首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
【目的】探究节水灌溉模式条件下稻田地下水补给特征。【方法】采用定地下水埋深的蒸渗仪开展试验,分析节水灌溉干湿循环下稻田地下水补给量变化过程,研究地下水补给对节水灌溉稻田作物需水的贡献及对土壤水分的调节作用。【结果】控制灌溉稻田地下水补给过程频繁,当稻田干湿循环过程中土壤水分降至一定限度时,稻田地下水补给量在复水后(灌水或降雨)1 d内出现峰值,稻季共出现16次峰值。控制灌溉稻田稻季地下水补给量达253.98mm,约占水稻需水量的51.1%。稻田干湿循环中,在稻田地下水补给与土壤水入渗的综合作用下,30 cm深度以下土壤含水率保持稳定,0~30 cm深度土壤含水率总体呈下降趋势。【结论】节水灌溉干湿循环下稻田地下水补给量显著增加,有效补给了水稻需水。浅地下水埋深条件下,稻田地下水补给过程直接影响水稻根区土壤水分变化。  相似文献   

2.
为确定限制引水背景下河套灌区土壤水-地下水动态及其转化关系,为优化农田水管理策略提供理论依据,选取河套灌区典型斗渠区域,基于2年土壤水、地下水的监测数据,分析在不同作物种植区、不同灌溉期的农田土壤水、地下水的动态变化规律。运用水量平衡法对地下水浅埋区农田土壤水与地下水的转化关系进行定量研究,结果表明:生育期内农田土壤水分变化属于“灌溉降水入渗补充-腾发消耗型”;受灌溉影响,不同时期地下水埋深动态具有显著的灌溉型特征,土壤水渗漏补给地下水明显抬升地下水位,地下水排水和潜水蒸发又降低地下水位;在作物生育期内,土壤水与地下水进行双向补给,且不同时期具有不同的转化特征;研究区2年生育期内灌溉降水补给土壤水分别为544.56mm和541.85mm,平均腾发量为465.5mm和434.8mm,土壤储水量减少61.96mm和63.1mm,土壤水补给地下水为207.73mm和236.94mm。研究可为当地及相近地区农业节水灌溉提供科学依据。  相似文献   

3.
【目的】研究红壤区涌泉根灌双点源入渗土壤水氮运移分布规律,为提高涌泉根灌水氮利用效率和灌水器合理埋深提供理论依据。【方法】在大田通过灌水器埋深分别为30、45、60cm的硝酸铵钙溶液入渗试验,研究了灌水器埋深对涌泉根灌双点源交汇入渗土壤的入渗能力、湿润锋运移距离、土壤水分以及铵态氮和硝态氮运移特性的影响,并建立了红壤涌泉根灌土壤累计入渗量及湿润锋运移距离与入渗历时的关系模型。【结果】灌水器埋深分别为30、45和60 cm时,红壤累计入渗量和稳定入渗率分别为18.84 L和0.035 cm/min、17.09 L和0.031 cm/min以及14.37 L和0.024 cm/min,即灌水器埋深越大,土壤的累计入渗量和稳渗率就越小,且累计入渗量与入渗历时之间均符合幂函数关系;灌水器埋深分别为30、45和60 cm时,交汇入渗发生的时间分别为168、187和197 min,交汇发生时间增幅依次为10.16%和5.56%,湿润锋运移距离随埋深的增大而减小,运移距离与入渗历时之间均符合对数函数关系,且竖直向下的运移距离均大于竖直向上;土壤含水率均随着土层深度的增加而先增加后减小,对于同一土层,灌水器处土壤含水率最大,其次为交汇面处,而距离灌水器12.5cm处土壤含水率最小;土壤铵态氮和硝态氮均随土层深度的增加而先增加后减小,在水平方向,距离灌水器越近,铵态氮的质量浓度越大,对于硝态氮而言,灌水器埋深不同,硝态氮的分布存在明显差异。【结论】灌水器埋深对涌泉根灌双点源交汇入渗红壤的水氮运移分布均有显著影响,且埋深超过60 cm时,氮肥淋失风险较大,且对作物吸收不利。  相似文献   

