulent. Whereas one subadult wild boar and both 7-week-old wild boar piglets infected intranasally became sick and died, only one of three 8-week-old animals which survived after contact infection remained CSFV positive until the end of the experiment [34 days post infection (dpi)], although neutralizing antibodies were present. This underlines the role of young boars in CSF epidemics. The isolate '11722-WIL' was shed by an infected adult wild boar and was transmitted to susceptible piglets. Interestingly, all animals which became sick and died also were found to be infected with a secondary pathogen. Therefore, we assume that after infection with moderately virulent CSFV simultaneous infections with other pathogens may be important for the clinical course and the outcome of the disease as well as for a spread of the virus in field.  相似文献   

8.
猪伪狂犬病病毒的分离鉴定及其gE基因序列分析   总被引:1,自引:0,他引:1  
从福建省某猪场疑似伪狂犬病的发病3日龄仔猪的脑、肺脏中分离到1株病毒.该病毒接种家兔出现了典型的伪狂犬病症状,接种PK-15细胞36 h后出现了圆缩、集聚、脱落等典型的细胞病变,猪伪狂犬病病毒阳性血清能特异性中和该分离病毒.根据已发表的伪狂犬病病毒(PRV)gE基因的序列,设计并合成了一对引物,采用PCR方法可扩增特异性298 bp的DNA片段.测序结果与GenBank中有代表性的6株参考毒株相应基因序列比较,核苷酸和氨基酸序列同源性分别为95.5%~99%和91.8%~98%.系统进化树结果表明分离株与湖北分离株Ea株亲缘关系最近.  相似文献   

9.
Caprine arthritis-encephalitis virus (CAEV) infection in goats is worldwide but with higher prevalence in industrialized countries. While positive serology of CAEV in Polish goats was reported there was no genetic study of this virus. In this study, we described the molecular characterization of lentiviruses isolated from seropositive goats from Poland. We cloned and sequenced a fragment from the gag gene covering part of the coding sequences for the matrix (MA) p17 and for the capsid (CA) p25 proteins. Resulting nucleotide sequences were aligned with those from other ovine/caprine lentivirus isolates. We present data showing that the sequences of most goat lentivirus isolates are closer to the prototypic CAEV-Co isolate, nevertheless from one goat we isolated a virus that is closer to the sheep Maedi Visna virus (MVV) isolate. This might indicate a recent cross-species infection from sheep to goat.  相似文献   

10.
Twelve cattle were divided into 2 groups. The first was intranasally co-infected with 2 strains of infectious bovine rhinotracheitis virus (Bovine herpesvirus 1; BHV 1): the thermosensitive vaccine strain IBR/ts RLB106 and a Belgian field isolate IBR/Cu5. Reactivation of BHV 1 was induced by dexamethasone treatment 2 months later and again 5 months later for 3 animals that only reexcreted small quantities of virus during the first dexamethasone treatment. The second group was intranasally infected with IBR/Cu5. Two months later, an attempt to reinfect this group with IBR/ts RLB106 failed. Four months after the primary infection, these cattle were treated with dexamethasone. Except after reinfection and at the beginning or the end of the (re)excretion periods, excreted and reexcreted viruses replicated at 35, 37 and 40 degrees C, indicating the presence of the wild-type virus. Only one isolate, out of 116 cloned from the nasal exudates collected during the excretion and reexcretion periods, expressed the thermosensitive phenotype. This isolate was characterized by its mean plaque size as the IBR/ts RLB106 strain. The epizootiological significance of these findings is discussed, with emphasis on the weak spreading capacity of the ts vaccine strain and the possibility of emergence of recombinant viruses.  相似文献   

11.
The use of a live attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in piglets has been associated with reproductive disorders in non-vaccinated sows. Vaccine-derived virus (VDV) has been isolated from foetuses, stillborn pigs, and dead piglets, indicating that the live vaccine spread from vaccinated piglets to non-vaccinated sows, and that the virus might be implicated in the severe reproductive problems observed. In the present study, one such VDV isolate was used to experimentally infect pregnant sows in the last trimester. The chosen isolate, which had more than 99.6% identity to the attenuated vaccine virus, originated from the lungs of a stillborn pig from a swine herd with a sudden high level of stillborn pigs and increased piglet mortality in the nursing period. Intranasal inoculation of sows with the virus isolate resulted in congenital infection, foetal death, and preweaning pig mortality. As such, the present study showed that vaccine-derived PRRSV can cause disease in swine consistent with PRRS.  相似文献   

