首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对南方种植区花生收获过程中壅土阻塞、花生果秧缠绕、动力消耗大等问题,设计了一种花生挖掘条铺机,使其能一次性实现花生的挖掘、输送、振动去土、有序铺放等工序,并进行双垄挖掘作业。根据对挖掘装置、输送去土装置、秧棵翻转及条铺装置的动力学分析,得到花生条铺机的理论作业参数范围,通过三因素三水平正交试验分析得到各因素对埋果率影响的主次顺序为前进速度>输送带转速>翻转轮转速,各因素对带土率影响的主次顺序为输送带转速>翻转轮转速>前进速度,通过田间试验验证该机器基本满足花生条铺的作业要求。  相似文献   

2.
围绕国内花生的种植模式和农艺要求,结合国内已有的花生收获机械,并借鉴国外先进的花生收获机型,为解决当前国内存在的花生收获效率低、劳动强度大等问题,研制出一种高效简洁的新型花生收获机。该机主要由挖掘装置、夹持输送装置、碎土装置及有序铺放装置等部分构成,配套动力16kW,可依次实现花生的挖掘拔取、夹持输送、抖土去土及有序条铺等作业,可有效提高花生收获效率,降低劳动强度,节省人力投入。田间试验表明:该机作业性能良好,埋果率2.0%,破碎率1.0%,含土率20.0%,生产率0.30~0.50hm2/h,各项指标均符合花生收获机作业质量标准(NY/7502-2002),满足实际生产要求。  相似文献   

3.
针对我国新疆地区花生种植的模式,考虑到现有机具适应性差的问题,结合花生收获农艺需求,研制一种可有序铺放的花生起收机,该机具主要由机架、挖掘铲、升运链、振动装置和铺放装置组成。振动装置中振动轮采用3个直径为80 mm的橡胶轮依次排列,排列间距为120 mm,铺放装置中两铺放对辊的间距区间为100~200 mm;机具可一次性完成花生的挖掘输送、振动去土和有序铺放等作业。采用正交试验法对机具关键部件性能进行田间试验,确定试验参数的较优组合。试验结果表明该机在升运链轮转速100 r/min,对辊间距150 mm,机具行走速度为1 km/h的条件下具有较优的性能,其总损失率为2.4%,带土率为13.6%,有序铺放率为80.4%,作业质量满足花生收获农艺需求,为新疆地区花生机械化收获的发展提供一定借鉴。  相似文献   

4.
针对油菜薹机械化有序收获装备缺乏的问题,设计了一种对行式油菜薹有序收获机,完成油菜薹对行、夹持切割、柔性输送、有序铺放等收获环节。阐述了收获机整机结构和作业过程,根据切割、输送和铺放过程中油菜薹的运动学和动力学分析,确定了单圆盘切割器、夹持输送装置和导流板等部件的结构和运行参数,解析收获机参数对切割损伤率和铺放角变异系数的影响规律。研制对行式油菜薹有序收获机样机,以机器前进速度、切刀转速、输送带速度和导流板倾角为试验因素,以切割损伤率和铺放角变异系数为评价指标开展四因素三水平Box-Behnken田间试验。利用数据分析软件Design-Export 10建立试验指标与因素之间的二次多项式回归模型,分析各因素对试验指标的影响规律;求解切割损伤率和铺放角变异系数优化模型,得出最优参数组合为:机器前进速度0.5 m/s,切刀转速910 r/min,输送速度0.75 m/s,导流板倾角49°。验证试验表明,较优参数组合条件下切割损伤率为4.95%,铺放角变异系数为9.55%,与预测值之间的相对误差小于5%,能够满足油菜薹有序收获需求。  相似文献   

5.
半喂入式联合收获是目前花生收获的主要方式之一,其夹持输送装置作为半喂入花生联合收获机关键部件,对整机作业性能影响尤为重要。针对花生联合收获机夹持输送装置作业稳定性差、花生植株输送归集拥堵等问题,设计了一款半喂入花生联合收获夹持输送装置。该装置采用“挖拔组合”作业方式,结合花生的种植农艺和实际作业速度,完成花生植株夹持输送作业。通过对夹持输送作业进行运动学和仿真分析,确定影响夹持输送装置的影响因素,并通过单因素试验得到其取值范围:夹持输送速度为0.8~1.1 m/s,夹持装置倾角为25~35°,夹持高度为150~200 mm。研究结果为半喂入花生联合收获夹持输送装置的设计提供了理论依据。  相似文献   