4.
【目的】揭示不同降水年型下东北寒区水稻需水对地下水埋深变动与灌溉的响应规律,进一步优化寒区水稻灌溉制度。【方法】以黑龙江庆安和平灌区灌溉试验站多年水稻灌溉试验及2017年地下水动态观测数据为依据,分析不同灌水模式下水稻耗水及地下水变化动态,验证AquaCrop模型在东北寒区水稻生长模拟中的适用性,并用于模拟分析25%、50%、75%降水年型下水稻需水与不同地下水埋深的相互关系及灌水量的响应规律,提出适宜该地区水稻高产的地下水埋深范围及其生育期净灌水量。【结果】①水稻生育期内,地下水埋深先浅后深,其中,分蘖期、拔节孕穗期和抽穗开花期耗水量大,灌溉和降雨较多,地下水埋深较浅;②构建了3种降水年型下ET与GD、I的多元回归方程,综合考虑了水稻需水量与地下水埋深、生育期灌水量之间的相关关系,可用于稻田高效耗用水管理和地下水资源持续利用;③为实现东北寒区水稻高产和地下水埋深基本稳定的双重目标,地下水埋深应控制在2.0~2.5 m之间,水稻生育期净灌水量为:枯水年不宜低于现状灌水量,即300 mm;丰水年和平水年净灌水量可适当减少至现状灌水量的0.8倍,即240 mm。【结论】提出了适宜该地区水稻高产的地下水埋深范围及生育期净灌水量,为促进我国东北地区节水增粮,保护湿地生态环境,提高农业用水效率提供了理论依据。  相似文献   

5.
【目的】探究河套灌区滴灌条件下玉米各生育期土壤水氮变化规律及不同灌水量对土壤硝态氮累积量的影响。【方法】通过田间试验,设置高灌水量(D1:76 mm)处理和低灌水量(D2:60 mm)处理,分析土壤含水率和土壤氮素(铵态氮和硝态氮)的动态变化规律,利用HYDRUS-2D模型进行模拟验证与预测。【结果】各处理灌水后土壤含水率呈增加趋势;而土壤铵态氮和硝态氮在灌水施肥后迅速升高,随后下降,D1处理和D2处理不同生育期0~10 cm土层铵态氮量和硝态氮量的平均降幅分别为60.0%~62.0%和40.0%~46.7%。拔节期、抽雄期和灌浆期各土层灌水后D1处理相比D2处理的土壤含水率分别增加了5.9%、8.0%和6.7%,而土壤铵态氮量和硝态氮量随着土层深度的增加而降低。不同生育期硝态氮累积量为拔节期>抽雄期>灌浆期,随着生育期的推进,硝态氮累积量呈降低趋势。土壤含水率及氮素模拟值与实测值的吻合度较高,R2、RMSE和d均介于合理范围内。【结论】玉米生育期120 mm的灌溉定额可有效降低0~60 cm土层的硝态氮累积量,可降低硝态氮在60~100 cm土层的积累量。该研究可为当地灌...  相似文献   

6.
地下水埋深对冬麦田土壤水分及产量的影响   总被引:14,自引:1,他引:14  
通过6种地下水位控制处理和对照(自然地下水位)冬小麦试验,探讨了不同地下水埋深对冬麦田土壤水分季节变化规律和垂直变化规律、地下水-土壤水界面水分转化量变化过程以及对冬麦田田间土壤水分平衡的影响。结果表明,地下水埋深对冬麦田0~60cm土壤水分动态有着明显的影响。地下水埋深越浅,麦田表层和主要根层土壤储水量季节变化越强烈,地下水对土壤水分的补给量越大,冬小麦全生育期耗水量也随着增加;土壤排水量大小与灌溉量和降雨量大小有关。地下水位埋深越深,灌溉和降水后的土壤开始排水日期越滞后;无论地下水埋深深浅,冬麦田累计地下水补给量变化规律可分为4个阶段,即稳定增长期、缓慢增长期、快速增长期和趋于稳定期;地下水埋深1.5m时冬小麦产量最高,地下水位太深或太浅产量均下降。水分利用率最高值出现在地下水埋深1.0m的处理。地下水位在1.0m以下时,水分利用效率随地下水深度加深和灌水量增加而减少。  相似文献   