12.
Some isolates of type II bovine viral diarrhea virus (BVDV) are capable of causing severe clinical disease in cattle. Bovine viral diarrhea virus infection has been reported in pigs, but the ability of these more virulent isolates of type II BVDV to induce severe clinical disease in pigs is unknown. It was our objective to compare clinical, virologic, and pathologic findings between type I and type II BVDV infection in pigs. Noninfected control and BVDV-infected 2-month-old pigs were used. A noncytopathic type I and a noncytopathic type II BVDV isolate were chosen for evaluation in feeder age swine based upon preliminary in vitro and in vivo experiments. A dose titration study was performed using 4 groups of 4 pigs for each viral isolate. The groups were inoculated intranasally with either sham (control), 10(3), 10(5), or 10(7) TCID50 of virus. The pigs were examined daily and clinical findings were recorded. Antemortem and postmortem samples were collected for virus isolation. Neither the type I nor type II BVDV isolates resulted in clinical signs of disease in pigs. Bovine viral diarrhea virus was isolated from antemortem and postmortem samples from groups of pigs receiving the 10(5) and the 10(7) TCID50 dose of the type I BVDV isolate. In contrast, BVDV was only isolated from postmortem samples in the group of pigs receiving the 10(7) TCID50 dose of the type II BVDV isolate. Type I BVDV was able to establish infection in pigs at lower doses by intranasal instillation than type II BVDV. Infection of pigs with a type II isolate of BVDV known to cause severe disease in calves did not result in clinically apparent disease in pigs.  相似文献   

13.
Swine, a natural host species for infection by vesicular stomatitis virus (VSV), were infected with VSV-New Jersey (VSV-NJ) serotype virus obtained from a recent field isolate. Tissues collected from the infected pigs were examined for the presence of infective virus, for viral antigens, and/or for viral nucleic acid. Infective virus could be recovered from tissues near the site of infection for as long as 6 days after the primary infection with VSV. However, no infective virus was recovered following hypothermia induced 11 weeks after infection, or following a secondary challenge with virus 22 weeks after initial infection. Immunofluorescence tests for viral antigens and nucleic acid hybridization assays failed to detect viral antigens or nucleic acids in tissues from which no infective virus could be recovered. Titers of serum-neutralizing antibody peaked 3–5 weeks after infection and then fell slightly until the secondary infection which caused a rapid anamnestic response. Peripheral blood mononuclear cells (PBM) tested 3, 5, 8 or 18 weeks after primary infection all produced readily detectable antigen-specific proliferative responses when cultured with VSV. Thus, although direct tests failed to demonstrate persistence of virus after infection, the humoral and cellular immune response remained elevated for months. Infective VSV was not required to stimulate the proliferative response since UV-inactivated VSV was immunogenic in these in vitro tests. Following primary infection, antigen-specific proliferative responses could be stimulated by several strains of VSV-NJ, but not by VSV-Indiana (VSV-Ind) serotype virus. Secondary infection had relatively little effect on the proliferative response to VSV-NJ strains, but it did cause the PBM to gain responsiveness to VSV-Ind.  相似文献   

14.
A disease characterized by nervous signs was found in 10 calves in two districts in Kagoshima Prefecture, Japan, from October to November, 1984. Histopathological changes of nonpurulent encephalitis were found in every case. An agent, named Iriki isolate, was isolated from the cerebellum of a calf in HmLu-1 cell cultures. All of the affected calves possessed neutralizing antibody to the virus. A high seropositive rate to the virus in cohabiting cattle and cattle kept in the epizootic area, and seroconversion to the virus in 1984, were disclosed. Experimental infection of calves with Iriki isolate produced severe nervous signs and histopathological changes similar to those of the natural infection. These seroepidemiological findings and animal experiments established that Iriki isolate is the causative agent of the disease. Iriki isolate was considered as a variant of Akabane virus since the virus showed cross reaction with Akabane virus in virus neutralization tests.  相似文献   

15.
Vulvovaginitis of goats due to a herpesvirus   总被引:2,自引:0,他引:2  
Two concurrent outbreaks of genital disease in goats were associated with infection by a herpesvirus that was isolated from vulval and vaginal lesions of affected does. Serum neutralising antibody to the virus was present both in goats with the clinical disease and some unaffected goats. Of 19 goat herds examined only 4 had serum neutralising antibody positive goats with low (5%) to high (60%) incidence of infection. The virus isolate was characterised as a herpesvirus on its physico-chemical and morphological features. It contained DNA and was inactivated at low pH and by treatment with lipid solvents and trypsin. The virus particles were icosahedral, consisting of a nucleocapsid surrounded by an envelope membrane and measured approximately 150 nm in diameter. The virus was serologically related to a New Zealand isolate of caprine herpesvirus (NZ-CpHV), associated with similar genital disease, and was distinct from bovine herpes virus-1 (BHV-1) showing a one way neutralisation pattern.  相似文献   

