首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to estimate genetic parameters for flight speed and its association with growth traits in Nellore beef cattle. The flight speed (FS) of 7,402 yearling animals was measured, using a device composed of a pair of photoelectric cells. Time interval data (s) were converted to speed (m/s) and faster animals were regarded as more reactive. The growth traits analyzed were weaning weight (WW), ADG from weaning to yearling age, and yearling scrotal circumference (SC). The (co)variance components were estimated using REML in a multitrait analysis applying an animal model. The model included random direct additive genetic and residual effects, fixed effects of contemporary groups, age of dam (classes), and age of animal as covariable. For WW, the model also included maternal genetic and permanent environmental random effects. The direct heritability estimate for FS was 0.26 ± 0.05 and direct heritability estimates for WW, SC, and ADG were 0.30 ± 0.01, 0.48 ± 0.02, and 0.19 ± 0.01, respectively. Estimates of the genetic correlation between FS and the growth traits were -0.12 ± 0.07 (WW), -0.13 ± 0.08 (ADG), and -0.11 ± 0.07 (SC). Although the values were low, these correlations showed that animals with better temperaments (slower FS) tended to present better performance. It is possible to infer that longterm selection for weight and scrotal circumference can promote a positive genetic response in the temperament of animals. Nevertheless, to obtain faster genetic progress in temperament, it would be necessary to perform direct selection for such trait. Flight speed is an easily measured indicator of temperament and can be included as a selection criterion in breeding programs for Nellore cattle.  相似文献   

2.
3.
Associations between temperament, stress physiology, and productivity were studied in yearling Brahman steers (n = 81). Steers differed in calpain system gene marker status; 41 were implanted with a hormonal growth promotant at feedlot entry. Temperament was assessed with repeated measurements of flight speed (FS) and crush score (CS) during 6 mo of backgrounding at pasture and 117 d of grain finishing. Adrenal responsiveness was assessed with ACTH challenge, with plasma samples collected immediately before and 60 min after challenge. Steers with higher FS and CS had higher prechallenge plasma cortisol, glucose, lactate, and nonesterified fatty acid concentrations. The ACTH-induced cortisol response was unrelated to FS or CS, but glucose remained higher after challenge in flightier steers. The hormonal growth promotant reduced adrenal responsiveness; tenderness genotype had no effect. When temperament assessments and cortisol concentrations before and after challenge were combined in a principal components analysis, four vectors accounting for 38%, 25%, 18%, and 9% of the variation were identified. The first vector had significant loadings on temperament and prechallenge cortisol; increasing scores were associated with increased plasma glucose, lactate, and nonesterified fatty acid and with reductions in BW and feedlot growth rates, carcass fatness, and muscle pH. The second vector loaded only on ACTH-induced cortisol response; increased scores related to increased residual feed intake, number of daily feed sessions, and meat marbling score. The third and fourth vectors had different loadings on FS and CS and appeared to identify different aspects of temperament measured by FS or CS. Fewer associations were found between the third or fourth vectors and productivity traits, possibly because of lower variance accounted for by these vectors. In conclusion, temperament was related to prechallenge cortisol but not to ACTH-induced cortisol response. Principal components analysis separated these traits into separate components, which in turn had different relations with productivity traits. The largest component of temperament was described similarly by FS and CS, but there were smaller components that these described differently. There were some temperament-related differences in the metabolic status of the steers which were not related to the variation in cortisol, suggesting involvement of the sympatho-adrenal-medullary axis in these temperament-related effects.  相似文献   