6.
2垄4行夹持归集装置安装在2垄4行全喂入花生联合收获机上。该装置主要是将挖掘出来的两路花生进行夹持、抖土,然后将两路花生归集到一处,方便后续作业。该装置的研制大幅度提高了花生收获的工作效率。经试验分析,夹持喂入率在98%以上,去土率大于70%,掉果率不大于0.1%,作业效率在0.2hm2/h以上,夹断率几乎为0,花生秧果在归集过程中没有发生堵塞现象,各项指标都能够达到设计要求。  相似文献   

7.
4HBL-2型花生联合收获机复收装置设计与试验   总被引:2,自引:0,他引:2  
针对4HBL-2型花生联合收获机果土分离及输送中花生果实的漏果、掉果问题,设计了花生联合收获机复收装置。在花生联合收获时,对土壤中遗漏的果实和夹持输送过程中掉落的果实进行复收、清选、集果等作业。并对复收装置进行了设计与试验研究,确定了该装置的最优结构参数和工作参数:复收装置安装角度为20°,复收链输送速度1.2 m/s,复收链杆条间隙10 mm。在机组前进速度为0.6 m/s时,实现收获花生平均净果率为90.16%,平均漏果率为0.12%,提高了花生的收获质量,减少了花生二次复收的劳动强度和作业成本。  相似文献   

8.
针对我国花生主产区种植模式的特点,成功研制了4SHWZ-1800自走型分段式花生收获机。其主要由底盘、传动系统、挖掘装置、清土输送装置、果秧铺放装置、落果清选装置和输送升运集果装置等部件组成,一次作业可完成挖掘、松碎土壤、秧土分离、秧果成条铺放、落果清选和集果等作业。该机在分段收获的基础上,采用了复收技术;设计了箭式挖掘铲,降低了挖掘阻力,提高了碎土效果;采用挖抖组合技术,实现花生宽幅收获,提高了工作效率;采用筛网输送带式果土分离技术,有效降低机收损失。田间试验表明:该机操控灵活、简单,作业顺畅,性能稳定;埋果率为0.1%、破碎率为0,各性能指标均符合国家花生收获机作业质量(NY/7502-2002)检测标准,符合设计要求。  相似文献   

9.
双行自走式大葱收获机的设计研究   总被引:1,自引:0,他引:1  
针对当前我国大葱收获作业环节用工量大、大葱收获机械尚不成熟等问题,研制了一种双行自走式大葱收获机,以减少作业环节、提高劳动效率。该机一次收获两行,集挖掘抖土、双行汇集、夹持输送和收集等功能为一体,主要由传动系统、挖掘抖土装置、双行汇集装置、夹持输送装置及二次去土装置和收集装置等组成。挖掘抖土装置分为挖掘和抖土两部分,挖掘部分能够深入大葱根部将大葱提起,抖土部分可以在提起大葱的同时进行抖土;夹持输送装置采用柔性橡胶材料,保证了夹持过程中不对大葱造成损伤。田间试验标明:该机作业顺畅、性能稳定,匹配动力42k W发动机,大葱损伤率小于2.4%,总损失率小于4.2%。  相似文献   

10.
为了提高4HLB-2型半喂入花生联合收获机作业性能,通过单因素试验和两因素全试验,研究了土壤含水率、收获期、夹持高度、清土频率和振幅、摘果辊转速和夹持输送速度对收获损失和含土率的影响。结果表明:收获沙壤土花生的适宜土壤含水率为8%~15%;花生生长后期,清土落果损失率逐渐增加,当根茎拉断力小于5N时,落果损失率大于2%;机器收获的最佳夹持高度为150~200mm,此时清土和摘果效果最佳,其中果实总损失率小于6%,含土率小于4%;清土作业采用低频率、小振幅时落果损失小,但含土率高,采用高频率、大振幅时含土率低,但落果损失大;摘果作业在高摘果辊转速和低夹持速度工况下,摘果段损失率较低,试验中当摘果辊转速为390r/min、夹持速度为0.5m/s时,摘果损失率为  相似文献   

11.
4HLB-2型半喂入花生联合收获机试验   总被引:8,自引:0,他引:8  
为了提高4HLB-2型半喂入花生联合收获机作业性能,通过单因素试验和两因素全试验,研究了土壤含水率、收获期、夹持高度、清土频率和振幅、摘果辊转速和夹持输送速度对收获损失和含土率的影响.结果表明:收获沙壤土花生的适宜土壤含水率为8%~15%;花生生长后期,清土落果损失率逐渐增加,当根茎拉断力小于5N时,落果损失率大于2%;机器收获的最佳夹持高度为150~200mm,此时清土和摘果效果最佳,其中果实总损失率小于6%,含土率小于4%;清土作业采用低频率、小振幅时落果损失小,但含土率高,采用高频率、大振幅时含土率低,但落果损失大;摘果作业在高摘果辊转速和低夹持速度工况下,摘果段损失率较低,试验中当摘果辊转速为390r/min、夹持速度为0.5m/s时,摘果损失率为2.79%.  相似文献   

