首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
南疆铁路风沙流结构特征研究   总被引:2,自引:0,他引:2  
通过对南疆铁路戈壁风沙流进行现场观测研究,提出了关于风沙流密度的计算方法,将大风所携沙粒定量化,解决了风沙运动研究中如何利用现场定时观测研究风沙流动态变化的技术难题.根据现场实测资料分析,揭示了南疆铁路风沙流密度随高度和风速的变化关系.从中可以看出,风沙流密度随高度变化显现斜"L"形,以3m高为分界点;而相对的风沙流密...  相似文献   

2.
风沙流研究的历史、现状及其趋势   总被引:32,自引:1,他引:31  
本文扼要回顾了风沙流的研究历史;简明评述了颗粒运动特征、风沙流结构、输沙率模型、起沙风模型、表面气流变化、风沙两相流等研究现状内容;就目前研究中存在的问题、研究趋势等方面作了探讨。  相似文献   

3.
风沙运动数值模拟研究的进展   总被引:5,自引:0,他引:5  
本文从模型建造,模拟结果两方面对风沙流,沙波纹,沙丘,粉尘运动等的数值模拟研究进展作了简便介绍和评述,并提出了研究展望。  相似文献   

4.
乌兰布和沙漠风沙流结构的研究   总被引:1,自引:0,他引:1  
作者观测了固定、流动沙丘风沙流结构,并运用拟合曲线、拟合方程等方法对固定、流动沙丘风沙流结构进行了分析研究。结果表明,两种沙丘输沙率均与风速成正比,与高度成反比;0-40cm高度内输沙量与风速之间遵循指数关系;流动沙丘的沙粒运动主要集中在近地层0-6cm高度范围内;另外,植被阻截沉沙效果特别明显,植被覆盖度在30%时,沉沙效果达到95%以上,且随风速的增大而增加。  相似文献   

5.
风沙防治中覆网床面风沙流特性的风洞模拟   总被引:2,自引:0,他引:2  
在风沙防治中,根据气流与沙物质地表作用的机理来看,主要有三种途径。一是降低床面风速,二是减少沙源,第三就是阻截运动气流与床面的相互作用。借助风洞模拟实验,对覆网床面风沙流特性研究发现:覆网床面沙面稳定性主要受覆网形状参数的影响,通过对覆网床面风速廓线、风沙流结构观测,主要探讨孔隙度、孔径等覆网参数对沙面稳定性的影响机理。另外,覆网床面蚀积状态还受进口风速的影响,在风速较小时,床面表现为积沙,风速较大时,床面开始风蚀。  相似文献   

6.
为了研究乌海市沿黄河两岸沙丘风沙流结构差异与冰面风沙特征,开展以黄河西岸-黄河冰面-黄河东岸为路径的风沙观测实验,通过对比分析黄河两岸沙丘风沙流结构、沙尘粒度特征,为黄河沙尘防控问题提供理论依据。研究表明:两岸沙丘总输沙率均随着高度增加而减小,东岸输沙率垂直拟合优度较西岸差,风沙流比西岸更容易达到非饱和状态。黄河冰面裂缝滞留沙尘粒径大于0. 19 mm,较小颗粒则输移到东岸,东岸沙丘受矿采区粉尘影响,极细砂粒(0. 05~0. 1 mm)含量增加,极细砂平均含量东岸西岸,沙尘平均粒径东岸西岸。沿黄河两岸沙丘与冰面沙尘的粒度参数峰度均为宽峰态,沙物质来源相似。  相似文献   

7.
基于SPH方法的风沙流中沙粒速度分布数值计算   总被引:1,自引:0,他引:1  
沙粒速度是沙粒传输理论研究中的重要参数,它可以反映风沙两相流运动中微观运动和宏观运动的信息。本文运用光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法对风沙流动过程进行建模及数值计算,动态地显示跃移沙粒在整个风沙流过程中的运动状态,得到单个沙粒运动速度大小和方向的变化趋势,通过对单个沙粒的运动物理量进行统计分析,得到了沙粒群体运动行为的动力学特性。SPH方法的基本思想是将计算区域分解成独立的粒子,这些携带着自身质量,具有自身密度等物理特性的计算粒子可以随着控制方程运动,这点与自然界中沙粒的离散特点非常相符。本文针对SPH方法自身的关键因素进行了与风沙流特点相适应的改进和修正,使其在处理风沙流中两相物质的耦合时有它独到的优势。  相似文献   