4.
Fearful behavioral responses to handling (temperament) are undesirably associated with ADG and meat quality in infrequently handled Bos indicus cattle. It has never been assessed whether these relationships exist in calmer Bos taurus breeds in systems where handling is more frequent. Such systems predominate in some countries where beef production is a major agricultural activity. During fattening, 144 crossbred cattle from Limousin and Aberdeen Angus sires were assessed for temperament using 4 approaches: response to movement along a race (race score; 4 occasions), restraint in a crush (crush score; 4 occasions), flight speed from the crush (flight speed; 4 occasions), and isolation in a pen with a human (isolation score; 1 occasion in yr 1, 2 occasions in yr 2). Measurements of ADG were made between birth and slaughter and between 16 and 18 mo of age during fattening. Fattening occurred indoors on a complete mixed diet fed for ad libitum intake. Meat quality was measured by pH, color, and Volodkevitch shear force and by a sensory panel. The repeatability of temperament traits was 0.17 (race score), 0.35 (crush score), 0.51 (flight speed), and 0.36 (isolation score). The proportion of the total variance of temperament traits attributable to the sire and the social group was low (0.003 to 0.402). However, the sire did affect behavior in all tests apart from the crush score (ranging from P = 0.02 to P < 0.001). Correlations between behavior in the different tests (ranging from r = 0.21 to 0.54, and P = 0.02 to P < 0.001) apart from between-flight speed and isolation score indicate that fearful behavior was consistently shown across assessment methods. A calm response in the crush score test was associated with a greater ADG during fattening (P = 0.05), whereas a calm response during the isolation test was associated with a greater ADG in cold carcass weight (P = 0.02). Animals with a calm isolation score had less tender meat as judged by the sensory panel (P = 0.03), but no other effects were apparent between temperament and meat quality measures, although several tendencies (0.06 ≤ P ≤ 0.10) were found. Temperament did not appear to relate to meat quality in this study of frequently handled Bos taurus genotypes, which is in contrast to other studies using different beef production systems. Genetic correlations between temperament and meat quality under these conditions could, although not measured in this study, still exist in the absence of phenotypic correlations.  相似文献   

5.
Relationships between temperament and a range of performance, carcass, and meat quality traits in young cattle were studied in 2 experiments conducted in New South Wales (NSW) and Western Australia (WA), Australia. In both experiments, growth rates of cattle were assessed during backgrounding on pasture and grain finishing in a feedlot. Carcass and objective meat quality characteristics were measured after slaughter. Feed intake and efficiency during grain finishing were also determined in NSW. Brahman (n = 82 steers and 82 heifers) and Angus (n = 25 steers and 24 heifers) cattle were used in the NSW experiment. In NSW, temperament was assessed by measuring flight speed [FS, m/s on exit from the chute (crush)] on 14 occasions, and by assessing agitation score during confinement in the crush (CS; 1 = calm to 5 = highly agitated) on 17 occasions over the course of the experiment. Brahman (n = 173) and Angus (n = 20) steers were used in the WA experiment. In WA, temperament was assessed by measuring FS on 2 occasions during backgrounding and on 2 occasions during grain feeding. At both sites, a hormonal growth promotant (Revalor-H, Virbac, Milperra, New South Wales, Australia) was applied to one-half of the cattle at feedlot entry, and the Brahman cattle were polymorphic for 2 calpain-system markers for beef tenderness. Temperament was not related (most P > 0.05) to tenderness gene marker status in Brahman cattle and was not (all P > 0.26) modified by the growth promotant treatment in either breed. The Brahman cattle had greater individual variation in, and greater correlations within and between, repeated assessments of FS and CS than did the Angus cattle. Correlations for repeated measures of FS were greater than for repeated assessments of CS, and the strength of correlations for both declined over time. Average FS or CS for each experiment and location (NSW or WA × backgrounding or finishing) were more highly correlated than individual measurements, indicating that the average values were a more reliable assessment of cattle temperament than any single measure. In Brahman cattle, increased average FS and CS were associated with significant (P < 0.05) reductions in backgrounding and feedlot growth rates, feed intake and time spent eating, carcass weight, and objective measures of meat quality. In Angus cattle, the associations between temperament and growth rates, feed intake, and carcass traits were weaker than in Brahmans, although the strength of relationships with meat quality were similar.  相似文献   

6.
Lower flight reaction is closely related to higher production in cattle, but the genetic basis of lower flight reaction is not clearly understood. Here, we sampled a total of 45 Brahman cattles and 166 Yunling cattles with flight distance (FD), and 73 Brahman cattles and 288 Yunling cattles with crush score (CS) and flight speed (FS), whereas there were 45 Brahman cattles and 161 Yunling cattles with all three traits. The FD, CS and FS in Brahman cattle were significantly lower than those in Yunling cattle. The flight reaction traits had negative correlation with conformational traits (e.g., body weight, withers height and body length). Based on SNPs derived from a subset of 162 whole genomes (25 Brahman genomes and 100 Yunling genomes with FD, 30 Brahman and 131 Yunling genomes with CS and FS), genome-wide association study with mixed linear model was performed to test potential associations between flight reaction traits and genomic variants. We identified five, two and two genomic loci suggestively associated with FD, CS and FS, respectively. Five out of five candidate genes for FD (LOC789753, LRP6, CTIF, SLC9A9 and ZEB1) were reported to be related to Alzheimer's disease representing cognitive impairment in human, which was consistent with the finding that cognitive-behavioural intervention decreased the FD of cows to human. In CS, a very strong association locus was assigned to CDH8, a cadherin involved in synaptic adhesion, axon outgrowth and guidance, whose deletion was associated with autism spectrum disorder. In FS, a very strong association locus was assigned to GABRG2, a gamma-aminobutyric acid (a major inhibitory neurotransmitter in brain) receptor, whose polymorphisms were associated with suicidal behaviour in schizophrenia patients. Our findings will provide targets for molecular-marker selection and genetic manipulation of cattle improvement to meeting the growing demand for lower flight reaction to human.  相似文献   