12.
分段式大蒜收获机的设计与试验   总被引:1,自引:0,他引:1  
针对目前国内大蒜收获强度大、收获效率低及收获成本高等问题,设计了分段式大蒜收获机。该机主要由挖掘装置、限深装置及夹持装置、打捆装置等组成,采用手扶拖拉机作为动力源和安装平台,夹持装置采用链条设计,打捆装置可实现收获后大蒜的打捆作业。该机可一次完成三行大蒜的挖掘、夹持输送、打捆等收获作业,省时省力,高效低耗。应用CAD、SolidWorks等软件进行图样的设计和三维模型的建立,并对挖掘装置、夹持装置等关键装置进行重点设计。在山东兰陵县神山镇进行了大蒜种植田间试验,结果表明:该机器生产率0.1 hm~2/h,漏蒜率为1.9%,伤蒜率为0.58%,损失率为1.9%,挖掘深度为8cm。研究结果可为大蒜收获机械的研究提供参考。  相似文献   

13.
薯类机械化收获技术及其机具改进   总被引:1,自引:0,他引:1  
1 薯类收获机的基本构造及收获作业要求 薯类收获机可一次性完成薯类挖掘、土壤和薯块分离、薯块条状铺放于地表面等多项作业.其基本构造主要由机架、悬挂装置、挖掘装置、清选装置和动力传动装置等组成.基本工作过程为:收获机在拖拉机的牵引及动力传动下,由挖掘铲将垄中的红薯或马铃薯连土全部铲起,随着收获机组的前进,将铲起的薯块和土送至栅条式清选装置上,大部分土从栅条间隙漏下,薯块被向后输送,然后落于地表,成条状铺放,再由人工捡拾.  相似文献   

14.
针对我国大白菜收获机械化水平低、配套技术与装备缺乏的现状,在分析大白菜主要种植模式和机械化收获要求的基础上,对大白菜机械化收获关键技术进行了研究,确定了先切根再夹持导向、输送的机械化收获方案,并设计了一种适合我国南方地区田间作业的履带自走式单行大白菜收获机。该收获机主要由切割装置、夹持导向装置、倾斜输送装置、水平输送装置、收集装置、液压传动系统等关键部件组成,可一次性完成大白菜的切根、夹持导向、输送与装箱等收获作业。为了获得该机的良好作业性能,对各关键装置和部件进行了理论计算与分析,并进行了样机试制和田间性能试验。田间试验结果表明,当机器前进速度约为0.30m/s,切根装置、夹持导向装置以及夹持导向装置的液压马达驱动转速分别设置为300、300、175r/min时,该大白菜收获机平均生产率达0.11hm2/h,平均切根合格率为93.40%,平均夹持成功率为95.86%,平均输送成功率为100%,平均作业损失率为7.84%,收获机各关键部件工作稳定,收获效果较好,基本满足大白菜的机械化收获要求。  相似文献   

15.
针对花生收获漏果、掉果严重且缺少有效的花生复收机问题,为进一步减小花生收获损失率、提高收获效益,设计了一种牵引式花生复收机。复收机主要由挖掘装置、滚筒式分离输送装置、集果箱、机架及限深装置等组成,能够一次性完成花生荚果的挖掘、输送、除杂去土及收集等作业过程。其中,挖掘铲采用封闭铲面及栅杆结构,有效降低了挖掘阻力,提升了挖掘效果;采用滚筒式分离输送装置,实现了花生荚果的有效抬升及碎土清土,有效降低了花生荚果的含土率及破损率。田间试验结果表明:机具收获效果好,工作性能稳定,收获含土率低于4%,破损率低于2.5%,漏果率低于0.25%,生产效率达到0.21~0.37 hm2/h,可为进一步开发设计高效的花生复收收获机械提供参考。  相似文献   

16.
为提高半喂入式花生联合收获机作业效率,改善其适应性,以前进速度、夹持输送速度、摘果辊转速为试验因素,以损失率和破碎率为试验指标,采用三因素二次回归正交旋转组合试验设计方案,运用Design-Expert 8.0.6软件进行响应面分析,得到响应面模型;对所得到的数学模型进行优化求解,并采用优化后的最佳工作参数组合进行验证试验。结果表明:当前进速度范围为1.0~1.3m/s、夹持输送速度工作范围为1.2~1.6m/s、摘果转速为450、600r/min时,损失率和破碎率均满足作业标准。  相似文献   

