首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】解决平方抛物线形渠坡和水平渠底的复合渠道水力最佳断面存在施工难度大、不经济等问题。【方法】在水力最佳断面的基础上,通过数据拟合的方式,得到了求解最佳H/H0值所对应的抛物线水面宽和水深比η=1.666,推导出了抛物线形复合渠道实用经济断面的计算公式,并提出了详细的计算步骤。【结果】通过实例计算,当流量Q为26 m3/s、n为0.015、i为0.000 52、α为1.03时,抛物线形复合渠道实用经济断面情况下的水深H为2.054 m,渠底宽度b为4.447 m,过水断面面积A为13.818 m2,湿周长度χ为10.037 m。在相同流量、糙率与渠道底坡条件下与梯形、弧形坡脚梯形相比,抛物线形复合渠道实用经济断面面积最小,比梯形减小了1.65%,比弧形坡脚梯形减小了1.29%。【结论】抛物线形复合渠道实用经济断面更为优越。  相似文献   

2.
<正> 输水渠道或排水沟道大都采用梯形断面型式,梯形渠横断面设计中经常遇到的问题是,在参照有关资料及规划要求已经确定流量、水力坡降、糙率、边坡系数等水力要素的条件下,由假定的渠道设计底宽求解设计水深;或由设定的水深求解渠道底宽。传统的试算方法,不仅工作量大,且计算精度较差。下面介绍一种用Pc—1500袖珍计算机求  相似文献   

3.
【目的】解决任意次抛物线形渠道湿周积分公式为不可积分而导致水力最佳及实用经济断面无解析解的问题。【方法】采用高斯超几何函数给出了任意次抛物线形渠道湿周的解析计算式,以水深、水面宽度为变量,用拉格朗日乘数法对该类渠道的水力最佳断面参数进行求解。【结果】得到了任意次抛物线类渠道的水力最佳断面参数求解方程,再根据实用经济断面与水力最佳断面的关系得到了任意次抛物线类渠道的实用经济断面参数求解方程。最后给出抛物线类渠道实用经济断面水面宽度与水深的比值的关系表。【结论】该方法易于设计任意次抛物线类水力最佳及实用经济断面,可供渠道规划设计参考应用,也为规范修订提供理论依据。  相似文献   

4.
针对标准抛物线形渠道渠口宽、深度大、难以适应大中型渠道等问题,提出了一种新型平方抛物线形渠坡和水平渠底的抛物线形复合渠道,同时推导出了抛物线复合渠道水力要素计算公式,并以水深、水面宽度和水平渠底宽度为变量,利用拉格朗日乘数法建立求最优解的迭代方程,借助Mathcad数学软件进行计算,推导出了抛物线复合渠道水力最佳断面情况下流量和水深的关系式以及水深、水面宽度、过水断面面积和湿周的计算公式。通过实例计算,当流量Q为12 m~3/s时,在水力最佳断面情况下抛物线复合渠道的水深H0为2.263 m,水面宽度B0为4.538 m,过水断面面积A0为7.463 m~2。结果表明,相同流量下抛物线复合渠道的过水断面面积比梯形渠道减小了1.67%,比弧脚梯形渠道减小了0.84%,比抛物线形渠道减小了1.05%,表明抛物线形复合渠道是更为优越的渠道断面形式。  相似文献   

5.
糙率n是表征水流能量损失的一个重要参数。仿真模型试验能比较科学地求得隧洞糙率。仿真模型壁面要和原型壁面同等光滑,当量粗糙度面与材料、加工工艺有关,与水力要素无关。模型试验求得的沿程阻力系数λ并不等于原型工程的λ,但模型试验求得的△就是原型工程的△。在此基础上通过Mikuradse公式和Manning公式最终可求得原型工程糙率n值。  相似文献   