8.
北京平原土壤机械组成和抗风蚀能力的分析   总被引:10,自引:0,他引:10  
土壤遇风起沙是风沙活动产生的最根本原因,它的基本点有二:一是具有足以使砂粒产生运动的一定强度的起沙风;二是土壤颗粒小、质地干燥疏松,具有遇风起沙产生运动的属性。本文分析了北京土壤的机械组成特征和结构性能等。叙述了在永定河边部一些地块的野外风沙观测和沙风洞试验,证实土壤结构性、干松程度、植被覆盖状况是决定土壤抗风蚀性能的三要素。最后,试用不易蚀因子含量评价北京平原土壤的抗风蚀能力。  相似文献   

9.
黄河中游风沙区风沙活动对黄河若干支流泥沙的影响   总被引:1,自引:1,他引:1  
黄河中游地处半干旱气候区,兼有库布齐、乌兰布和与毛乌素三大沙漠(地),频繁的风沙活动对黄河泥沙的影响是深远的、多方面的。本文阐述了黄河中游风沙区风沙气候特征,并在野外观测基础上,以若干支流为研究对象,计算了入河风沙量,分析了风沙活动对河流泥沙的宏观影响。  相似文献   

10.
文中基于光滑粒子流体动力学(Smoothed Particle Hydrodynamics:SPH)方法,采用五次样条光滑函数,通过调节不同类型粒子光滑因子,对风沙流运动特性进行分析:1)在风沙流起动阶段,沙粒平均水平速度随高度增加而增大,同一高度处沙粒平均水平速度随时间推移而减小。2)风沙流稳定前后,沙粒数均随高度的增加而减少。3)风沙流形成过程中气体粒子在计算域中心位置产生涡流,并随着时间推移,涡流又出现在计算域中上及右下方位置。4)起沙前后气体脉动强度随摩阻风速增加而增加,随高度增加呈现不同变化。结果表明:该方法模拟精度较高,适用于解决风沙两相流数值模拟问题。  相似文献   

11.
策勒绿洲-荒漠过渡带风沙前沿近地表沙尘水平通量观测   总被引:2,自引:0,他引:2  
沙漠地区近地表水平输送的沙尘物质通量及其随高度的变化是沙尘输送过程的重要表现特征。在塔克拉玛干沙漠南缘策勒绿洲-荒漠过渡带风沙前沿平坦沙地的风沙观测场,利用BSNE集沙仪对近地表(2 m)不同高度沙尘物质的水平输送进行了观测,对其随高度变化特征进行了分析,并对近地表水平运动的沙尘通量进行了计算。结果表明:观测点沙尘物质的水平通量随高度的增加而减小,与高度的关系可用幂函数和指数函数表示;55%~58%的沙尘量在地表0.5 m高度以内传输;73%~75%在地表1 m高度以内传输;87%~89%在地表1.5 m高度以内传输;2010年5月25日至2011年5月24日,通过0~2 m高度的单宽总输沙量为1 846.7 kg•m-1;其中PM80、PM50的输送量分别为1 192.0 kg•m-1、387.9 kg•m-1。  相似文献   

12.
Although scientists have performed many studies in the Taklimakan Desert, few of them have reported the blown sand motion along the southern edge of the Taklimakan Desert Highway, which differs significantly from the northern region in terms of aeolian sand geomorphology and formation environment. Based on the field observation data of airflow and aeolian sand transport, continuous monitoring data of erosional and depositional processes between 14 April 2009 and 9 April 2011 and data of surface sand grains from the classical section along the southern edge of the Taklimakan Desert Highway, this paper reported the blown sand motion within the sand-control system of the highway. The main results are as follows: 1) The existing sand-control system is highly effective in preventing and controlling desertification. Wind velocities within the sand-control system were approximately 33%–100% of those for the same height above the mobile sand surface. Aeolian sand fluxes were approximately 0–31.21% of those of the mobile sand surface. Sand grains inside the system, with a mean diameter of 2.89 φ, were finer than those(2.15 φ) outside the system. In addition, wind velocities basically followed a logarithmic law, but the airflow along the classical section was mainly determined by topography and vegetation. 2) There were obvious erosional and depositional phenomena above the surface within the sand-control system, and these phenomena have very consistent patterns for all observation points in the two observed years. The total thicknesses of erosion and deposition ranged from 0.30 to 14.60 cm, with a mean value of 3.67 cm. In contrast, the deposition thicknesses were 1.90–22.10 cm, with a mean value of 7.59 cm, and the erosion thicknesses were 3.51–15.10 cm, with a mean value of 8.75 cm. The results will aid our understanding of blown sand within the sand-control system and provide a strong foundation for optimizing the sand-control system.  相似文献   