16.
Mechanism of thrombocytopenia in African swine fever   总被引:1,自引:0,他引:1  
Pigs were inoculated with an African swine fever (ASF) isolate of moderate virulence, and the changes in the number of circulating blood platelets during infection were correlated with the appearance of antiviral antibody and fluctuations in total plasma hemolytic complement concentrations. Thrombocytopenia was detected by postinoculation days (PID) 7 and 8, and antiviral antibody was detected by PID 7, using an indirect immunofluorescence technique. The total hemolytic complement concentration was moderately and transiently decreased from PID 5 to 9, but was consistently low from PID 18 to 26. Pigs inoculated with an ASF virus isolate of greater virulence had a decrease in platelet counts on PID 6 and 7, and the total plasma hemolytic complement levels decreased in all pigs by PID 6 to 7. Antibody to ASF virus was not detected in pigs inoculated with the more virulent isolate. Pigs sensitized to ASF viral antigen with an inactivated-virus vaccine or by previous infection with ASF were challenge exposed. Sensitized pigs became clinically ill and thrombocytopenic by 24 to 72 hours earlier than did inoculated, nonsensitized pigs. Vaccinated pigs inoculated with homologous virus had lower blood virus concentrations than did nonvaccinated pigs. African swine fever virus-sensitized pigs inoculated with heterologous virus had a higher fatality rate than did nonsensitized pigs, and the pigs died peracutely, with only a few gross lesions in evidence. In vitro experiments demonstrated that ASF virus antigen induced platelet aggregation in platelet-rich plasma from recovered, nonviremic pigs. Viral antigen, antibody, or complement was not demonstrable on the surface of platelets from pigs inoculated with ASF virus isolate, by direct immunofluorescence testing.  相似文献   

17.
为研究鹅源鸭疫里默氏杆菌的生化特性、药敏情况、血清型和致病性,从扬州郊区发病鹅场分离到1株细菌,经分离培养、染色镜检、生化特性鉴定、玻片凝集试验,确定为Ⅱ型鸭疫里默氏杆菌。对病料进行病毒分离试验,经过血凝试验和琼脂扩散试验,没有发现鹅新城疫病毒、禽流感病毒和小鹅瘟病毒。动物致病性试验结果表明,鸭疫里默氏杆菌分离菌株可以通过静脉注射、皮下注射和滴鼻3种途径感染鹅,出现100%的死亡率,说明分离株对扬州鹅具有很强的致病性,同时提示在鹅的免疫计划中也应该充分考虑到鸭疫里默氏杆菌的致病和传播。  相似文献   

18.
19.
In 2004, a low pathogenic H5N2 influenza virus (A/parrot/CA/6032/04) was identified in a psittacine bird for the first time in the United States. Sequence and phylogenetic analysis of the hemagglutinin gene grouped the parrot isolate under the Mexican lineage H5N2 viruses (subgroup B) with highest similarity to recent chicken-origin isolates from Guatemala. Antigenic analysis further confirmed the close relatedness of the parrot isolate to Mexican lineage viruses, the highest cross-reactivity being demonstrated to Guatemala isolates. In vivo studies of the parrot isolate in chickens, ducks and turkeys showed that the virus, though did not cause any clinical signs, could replicate to high titers in these birds and efficiently transmit to contact control cage mates. The possibility that the parrot harboring the virus was introduced into the United States as a result of illegal trade across the border provides additional concern for the movement of foreign animal diseases from neighboring countries. Considering the potential threat of the virus to domestic poultry, efforts should be continued to prevent the entry and spread of influenza viruses by imposing effective surveillance and monitoring measures.  相似文献   

20.
Virus subpopulations with variable virulence, immunogenicity, and infectivity to pigs were readily generated by passaging Tengani isolate of African swine fever virus, either biologically cloned or uncloned, in Vero cell cultures. Avirulent virus populations which account for more than 99% of virus in an uncloned preparation of the 27th passage are laboratory artefacts, perhaps do not exist in nature. Furthermore, attenuation of virulence did not occur uniformly in all subpopulations newly generated, and a continuous modulation of virus populations differing in immunogenicity and virulence took place in the same individuals inoculated with the 27th passage virus. The same virus preparation, appearing to be slightly virulent in pigs, contained at least a virulent subpopulation that was manifested only by further inoculating susceptible pigs with viremic blood collected at various times during the clinical course. A cloned virus after 23 passages in cell cultures generated a subpopulation (99.9%) which induced subclinical infection in pigs; however, the infection did not confer a solid immunity to homologous challenge with Tengani isolate in these pigs. The Tengani isolate contained subpopulations of virus with immunogenicities shared by the Lisbon '60 isolate and also contained at least one subpopulation specific for the Tengani only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号