7.
Feeding behavior and temperament may be useful in genetic evaluations either as indicator traits for other economically relevant traits or because the behavior traits may have a direct economic value. We determined the variation in feeding behavior and temperament of beef cattle sired by Angus, Charolais, or Hybrid bulls and evaluated their associations with performance, efficiency, and carcass merit. The behavior traits were daily feeding duration, feeding head down (HD) time, feeding frequency (FF), and flight speed (FS, as a measure of temperament). A pedigree file of 813 animals forming 28 paternal half-sib families with about 20 progeny per sire was used. Performance, feeding behavior, and efficiency records were available on 464 animals of which 381 and 302 had records on carcass merit and flight speed, respectively. Large SE reflect the number of animals used. Direct heritability estimates were 0.28 +/- 0.12 for feeding duration, 0.33 +/- 0.12 for HD, 0.38 +/- 0.13 for FF, and 0.49 +/- 0.18 for FS. Feeding duration had a weak positive genetic (r(g)) correlation with HD (r(g) = 0.25 +/- 0.32) and FS (r(g) = 0.42 +/- 0.26) but a moderate negative genetic correlation with FF (r(g) = -0.40 +/- 0.30). Feeding duration had positive phenotypic (r(p)) and genetic correlations with DMI (r(p) = 0.27; r(g) = 0.56 +/- 0.20) and residual feed intake (RFI; r(p) = 0.49; r(g) = 0.57 +/- 0.28) but was unrelated phenotypically with feed conversion ratio [FCR; which is the reciprocal of the efficiency of growth (G:F)]. Feeding duration was negatively correlated with FCR (r(g) = -0.25 +/- 0.29). Feeding frequency had a moderate to high negative genetic correlation with DMI (r(g) = -0.74 +/- 0.15), FCR (r(g) = -0.52 +/- 0.21), and RFI (r(g) = -0.77 +/- 0.21). Flight speed was negatively correlated phenotypically with DMI (r(p) = -0.35) but was unrelated phenotypically with FCR or RFI. On the other hand, FS had a weak negative genetic correlation with DMI (r(g) = -0.11 +/- 0.26), a moderate genetic correlation with FCR (r(g) = 0.40 +/- 0.26), and a negative genetic correlation with RFI (r(g) = -0.59 +/- 0.45). The results indicate that behavior traits may contribute to the variation in the efficiency of growth of beef cattle, and there are potential correlated responses to selection to improve efficiency. Feeding behavior and temperament may need to be included in the definition of beef cattle breeding goals, and approaches such as the culling of unmanageable cattle and the introduction of correct handling facilities or early life provision of appropriate experiences to improve handling will be useful.  相似文献   