6.
【目的】研究城市深层隧洞输水系统的水力过渡过程特性。【方法】以西丽水库至南山水厂原水管工程实例为研究对象,利用Bentley hammer软件建立输水系统模型;分析启泵间隔时间对输水系统稳定性的影响,并进一步分析典型工况下管道糙率对输水系统稳定性的影响;探究增设3#竖井为调压井对输水系统稳定性的影响。【结果】当启泵间隔时间大于240 s时,2#竖井最低瞬态水位趋于稳定;管道糙率越大,启泵工况下最低瞬态水位越低,事故停泵工况下涌浪水位的超调量越大;增设3#竖井作为调压井对输水系统水锤压力极值影响不大。【结论】启泵间隔时间大于240 s时,启泵间隔时间对输水系统稳定性几乎没有影响;管道糙率越大,典型工况下系统稳定性越差;增设3#竖井作为调压井后需投入大量维护成本,且对输水系统水锤压力极值影响不大,故不建议设置为调压井。  相似文献   

7.
【目的】研究采用复式断面渠道的灌区渠系水利用系数更精确地测算方法。【方法】采用动水测定法测定了渠道各断面水力要素,之后通过修订后的戴维斯-威尔逊公式和考斯加科夫渠道渗漏经验公式求得研究区域复式断面渠道渠系水利用系数,对比分析了各渠道水损失以及渠系水损失量。【结果】动水测定法更适合不断流复式断面渠道水力要素的测算;采用标准梯形断面渠道衬砌的方式渠道损失最小;考斯加科夫渠道渗漏经验公式求得灌区渠系水利用系数为0.75,而戴维斯-威尔逊公式求得灌区渠系水利用系数为0.82,更加接近实际值0.86,精确度提高了9.5%。【结论】由于占地、开挖等影响因素,灌区渠系衬砌后多形成复式断面渠道,灌区渠道衬砌优先采用标准梯形断面衬砌方式。对于这类渠系工程,动水测定方法明显优于典型渠道测量方法,戴维斯-威尔逊公式也更适用于复式断面渠道的渠系水利用系数的测定。  相似文献   

8.
针对引黄济津应急调水工程河北段的输水能力进行了研究。渠段的输水能力是指渠段所能通过的最大入流量,即渠段的首端断面所能通过的最大流量。根据引黄济津应急调水工程近4年的实测数据,构建了适于干河床水流推进过程渗漏损失的改进模型、小水深情况下的糙率加大模型,并采用均匀试验优选方法对水力参数进行了反演,利用非恒定流模型对引黄济津河北段渠系输水能力进行了计算。结果表明,建立的渗漏损失改进模型、小水深情况下的糙率加大模型是合理的,反演得到的参数是精确的;由于在水流推进与涨水阶段渠床的非稳定渗漏起了较大作用,所以各渠段的输水能力在非稳定输水阶段比稳定输水阶段稍大。输水能力的计算结果可以为引黄济津未来几年的输水规划与调度提供具体的指导。  相似文献   

9.
针对引黄济津应急调水工程河北段的输水能力进行了研究。渠段的输水能力是指渠段所能通过的最大入流量,即渠段的首端断面所能通过的最大流量。根据引黄济津应急调水工程近4年的实测数据,构建了适于干河床水流推进过程渗漏损失的改进模型、小水深情况下的糙率加大模型,并采用均匀试验优选方法对水力参数进行了反演,利用非恒定流模型对引黄济津河北段渠系输水能力进行了计算。结果表明,建立的渗漏损失改进模型、小水深情况下的糙率加大模型是合理的,反演得到的参数是精确的;由于在水流推进与涨水阶段渠床的非稳定渗漏起了较大作用,所以各渠段的输水能力在非稳定输水阶段比稳定输水阶段稍大。输水能力的计算结果可以为引黄济津未来几年的输水规划与调度提供具体的指导。  相似文献   

10.
【目的】确定输水工程适宜运行的水力条件。【方法】以巴音沟河流域输水工程为研究对象,通过数值模拟的方法研究不同泥沙质量浓度、压力条件下浑水管道输沙规律及水流挟沙力特性。【结果】(1)管道断面垂向泥沙质量浓度分布受压力、体积含沙量及管径等因素的影响;当压力及管径较小时,泥沙淤积厚度为6.3~8.0 mm,压力及管径较大时,在Y=-0.07区域以下淤积较多,淤积厚度达到8.6~9.4 mm;(2)同一管径及流速下,随着体积含沙量的增大,该区域流速梯度增大,最大增幅为14%;(3)随着水流速度增大,水流挟沙力增大,悬移质质量浓度也越大,但是悬浮指标逐渐变小。【结论】在低压浑水管道中,管径越大、泥沙质量浓度越大、压力越小,水流挟沙力越小,泥沙越容易淤积。  相似文献   