17.
自走式木薯收获机的设计   总被引:3,自引:0,他引:3  
针对目前我国木薯机械化水平低、人工收获费时费力、效率低等问题,设计了自走式木薯收获机。收获机由履带底盘带动,主要由挖掘装置、夹持输送装置、土薯分离装置和传动系统等组成,能一次性完成木薯挖掘、夹持输送、薯茎分离及去土收集等工序;夹持输送机构能有效降低挖掘阻力,降低了机器动力要求;收获过程耗用人工少,显著提高了生产效率。该设计可为木薯收获机械的深入研究和发展提供参考。  相似文献   

18.
针对土壤层残膜回收装备存在挖掘阻力大、功耗高、易壅土等问题,设计抖动链齿杆式残膜-土壤-秸秆挖掘与输送装置,其中旋耕挖掘机构降低挖掘阻力并解决壅土问题,抖动链齿输送机构提高残膜-土壤-秸秆输送效率。建立输送链表面物料颗粒的受力模型,分析前进速度与输送链转速之间的变化关系,计算抖动轮与输送链转速;测定土壤剖面残膜和秸秆的含量及分布并建立虚拟仿真土槽,模拟棉田土壤中残膜和秸秆含量及分布特点。在EDEM中构建残膜-土壤-秸秆挖掘与输送装置仿真模型并设置挖掘铲入土深度150 mm,在不同前进速度(0.75、1、1.25 m/s)、旋耕刀片转速(210、230、250 r/min)、输送链转速(65、85、105 r/min)组合条件下,模拟挖掘与输送残膜-土壤-秸秆过程中的壅土效果和颗粒速度变化特性;根据仿真试验结果可知,在挖掘与输送装置前进速度较高的条件下易发生壅土问题,土壤层残膜、土壤和秸秆颗粒运动速度小于5 m/s。田间试验结果与仿真试验结果基本相同,在不同的因素水平组合条件下,田间试验测量壅土高度范围为71~246 mm;田间试验表明,当壅土高度小于等于90 mm时不会发生挖掘阻力较大...  相似文献   

19.
针对大蒜联合收获机拉拔收获特点与鳞茎定位要求,为提高输送成功率、降低鳞茎损伤率,设计了一种浮动式夹持装置,阐述了其主要结构与工作机理。通过茎秆受力变形与植株运动分析,明确了试验台浮动轮弹性系数、间距及链条输送速度等关键作业影响参数的取值范围。构建了茎秆流变模型,并根据不同载荷下的茎秆蠕变曲线拟合了茎秆的粘弹性参数,明析了关键作业参数与输送装置夹持力、输送损失及鳞茎损伤的关系。以浮动轮弹性系数、间距及链条输送速度为试验因素,以成功率和损伤率为试验指标,用Design-Expert软件进行试验数据分析,由Origin软件生成3D响应曲面,得到各因素对指标的影响次序。结果表明,当浮动轮弹性系数、间距及链条输送速度分别为2 N/mm、83 mm和520 mm/s时,装置性能最优,夹持成功率和损伤率分别为97.42%和1.36%。对优化因素进行试验验证,试验与优化结果基本一致,满足大蒜联合收获浮动夹持高成功率与低损伤率的作业要求。  相似文献   

20.
针对现有甘蔗割铺机只能单向收获作业、固定切割高度、无扶蔗机构、车架结构不合理、智能化程度低等问题,设计了一种丘陵山地模块化甘蔗割铺机。整机通过合理布局和侧挂式输送形式,并由可调铺放角度的铺放装置将甘蔗铺放至割铺机后方左右两侧,实现了双向式收获作业并改善输送通道易堵塞的问题。结合甘蔗在扶蔗运动过程中的受力分析,提出了不等螺距螺旋滚筒设计,通过空间坐标变化得到螺旋线方程以及螺旋滚筒直径与安装角度;通过甘蔗输送运动分析确定了输送铺放机构作业速度、甘蔗铺放角;通过甘蔗切割机理分析得到了砍蔗机构切割形式、切割刀盘直径与转速等关键参数。整机作业幅宽设计为1100mm,工作速度为1.8km/h,生产效率为0.176hm2/h。样机田间试验结果表明,当前进速度452.28mm/s、砍蔗机构转速562.12r/min、刀盘倾角12.27°时,甘蔗割铺机破头率最低,为8.398%,工作总损失率为1.71%,整机试验过程中工作状态良好,达到整机的设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号