8.
The objectives were (i) to evaluate the effect of temperament, determined by modified 2‐point chute exit and gait score, on artificial insemination (AI) pregnancy rates in beef heifers following fixed time AI and (ii) to determine the effect of temperament on cortisol, substance‐P, prolactin and progesterone at initiation of synchronization and at the time of AI. Angus beef heifers (n = 967) at eight locations were included in this study. At the initiation of synchronization (Day 0 = initiation of synchronization), all heifers received a body condition score (BCS), and temperament score (0 = calm; slow exit and walk or 1 = excitable; fast exit or jump or trot or run). Blood samples were collected from a sub‐population of heifers (n = 86) at both synchronization initiation and the time of AI to determine the differences in serum progesterone, cortisol, prolactin and substance‐P concentrations between temperament groups. Heifers were synchronized with 5‐day CO‐Synch+ controlled internal drug release (CIDR) protocol and were inseminated at 56 h after CIDR removal. Heifers were examined for pregnancy by ultrasound 70 days after AI to determine AI pregnancy. Controlling for synchronization treatment (p = 0.03), facility design (p = 0.05), and cattle handling facility design by temperament score interaction (p = 0.02), the AI pregnancy differed between heifers with excitable and calm temperament (51.9% vs 60.3%; p = 0.01). The alley‐way with acute bends and turns, and long straight alley‐way had lower AI pregnancy rate than did the semicircular alley‐way (53.5%, 56.3% and 67.0% respectively; p = 0.05). The serum hormone concentrations differed significantly between different types of cattle handling facility (p < 0.05). The cattle handling facility design by temperament group interactions significantly influenced progesterone (p = 0.01), cortisol (p = 0.01), prolactin (p = 0.02) and substance‐P (p = 0.04) both at the initiation of synchronization and at the time of AI. Inter‐ and intra‐rater agreement for temperament scoring were moderate and good (Kappa = 0.596 ± 0.07 and 0.797 ± 0.11) respectively. The predictive value for calm and pregnant to AI was 0.87, and excited and non‐pregnant to AI was 0.76. In conclusion, the modified 2‐point temperament scoring method can be used to identify heifers with excitable temperament. Heifers with excitable temperament had lower AI pregnancy. Further, cattle handling facility design influenced the temperament and AI pregnancy.  相似文献   

9.
Growth, feed intake, and temperament indicator data, collected over 5 yr on a total of 1,141 to 1,183 mixed-breed steers, were used to estimate genetic and phenotypic parameters. All steers had a portion of Hereford, Angus, or both as well as varying percentages of Simmental, Charolais, Limousin, Gelbvieh, Red Angus, and MARC III composite. Because the steers were slaughtered on various dates each year and the animals thus varied in days on feed, BW and feed data were adjusted to a 140-d feeding period basis. Adjustment of measures of feed efficiency [G:F or residual feed intake (RFI), intake adjusted for metabolic body size, and BW gain] for body fatness recorded at slaughter had little effect on the results of analyses. Average daily gain was less heritable (0.26) than was midtest BW (MBW; 0.35). Measures of feed intake had greater estimates of heritability, with 140-d DMI at 0.40 and RFI at 0.52; the heritability estimate for G:F was 0.27. Flight speed (FS), as an indicator of temperament, had an estimated heritability of 0.34 and a repeatability of 0.63. As expected, a strong genetic (0.86) correlation was estimated between ADG and MBW; genetic correlations were less strong between DMI and ADG or MBW (0.56 and 0.71). Residual feed intake and DMI had a genetic correlation of 0.66. Indexes for phenotypic RFI and genotypically restricted RFI (no correlation with BW gain) were compared with simple economic indexes incorporating feed intake and growth to elucidate expected selection responses under different criteria. In general, few breed differences were detected across the various measurements. Heterosis contributed to greater DMI, RFI, and MBW, but it did not significantly affect ADG, G:F, or FS. Balancing output (growth) with input costs (feed) is needed in practicing selection, and FS would not be recommended as an indicator trait for selection to change feed efficiency. An index including BW gain and RFI produced the best economic outcome.  相似文献   