11.
【目的】针对黄河下游某提水灌溉泵站进水管路布设不合理引起的水泵进口水流流态恶化、水泵叶片断裂、水泵机组振动及超载运行等问题,对泵站进水管路进行技术改造。【方法】运用三维不可压缩流体的N-S方程和标准k-ε模型对改造前后的进水管路的水力特性进行了数值模拟,分析了5种流量下进水管路不同断面的流速分布和流线分布、出口(水泵进口)断面的流速分布均匀度、管路水力损失、管路涡量分布及涡量值。【结果】改造后的进水管路水力损失平均降低78.96%,最大正、负涡量值平均降低83%~84%;进水管路的水流流态和涡量分布趋于均匀,进水管路水流平稳,平均流速为1.57~1.93 m/s,满足规范要求;进水管路出口断面的流速分布均匀度平均提高4.48%,有效地改善了水泵进水条件。【结论】改造后的泵站进水管路水力特性得到改善,每台机组有功功率降低35 kW,节能效果明显,可为类似改造工程提供参考。  相似文献   

12.
基于堰流的测流原理,推求出矩形渠道自由跌水的流量理论计算公式,其中综合流量系数(m)可由明渠底坡(S)和糙率(n)共同确定,并针对6种明渠底坡(S)、2种糙率(n)进行了一系列模型试验。结果表明,矩形明渠量水堰过流顺畅,测流精确,综合流量系数m与S(1/2)/n存在线性关系,流量试验值与理论计算值吻合良好。  相似文献   

13.
根据明渠恒定渐变流形成条件和水力特性,以断面比能为理论依据,采用迭代法计算明渠流速、流量,构建了基于断面比能和大数据的新型明渠双水位量水方法。通过在冶河灌区实际应用,对采集的水深数据和实测的流量数据进行大数据计算,得出不同上下游水深对应的水力坡度和流量,提出糙率按水深和时段分区取值,并在此基础上绘制明渠恒定渐变流Q~H_s~ΔH关系曲线,分析实际工程中时段、边壁条件对糙率系数的影响,阐述明渠量水段应具备的条件。该方法理论依据充分,糙率取值较合理,流量精度较高,研究结果可为灌区量水技术方法创新和应用提供参考。  相似文献   

14.
U形渠道的水力特性及水力计算   总被引:3,自引:1,他引:2  
U形渠道断面水力和结构性能优越,是渠道输水工程中较常采用的断面形式之一,水力计算中的正常水深、临界水深求解无显函数形式的表达公式。提出了U形渠道水力最佳断面的设计方法,并给出了确定U形渠道水力最佳断面底弧半径的计算公式。导出了U形渠道正常水深、临界水深水力计算的迭代公式,并给出了判别水深范围的界限流量计算公式。  相似文献   

15.
【目的】探索渠道内刚性粗糙元对水流流速分布的影响。【方法】用三维超声波多普勒流速仪(ADV)采集水流稳定后不同位置的流速值,并对获取数据进行平均化处理,分析了不同流量、不同粗糙元布置形式和不同粗糙元形态下明渠中非淹没刚性粗糙元前后水流流速结构和淹没刚性粗糙元后尾流结构,着重研究水流纵向流速u的纵向分布结构。【结果】①非淹没圆柱体试验,在不同流量、不同圆柱体排数下,流速u的流速分布相同;②淹没粗糙元在y方向使水流形成了1个3层的速度剖面,3层水流流速分布不同,不同淹没粗糙元形态对水流结构具有显著影响;③基于模型试验数据,对非淹没圆柱体试验数据采用非线性拟合的方法,分别得到了单根圆柱体上下游纵向流速分布的拟合式;④采用量纲分析得出,粗糙元在淹没条件下,其下游纵向流速u与水流特性、渠道特性及粗糙元特性有关。【结论】淹没条件下,粗糙元后水流流速纵向分布形成了1个3层的速度剖面;而非淹没条件下,粗糙元后水流流速纵向分布均呈现出"对勾"的形式。  相似文献   