13.
沙漠地区不同下垫面近地表沙尘水平通量研究   总被引:2,自引:0,他引:2  
沙漠地区近地表水平输送的沙尘物质通量及其随高度的变化特征直接影响着沙尘的输送过程。选择塔克拉玛干沙漠腹地塔中地区的典型沙丘、平沙地为观测点,利用BSNE集沙仪,对2008-2009年11次典型沙尘天气过程中近地表0~200 cm不同高度层沙尘物质的水平输送进行了测量,对其随高度变化特征进行分析,计算近地表水平运动的总沙尘通量。结果表明:近地表0~200 cm范围内,在沙丘顶部和平沙地沙尘水平通量均随高度呈显著降低趋势,在这2种下垫面条件下,沙尘水平通量随高度的变化均较好地符合幂函数关系;在沙丘顶部,通过100 cm(宽度)×200 cm(高度)空间断面的总沙尘水平通量为3 721.0 kg,平沙地通过相同大小断面的沙尘水平通量为2 252.9 kg,比沙丘顶部减少了39.5%;沙丘顶部与平沙地PM80的总水平通量分别为996.8 kg和678.9 kg。  相似文献   

14.
Tazhong is the hinterland and a sandstorm high-frequency area of the Taklimakan Desert. However, little is known about the detailed time-series of aeolian sand transport in this area. An experiment to study the sand-dust horizontal flux of near-surface was carried out in Tazhong from January to December 2009. By measuring the sand-dust horizontal flux throughout sixteen sand-dust weather processes with a 200-cm tall Big Spring Number Eight (BSNE) sampler tower, we quantitatively analyzed the vertical variation of the sand-dust horizontal flux. And the total sand-dust horizontal flux of different time-series that passed through a section of 100 cm in width and 200 cm in height was estimated combining the data of saltation movement continuously recorded by piezoelectric saltation sensors (Sensit). The results indicated that, in the surface layer ranging from 0-200 cm, the intensity of sand-dust horizontal flux decreased with the increase of the height, and the physical quantities obeyed power function well. The total sand-dust horizontal flux of the sixteen sand-dust weather processes that passed through a section of 100 cm in width and 200 cm in height was about 2,144.9 kg, the maximum of one sand-dust weather event was about 396.3 kg, and the annual total sand-dust horizontal flux was about 3,903.2 kg. The high levels of aeolian sand transport occurred during daytime, especially from 13:00 to 16:00 in the afternoon. We try to develop a new method for estimation of the detailed time-series of aeolian sand transport.  相似文献   

15.
The Ulanbuh Desert borders the upper reach of the Yellow River.Every year,a mass of aeolian sand is blown into the Yellow River by the prevailing wind and the coarse aeolian sand results in serious silting in the Yellow River.To estimate the quantity of aeolian sediments from the Ulanbuh Desert blown into the Yellow River,we simulated the saltation processes of aeolian sediments in the Ulanbuh Desert.Then we used a saltation submodel of the IWEMS(Integrated Wind-Erosion Modeling System)and its accompanying RS(Remote Sensing)and GIS(Geographic Information System)modules to estimate the quantity of saltation sediments blown into the Yellow River from the Ulanbuh Desert.We calibrated the saltation submodel by the synchronous observation to wind velocity and saltation sediments on several points with different vegetation cover.The vegetation cover,frontal area of vegetation,roughness length,and threshold friction velocity in various regions of the Ulanbuh Desert were obtained using NDVI(Normalized Difference Vegetation Index)data,measured sand-particle sizes,and empirical relationships among vegetation cover,sand-particle diameters,and wind velocity.Using these variables along with the observed wind velocities and saltation sediments for the observed points,the saltation model was validated.The model results were shown to be satisfactory(RMSE less than 0.05 and|Re|less than 17%).In this study,a subdaily wind-velocity program,WINDGEN,was developed using this model to simulate hourly wind velocities around the Ulanbuh Desert.By incorporating simulated hourly wind-velocity and wind-direction data,the quantity of saltation sediments blown into the Yellow River was calculated with the saltation submodel.The annual quantity of aeolian sediments blown into the Yellow River from the Ulanbuh Desert was 5.56×106t from 2001 to 2010,most of which occurred in spring(from March to May);for example,6.54×105tons of aeolian sand were blown into the Yellow River on 25 April,2010.However,in summer and winter,the saltation process occasionally occurred.This research has supplied some references to prevent blown sand hazards and silting in the Yellow River.  相似文献   