10.
Two experiments were conducted to determine (i) factors influencing calf temperament at weaning, (ii) association between heifer–calf temperament at weaning and temperament at breeding and (iii) effect of heifer–calf temperament on pregnancy rate per artificial insemination (P/AI). In experiment 1, beef cows and their calves (n = 285) from three farms were used. Sire docility estimated progeny difference (EPD) score, birth type (normal or assisted), calf gender, calf behaviour (during 1st 4 weeks) and calf health status (until weaning) were recorded. Cows and calves were assigned a temperament score (0—calm; 1—excitable), and all cows were given a body condition score (BCS, 1–9; 1—emaciated; 9—obese) at weaning. Calf's illness (< .05), low sire docility EPD score (< .05), altered gait (< .05), altered resting behaviour (< .01), reduced/no play behaviour (< .05) and cow excitable temperament (< .001) increased calf excitable temperament at weaning. In experiment 2, replacement heifer–calves (n = 758) from 12 farms were assigned a temperament score at weaning and later at breeding. Blood from 40 calves at weaning and 31 heifers at initiation of synchronization (same animals) was collected by coccygeal venipuncture for determination of circulating cortisol and substance P concentrations. Heifers were assigned a BCS and reproductive tract score (RTS, 1–5; 1—immature, acyclic; 5—mature, cyclic), synchronized for fixed time AI, observed for oestrus and were artificially inseminated. Cortisol concentrations were increased in excitable heifer–calves compared to calm heifer–calves at weaning (< .05), and substance P was increased in excitable compared to calm females both at weaning and breeding (< .05). Low sire EPD docility score (< .01), heifer–calf excitable temperament at weaning increased excitable temperament at breeding (< .01). Controlling for BCS categories (< .01), oestrous expression (< .0001) and temperament at breeding by oestrous expression (< .05), the calf's excitable temperament at weaning (< .001) reduced P/AI (Calm, 62.7 (244/389) vs. Excitable, 53.4% (197/369); < .01). In conclusion, selection of docile cows and sires with greater docility EPD score should be given consideration to reduce calf excitement. Temperament in beef female can be detected earlier in their life and could be used as a tool in the selection process and to improve their performances.  相似文献   

11.
Records on 276 progeny were collected in the final 2 yr (1984 and 1985) of an 8-yr Hereford cattle selection project. Selection was practiced using the top sires from the American Hereford Association's National Cattle Evaluation based on yearling weight expected progeny difference. An unselected control line was maintained to monitor environmental change. One-half of each line was creep-fed during the preweaning period for the last 2 yr to evaluate genotype x environment interactions. Direct response to yearling weight selection averaged 28 +/- 8 kg. Correlated response to selection amounted to .057 +/- .028 kg/d in preweaning ADG, 14 +/- 6 kg in weaning weight, .085 +/- .033 kg/d in postweaning ADG, 4.6 +/- 1.5 cm in yearling hip height and 11.2 +/- 3.0 cm2 in yearling pelvic area. Yearling fat thickness and scrotal circumference were not significantly affected by selection. Significant effects of creep feeding were observed for yearling weight (15 +/- 3 kg), preweaning ADG (.067 +/- .012 kg/d), weaning weight (13 +/- 2 kg), yearling hip height (1.2 +/- .5 cm) and yearling fat thickness (.07 +/- .03 cm). Postweaning ADG, yearling pelvic area and yearling scrotal circumference were not affected by creep feeding. No significant genetic group x creep feeding effects were found for any of the traits analyzed, indicating calves genetically superior for growth did not gain any additional advantage from creep feeding.  相似文献   

12.
Effects of selection for 2-yr-old heifer calving ease (reduced calving difficulty score) on phenotypic differences between select and control lines of cattle for birth, growth, yearling hip height, and pelvic measurements were estimated. The selection objective was to decrease calving difficulty score in 2-yr-old heifers, while either maintaining or increasing yearling weight. The control line objective was to maintain or increase yearling weight by the same amount as the select lines and to maintain or proportionally increase birth weight. Select and control lines were formed in 4 purebred and 3 composite populations. Selection began in 1992 and select (n = 6,926) and control (n = 2,043) line calves were born from 1993 through 1999. Selection was based on EBV calculated from a 4-trait BLUP with observations on 2-yr-old calving difficulty scores, birth weight, weaning weight, and postweaning gain. Calving difficulty was scored on a scale from 1 (unassisted) to 7 (caesarean). All birth traits in select lines differed significantly from control lines. Averaged over 7 yr, select lines calved 3.0 +/- 0.5 d earlier, had 1.8 +/- 0.5 d shorter gestations, were 2.99 +/- 0.32 kg lighter at birth, had 5.6 +/- 1.5% fewer calves assisted at birth (averaged across dam ages), and 2-yr-old heifers had 0.80 +/- 0.08 lower calving difficulty score. Select lines averaged 19.8% lower 2-yr-old heifer calving assistance, but there was no difference in calving assistance of older cows, resulting in a highly significant interaction of selection and dam classification. Preweaning ADG was increased 15 +/- 9 g/d (1.7%) in select lines. Increased preweaning gain offset decreased birth weights in select lines, resulting in weaning weights that did not differ (P = 0.71). Postweaning ADG (P = 0.16) and yearling weight (P = 0.41) also did not differ. Increased preweaning ADG in select lines was not maintained after weaning. Select line hip heights were 0.70 +/- 0.21 cm shorter when measured as yearlings. Pelvic height, width, and area of select heifers measured 25 to 74 d after yearling weights were not significantly different. The differences between select and control lines significantly changed over the course of the experiment for some traits. In the final 2 yr of the experiment, select lines had 3.9 kg lower birth weight and 1.3 cm shorter hip heights. Selection can be used effectively to reduce 2-yr-old calving difficulty and calving assistance while maintaining or increasing yearling weight.  相似文献   