7.
为研究砂姜黑土区有无作物生长条件下土壤水与地下水的转化关系,采用五道沟实验站蒸渗仪1991-2015年10-5月份小麦生长期及同期裸地不同地下水埋深水平下蒸发和入渗实测资料,分析了不同下垫面条件下潜水蒸发量、入渗补给量和潜水补耗差随地下水埋深变化规律。结果表明:小麦生长条件下,潜水蒸发主要发生在2.5 m以浅,裸地潜水蒸发主要发生在0.4 m以浅,且其均随地下水埋深增加而递减;裸地累积入渗补给量大于小麦地累积入渗补给量,均随地下水埋深增大而减小,裸地与小麦地累积入渗量之间差值随地下水埋深的增大呈先增加后减少趋势,在2~3 m时小麦地蓄水能力最大;在种植小麦条件下,潜水补耗差与地下水埋深呈对数关系,土壤水与地下水转化量的均衡临界埋深为1.62 m,地下水埋深小于1.62 m,潜水消耗起主导作用,地下水向土壤水转化,大于1.62 m,土壤水补给地下水,裸地条件下土壤水与地下水转化量的均衡临界埋深0.2~0.5 m之间。土壤水与地下水的转化受作物和均衡临界埋深共同影响。  相似文献   

8.
【目的】探索基于遥感技术建立准确快捷评估区域蒸散发量和灌溉水利用系数的方法。【方法】以河套灌区义长灌域为研究区,基于SEBAL(Surface Energy Balance Algorithm for Land)模型和较高时空分辨率的环境卫星影像,建立了SEBAL遥感蒸散发估算模型,并与降水量、灌水量和地下水位数据结合,计算了研究区的灌溉水利用系数。【结果】SEBAL模型反演的作物蒸散发量的平均绝对误差在5%以内;2013—2017年研究区灌溉水利用系数在0.427~0.572之间,平均值0.492,高于河套灌区的平均水平。人民支渠区的灌溉水利用系数在0.447~0.688之间,均值为0.516。研究区地下水补给量均值为52.13 mm,约占灌水量的3%~7%,忽略地下水补给量会对灌溉水利用系数准确计算带来0.03~0.08的误差。【结论】基于SEBAL遥感蒸散发模型快速测算了灌溉水利用系数,计算结果具有较好的精度和可信度。模型尺度差异性较小,在不同空间尺度的适用性较好。  相似文献   

9.
【目的】探究不同春灌策略下膜下滴灌棉田生育期适宜灌溉定额。【方法】通过大田小区试验,设计播前滴水春灌(春灌量90 mm)和常规春灌(春灌量180 mm)2种春灌模式,每种模式下在棉花生育期设计3种灌水定额(W1:30 mm、W2:37.5 mm、W3:45 mm)处理,研究春灌模式与灌水定额对膜下滴灌棉田土壤水盐动态变化、棉花生长、干物质积累、产量和水分利用效率的影响。【结果】与常规春灌相比,滴水春灌能够保证棉花苗期出苗所需的土壤水分,且能显著提高生育期0~80 cm土层的土壤含水率;与苗期相比,滴水春灌棉花生育期0~40 cm土层出现积盐区,蕾期和花铃期0~40 cm土层电导率分别增加了7.84%和8.75%,滴水春灌生育期末0~100 cm土层土壤电导率较常规春灌增加8.37%;不同灌水定额下0~100 cm土层土壤电导率均呈增加趋势,但随着灌水定额的增加土壤剖面电导率显著降低,W1、W2、W3处理积盐率分别为30.11%、12.12%和11.11%;随着灌水定额的增加,株高和茎粗显著提升,干物质积累量明显增加,产量增加,而灌溉水利用效率(WUEI)减小,水分利用效率(WUEET)...  相似文献   

10.
【目的】探明微咸水灌溉条件下滴头流量对压砂地土壤水盐分布及西瓜生长和产量的影响。【方法】通过田间试验,设置Q1(2 L/h)、Q2(3 L/h)、Q3(4 L/h)3种滴头流量,研究滴头流量对灌水前后土壤水盐分布特征、西瓜生长、产量、果实品质及水分利用效率的影响。【结果】滴头流量越大,土壤水平湿润范围越大,膜间土壤含水率越高,滴头下方垂直湿润深度越浅。各处理0~100 cm土壤盐分经过一个全生育期均呈下降趋势,盐分减少量随滴头流量增大而增加。果实可溶性糖量随滴头流量增大呈先增大后减小趋势,Q2处理最大,分别较Q1、Q3处理提高了54.3%和22.3%;维生素C量随滴头流量增加呈先减少后增加趋势,Q3处理最高,较Q2处理提高了53.7%。西瓜产量与灌溉水利用效率均随滴头流量增大而增加,Q3处理产量分别较Q1、Q2处理提高了6.20%和3.56%,Q3处理的灌溉水利用效率分别较Q1、Q2处理提高了6.49%和3.72%。【结论】综合考虑土壤水盐再分布形式与西瓜产量、品质,适用于压砂地西瓜微咸水滴灌流量为Q3(4 L/h)。  相似文献   