16.
风沙活动复杂多变,使得风沙危害治理周期长、难预测、难评估。目前的风沙防治模拟系统主要基于物理建模框架,由于在受控环境中构建,预测结果容易偏离实际系统。本文从风沙运动物理原理着手,结合人工智能技术构建知识和数据共同驱动风沙防治模型。针对系统的复杂性,提出了一种借鉴实际工程与虚拟实验相互学习的基于ACP(人工社会+计算实验+平行执行)平行系统理论的风沙平行防治系统,预测不同风沙防治行为对风沙活动以及防治效果的影响。其中防治行为为植被种植情况,防治效果通过地表荒漠化程度表达。同时对风沙防治效果进行三维可视化展示,为风沙防治工程项目提供实施前、实施期间的决策支持。  相似文献   

17.
Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China.Understanding the composition,distribution,and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion.In this study,based on laboratory rainfall simulation experiments,we analyzed rainfall-induced erosion processes on sand-covered loess slopes(SS)with different sand cover patterns(including length and thickness)and uncovered loess slopes(LS)to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion.The grain-size curves of eroded sediments were fitted using the Weibull function.Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS.The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed.The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS.Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes.The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage.Sand cover on loess slopes aggravates loess erosion,not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess,compared with the loess slopes without sand cover.The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount.Furthermore,given the same sand cover pattern,a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion.This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.  相似文献   

18.
西藏高原是我国沙漠化灾害严重的地区之一,近年来该区沙漠化的调查和研究得到了国内外许多学者的关注,并取得了一系列可喜的成果。文中对近年来西藏高原沙漠化研究进展进行系统的概括,并对目前高寒沙漠化研究的不足和争议进行总结,最后提出了5条建议。  相似文献   

19.
The rapid desertification of grasslands in Inner Mongolia of China poses a significant ecological threaten to northern China. The combined effects of anthropogenic disturbances(e.g., overgrazing) and biophysical processes(e.g., soil erosion) have led to vegetation degradation and the consequent acceleration of regional desertification. Thus, mitigating the accelerated wind erosion, a cause and effect of grassland desertification, is critical for the sustainable management of grasslands. Here, a combination of mobile wind tunnel experiments and wind erosion model was used to explore the effects of different levels of vegetation coverage, soil moisture and wind speed on wind erosion at different positions of a slope inside an enclosed desert steppe in the Xilamuren grassland of Inner Mongolia. The results indicated a significant spatial difference in wind erosion intensities depending on the vegetation coverage, with a strong decreasing trend from the top to the base of the slope. Increasing vegetation coverage resulted in a rapid decrease in wind erosion as explained by a power function correlation. Vegetation coverage was found to be a dominant control on wind erosion by increasing the surface roughness and by lowering the threshold wind velocity for erosion. The critical vegetation coverage required for effectively controlling wind erosion was found to be higher than 60%. Further, the wind erosion rates were negatively correlated with surface soil moisture and the mass flux in aeolian sand transport increased with increasing wind speed. We developed a mathematical model of wind erosion based on the results of an orthogonal array design. The results from the model simulation indicated that the standardized regression coefficients of the main effects of the three factors(vegetation coverage, soil moisture and wind speed) on the mass flux in aeolian sand transport were in the following order: wind speedvegetation coveragesoil moisture. These three factors had different levels of interactive effects on the mass flux in aeolian sand transport. Our results will improve the understanding of the interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in desert steppes, and will be helpful for the design of desertification control programs in future.  相似文献   

20.
Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) powerstation. Unfortunately, solar energy production, operation, and maintenance are affected bygeomorphological changes caused by surface erosion that may occur after the construction of the solar PVpower station. In order to avoid damage to a solar PV power station in sandy areas, it is necessary toinvestigate the characteristics of wind-sand movement under the interference of solar PV array. The studywas undertaken by measuring sediment transport of different wind directions above shifting dunes andthree observation sites around the PV panels in the Hobq Desert, China. The results showed that the twoparameterexponential function provides better fit for the measured flux density profiles to the near-surfaceof solar PV array. However, the saltation height of sand particles changes with the intersection anglebetween the solar PV array and wind direction exceed 45°. The sediment transport rate above shifting duneswas always the greatest, while that around the test PV panels varied accordingly to the wind direction.Moreover, the aeolian sediment transport on the solar PV array was significantly affected by wind direction.The value of sand inhibition rate ranged from 35.46% to 88.51% at different wind directions. When theintersection angle exceeds 45°, the mean value of sediment transport rate above the solar PV array reducesto 82.58% compared with the shifting dunes. The results of our study expand our understanding of theformation and evolution of aeolian geomorphology at the solar PV footprint. This will facilitate the designand control engineering plans for solar PV array in sandy areas that operate according to the wind regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号