13.
An understanding of influencing factors and genetic principles affecting the growth traits is needed to implement optimal breeding and selection programs. In this study, heritabilities (direct additive and maternal) of body weights at birth (BW0), 90 days (BW90) and 300 days (BW300) of age and average daily gains from birth to 90 days (ADG0-90), birth to 300 days (ADG0-300) and 90 days to 300 days (ADG90–300) of age in Boer goats were estimated on the basis of 1520 Boer goats at Boer Goat Breeding Station in Yidu, China, during 2002–2007. The parameters were estimated using a DFREML procedure by excluding or including maternal genetic or permanent maternal environmental effects, four analysis models were fitted in order to optimize the model for each trait. Influencing factors such as parity, litter size, kidding year and season, as well as sex of kids and some significant interactions among these factors were investigated as the fixed effects for the models. The results showed that the birth year and maternal genetic effects such as parity and litter size of dam were important determinants of the genetic parameter estimates for pre-weaning growth traits, and environmental effects such as birth year, season and sex of kids had some significant effect on post-weaning growth traits. The mean values and standard errors (SE) of direct additive heritability estimates calculated with the optimum model were 0.17 ± 0.07, 0.22 ± 0.08, 0.07 ± 0.07, 0.10 ± 0.08, 0.30 ± 0.12 and 0.08 ± 0.10 for BW0, BW90, ADG0-90, BW300, ADG0-300 and ADG90–300, respectively. For pre-weaning weights, correlation estimates between direct additive and maternal genetic (ra–m) effect were high and negative ranging from − 0.74 to − 0.86.  相似文献   

14.
Data from Thai Landrace sows were used to estimate the genetic parameters and trends for production and reproduction traits, over the first four parities. The reproduction traits investigated were age at first conception (AFC), total number of piglets born per litter (TB) and weaning to first service interval (WSI). The reproduction data was gathered from 9194 litters born between 1993 and 2005. The production measures were average daily gain (ADG) and backfat thickness (BF). These were recorded from 4163 boars and 15 171 gilts. Analyses were carried out using a multivariate animal model inputting average information restricted maximum likelihood procedures. Heritability estimates on the reproduction traits for AFC was 0.21, for TB in the first four parities it ranged from 0.02 to 0.11 and for WSI over the first three parities it ranged from 0.16 to 0.18. Heritability estimates for production traits were: 0.31 (ADG) and 0.45 (BF). AFC was genetically correlated favorably with TB (− 0.48) and WSI (0.35) in the first parity. Genetic trends were 4.71 g, − 0.23 mm and 0.23 days per year for ADG, BF and AFC respectively. There was no genetic progress for the other traits. It was concluded that selection for low AFC will increase TB and decrease WSI. The results further revealed that the ongoing selection being used improved growth rate and reduced backfat thickness. However, there was no genetic improvement in TB.  相似文献   

15.
The objectives of this study were to 1) estimate the allelic frequencies in US beef cattle of 6 DNA markers reported to be associated with variation in dairy production traits; and 2) evaluate the association of these markers with beef production traits. Several genetic markers have been associated with milk yield or composition, including polymorphisms in secreted phosphoprotein 1 (SPP1; also called osteopontin), growth hormone receptor (GHR), casein S1 (CSN1S1), diacylglycerol O-acyltransferase 1 (DGAT1), peroxisome proliferator-activated receptor gamma co-activator-1alpha (PPARGC1A), and ATP-binding cassette subfamily G (white) member 2 (ABCG2). Allelic frequencies for these 6 markers, and their association with 21 phenotypes, were evaluated in 2 crossbred beef cattle populations that sample influential industry sires. Five of 6 markers were segregating in beef cattle populations; the exception was ABCG2. The SPP1 marker was associated with yearling weight (P = 0.025), live weight at slaughter (P = 0.016), postweaning ADG (P = 0.007), and HCW (P = 0.007) in a large, multisire population representing the 7 most populous beef breeds in the United States. Postweaning growth trait associations were confirmed in an independent population of similar construction, including sires from tropically adapted breeds. The SPP1 marker was associated with yearling weight (P = 0.034), live weight at slaughter (P = 0.011), and postweaning ADG (P = 0.015) and showed a trend toward association with HCW (P = 0.083) in this population. Whereas DGAT1, GHR, and CSN1S1 polymorphisms showed association with some traits in individual populations, the lack of consistent predictive merit between populations indicates they may not be suited for beef cattle selection. No significant associations were observed for the PPARGC1A marker and any of 21 recorded traits, indicating this marker had no apparent value in selection for the beef cattle traits tested in these populations. The SPP1 marker had consistent associations and effect sizes (10.5 to 11.5 kg of live weight at slaughter) in both populations, providing strong evidence for utility of the SPP1 marker for postweaning growth in beef cattle.  相似文献   