16.
随着输水工程施工工艺的提高,悬链线形断面得到越来越广泛的应用,但悬链线形断面设计流量相应正常水深有解析解,而非设计流量相应正常水深的计算需求解超越方程,在理论上无法直接求解。首先,依据悬链线形断面几何特征、水力要素和正常水深基本方程,得到设计流量相应正常水深的解析解公式;其次,通过引入恰当的无量纲参数,导出悬链线形渠道正常水深的隐函数方程,经数学变换得到正常水深的迭代计算公式,同时给出正常水深的初值计算公式,经一次迭代得到非设计流量相应正常水深的直接计算公式。最后对公式进行误差分析及比较,结果表明,在工程适用范围内,初值计算公式和直接计算公式的最大相对误差绝对值分别小于0.054%和0.008 3%,远高于现有计算公式精度。  相似文献   

17.
【目的】针对半圆形渠道进行物理模型试验研究,揭示半圆形渠道沿壁面法线方向平均速度特征位置的分布规律,为非标准断面渠道测流方法提供新思路。【方法】基于不同水力条件下渠道断面流速的量测结果,从流速分区理论出发,利用经典对数公式推导半圆形渠道断面测速法线上平均流速特征位置点的理论计算公式,考虑侧壁对摩阻流速的影响,基于测定特征位置的流速从而得到整个半圆形渠道断面的平均流速。【结果】本研究提出半圆形明渠在过圆心的测速法线上平均速度特征位置的计算公式,与试验结果相比,该公式计算结果所得平均误差在10%左右,该公式能较好地反映半圆形明渠测速法线平均速度特征位置的分布特性;沿测速法线方向分析半圆形明渠断面流速分布精度更高,流速分布规律的分析也更加合理。【结论】平均流速特征位置点理论公式计算结果与模型试验结果较为吻合,公式精度较高,工程中可通过测量特定位置的点的流速进而推求断面平均流速,达到快速准确确定渠道断面流量的目的。  相似文献   

18.
付强  朱荣生 《农机化研究》2012,34(9):187-189,194
根据泵站要求设计了一种新型结构的肘型进水流道,按欧拉相似准则进行模型试验,试验装置采用开敞式进水前池,流道进口不带泵,采用在试验管道上增设循环泵提供所需流量。分别进行了水力损失、流动轨迹和水面漩涡试验,最大流量工况点模型试验的水力损失为0.059mm。经相似换算,得到实型流道的水力损失为0.059 m,损失较小。流动轨迹的模型试验显示流态曲线光滑,没有突变、脱流、涡带等局部损失等现象发生。最低运行水位、最大流量工况下对进水池水面漩涡试验,显示出现了2型水面漩涡,不会对循环水泵产生不良影响。试验结果表明,该肘型进水流道综合性能优良。  相似文献   

19.
在江西省赣抚平原灌区选择典型渠道,通过对清除水草前后渠道流速、流量和糙率的对比观测,分析水草对灌区渠道输水能力和水质的影响。结果表明,实施机械除草后,渠道的流速和流量均大幅度增加,糙率大幅下降,渠道输水能力明显提高,同时主要水质指标得到明显改善。  相似文献   

20.
为了研究水泵变速运行装置内部水力特性变化,采用CFX软件对平面S形轴伸泵装置进行全过流部件数值模拟计算,转速分别为1 050、1 250、1 450 r/min。结果表明,不同转速下装置叶轮进口流速均匀度变化很小,进水流道水力损失变化规律不变。3种转速下出水流道小流量工况水流旋转运动强烈,设计工况流线较平顺,大流量工况水流贴壁运动明显。水泵转速增加后,出水流道水力损失最小值增大,对应的流量也加大。3种转速下,出水流道水力损失与装置扬程之比δ均在泵装置最优工况最小,且均为0.055左右,相差不大。通过断面涡量云图比较,变转速对导叶出口断面涡量影响很大,对应该断面涡量某一数值时,水力损失有最小值。泵装置变转速等效率曲线近似为抛物线,装置外特性基本符合比例律的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号