16.
The objective of this experiment was to determine the effects of feeding varying levels of crude glycerine (CG) on dry matter intake (DMI), animal performance, carcass traits and rumen volatile fatty acids (VFA) concentration in meat goats. Twenty-four intact male Boer goats (23.9 ± 1.0 kg initial BW and 4–5 months of age) were randomly assigned to one of four experimental diets (n = 6) containing 30% bermudagrass hay plus 70% concentrate mix with 0, 5, 10 or 15% CG in the diet on an as-fed basis, substituted for the corn portion of the concentrate. Feed offered and refusals were monitored daily for 84 days. Goats were weighed at 28-days interval. Blood and rumen samples were collected on day 84. At the end of the 84-days feeding period, goats were harvested, and carcass characteristics measured. Feed intake, average daily gain (ADG), gain-to-feed ratio (G:F), carcass traits and VFA concentrations were analysed as a completely randomized design. The CG did not influence animal body weight (BW) changes, ADG and G:F ratio but tended to (p = 0.06) decrease DMI. Molar per cent propionic acid increased linearly (p < 0.05) with increasing CG. The acetate: propionate (A:P) ratio decreased (p < 0.05) with increasing amounts of CG in the diet. The CG addition tended to increase (p = 0.09) the longissimus muscle (LM area) in meat goats. In conclusion, CG can replace corn in diet for growing meat goats when fed up to 15% of diet, improving ruminal propionate concentration, but decreasing A:P ratio without affecting animal performance and carcass traits.  相似文献   

17.
Profitability of a beef operation is determined by the proportion of cows attaining pregnancy early in the breeding season and those that are pregnant at the end of breeding season. Many factors, including temperament, contribute to those reproductive parameters. The objective of this study was to evaluate effects of temperament on reproductive performance of beef cows. In Experiment 1, Angus and Angus‐cross beef cows (n = 1546) from eight locations were assigned a body condition score (BCS; 1 = emaciated; 9 = obese) and chute exit and gait score (1 = slow exit, walk; calm temperament; 2 = jump, trot or run; excitable temperament). Cows were grouped with bulls (1 : 25 to 1 : 30; with satisfactory breeding potential and free of venereal disease) for an 85‐day breeding season. Pregnancy status and stage of gestation were determined (transrectal palpation) 35 days after the end of the breeding season. Controlling for BCS (p < 0.01) and handling facility (p < 0.0001) and handling facility by temperament score interaction (p < 0.001), breeding season pregnancy rate was lower in excited versus calm cows [88.6% (798/901) vs 94.1% (607/645); p < 0.001]. Cows with an excitable temperament took 24 more days to become pregnant compared to calm cows (median days to pregnancy, 35 vs 59 days; p < 0.0001). In Experiment 2, Angus and Angus‐cross beef cows (n = 1407) from 8 locations were assigned scores for body condition and chute exit and gait (as described in Experiment 1) and assigned to bulls (breeding sound and free of venereal disease; 1 : 25 to 1 : 30) for 85 days. Pregnancy status was determined by transrectal palpation at 2 and 6 months after the onset of the breeding season. Controlling for BCS (p < 0.05), pregnancy loss was higher in excited versus calm cows [5.5% (36/651) vs 3.2% (20/623), p < 0.0001]. In conclusion, beef cows with an excitable temperament had significantly lower reproductive performance than calmer cows. The modified two‐point chute exit–gait scoring method was repeatable and identified cattle with an excitable temperament.  相似文献   

18.
Five studies (trials I to V) were conducted on ranches located in the intermountain west to determine the effect of sustained-release parasite control (Ivomec SR Bolus®, Merial Limited, Rahway, NJ) on cattle performance and fecal nematode egg counts. Cattle in trials I to IV grazed irrigated meadows for 156 d (n=250 yearling heifers), 117 d (n=250 yearling steers), 85 d (n=150 yearling heifers), and 85 d (n=60 calves), respectively. In trial V, yearling steers (n=200) grazed dry high-desert range for 190 d. Weights and fecal samples were taken initially and at the end of each trial. Cattle were paired by weight and randomly assigned to treatment 1) Control: no deworming for the grazing period or 2) SRI: sustained-release ivermectin. For trials I to V, total gain difference (SRI minus Control) and ADG difference were 10.0 kg and 0.064 kg/d (P<0.001), 13.9 kg and 0.119 kg/d (P<0.001), 6.9 kg and 0.082 kg/d (P<0.01), 8.0 kg and 0.095 kg/d (P=0.05), and −0.48 kg and −0.003 kg/d (P=0.86), respectively. For trials I to V, mean initial, final Control, and final SRI fecal egg counts in eggs per gram were 0.4, 15.2, and 0.1; 6.0, 8.3, and 0.0; 75.8, 57.0, and 16.6; 76.0, 39.1, and 0.0; and 1.8, 2.0, and 0.0; respectively. Treatment of cattle grazing irrigated meadows with sustained-release ivermectin resulted in improved weight gain and fecal egg counts that were diminished to near zero. No differences (P>0.05) in weight gains were detected for cattle administered sustained-release ivermectin that grazed dry high desert range.  相似文献   

19.
Records of Nellore animals born from 1990 to 2006 were used to estimate genetic correlations of visual scores at yearling (conformation, C; finishing precocity, P; and muscling, M) with primiparous subsequent rebreeding (SR) and days to first calving (DC), because the magnitude of these associations is still unknown. Genetic parameters were estimated by multiple‐traits Bayesian analysis, using a nonlinear (threshold) animal models for visual scores and SR and a linear animal models for weaning weight (WW) and DC. WW was included in the analysis to account for the effects of sequential selection. The posterior means of heritabilities estimated for C, P, M, SR and DC were 0.24 ± 0.01, 0.31 ± 0.01, 0.30 ± 0.01, 0.18 ± 0.02 and 0.06 ± 0.02, respectively. The posterior means of genetic correlations estimated between SR and visual scores were low and positive, with values of 0.09 ± 0.02 (C), 0.19 ± 0.03 (P) and 0.18 ± 0.05 (M). On the other hand, negative genetic correlations were found between DC and C (?0.11 ± 0.09), P (?0.19 ± 0.09) and M (?0.16 ± 0.09). The primiparous rebreeding trait has genetic variability in Nellore cattle. The genetic correlations between visual scores, and SR and DC were low and favourable. The genetic changes in C, P and M were 0.02, 0.03 and 0.03/year, respectively. For SR and DC, genetic trends were 0.01/year and ?0.01 days/year, respectively, indicating that the increase in genetic merit for reproductive traits was small over time. Direct selection for visual scores together with female reproductive traits is recommended to increase the fertility of beef cows.  相似文献   

20.
In this study, Bayesian analysis under a threshold animal model was used to estimate genetic correlations between morphological traits (body structure, finishing precocity and muscling) in Nelore cattle evaluated at weaning and yearling. Visual scores obtained from 7651 Nelore cattle at weaning and from 4155 animals at yearling, belonging to the Brazilian Nelore Program, were used. Genetic parameters for the morphological traits were estimated by two‐trait Bayesian analysis under a threshold animal model. The genetic correlations between the morphological traits evaluated at two ages of the animal (weaning and yearling) were positive and high for body structure (0.91), finishing precocity (0.96) and muscling (0.94). These results indicate that the traits are mainly determined by the same set of genes of additive action and that direct selection at weaning will also result in genetic progress for the same traits at yearling. Thus, selection of the best genotypes during only one phase of life of the animal is suggested. However, genetic differences between morphological traits were better detected during the growth phase to yearling. Direct selection for body structure, finishing precocity and muscling at only one age, preferentially at yearling, is recommended as genetic differences between traits can be detected at this age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号