11.
土壤盐渍化是制约干旱区农业发展的主要障碍,而浅埋地下水区域的地下水环境是影响土壤盐渍化的直接因素。为调控合理的地下水埋深和矿化度,以防控区域盐渍化,以河套灌区永济灌域为研究区,运用指示Kriging法比较了春灌前和生育期不同阈值条件下土壤表层含盐量、地下水埋深和矿化度的概率分布,从概率空间分布的角度研究了不同时期防治土壤盐渍化的地下水临界埋深和矿化度。结果表明:地下水埋深属于中等变异性,土壤表层含盐量和地下水矿化度属于强变异性。春灌前较生育期土壤表层盐渍化高风险区扩大、浅埋地下水高概率区缩小、地下水矿化高风险区缩小。春灌前永济灌域土壤表层发生轻度、中度盐渍化时的地下水埋深临界值分别为2.6、2.2 m,地下水矿化度临界值分别为2.0、2.5 g/L;生育期土壤表层发生轻度、中度盐渍化时的地下水埋深临界值分别为2.2、1.8 m,地下水矿化度临界值分别为2.5、3.0 g/L,春灌前更易发生土壤盐渍化。春灌前较生育期土壤盐分受外界因素(气象因素和人为因素)影响小,且土壤表层含盐量、地下水埋深和矿化度变异性也相对较小,地下水环境对土壤盐渍化的影响更强烈。研究区北部、东南部和中部小部分区域为地下水埋深小于临界值且大于矿化度临界值的高概率区,是土壤返盐的高风险区,建议进一步完善该地区的排水系统。  相似文献   

12.
【目的】研究河套灌区地下水埋深和矿化度的时空变异规律。【方法】以内蒙古河套灌区为研究区域,应用地统计学方法和ArcGIS等工具分别研究了1998—2017年灌区地下水埋深和矿化度的时空变异性和空间分布及其影响因素。【结果】①从1998—2017年灌区地下水埋深及其空间变异性逐渐增大,地下水矿化度及其空间变异性先增大后减小。地下水埋深和矿化度的块金系数均较小,表明其主要影响因素为灌区的环境。地下水矿化度块金系数逐渐增大,空间结构性变差,受人为因素影响造成的随机变异性增强。地下水埋深及矿化度的空间自相关性距离逐渐增大,空间连续性逐渐增强;②灌区西南部沿黄河附近地下水埋深相对较浅,基本在2 m以下;西北部和东北部沿狼山山前地下水埋深相对较深,部分区域埋深可达10 m以上,机电井的分布与地下水埋深高值区域的分布相似。矿化度较高的区域分布在灌区西北部和东南部地区,西南及中部局部地区地下水矿化度较低;③丰水年大量的降雨对灌区整体地下水的补给作用,使得丰水年地下水埋深较浅,地下水得到淡化使其矿化度减小。【结论】地下水矿化度较高的区域地下水埋深相对较小,地下水矿化度较低的区域地下水埋深相对较大。  相似文献   

13.
基于人工示踪方法的河套灌区根系层净淋滤水量研究   总被引:1,自引:1,他引:0  
【目的】获取河套灌区作物根系层的净淋滤水量,对灌区根系层进行盐分平衡分析。【方法】兹利用溴离子作为人工示踪剂,研究了河套灌区根系层净淋滤水量,并采用简化的盐分平衡方程估算盐分达到平衡时根系层的平均土壤含盐量。【结果】河套灌区根系层年净淋滤量为40.8 mm,与水均衡法计算结果(41.6 mm)相互验证良好;不同灌溉方式的净淋滤量之间存在明显差异;地下水埋深和秋浇水量是决定净淋滤水量的关键因素。灌区若采用矿化度为1.0~2.5 g/L的地下水进行灌溉并维持现有灌溉制度,盐分平衡时的根层土壤溶液质量浓度将接近作物耐盐极限。【结论】灌区引黄水渠灌可维持现状灌溉制度不变;若采用矿化度较高的地下水进行灌溉,需适当加大淋盐水量,以保证长期利用条件下根系层盐分能满足作物正常生长的要求。  相似文献   

14.
对20个地中测坑进行不同地下水埋深下土壤水、盐运移及作物生长的分析,研究了地下水埋深对土壤水分利用效率(WUE)、养分(NO3--N)及作物生物性状指标的影响。结果表明:埋深为1.5~2.5m时,有利于作物生长,但从盐渍化控制角度看,地下水埋深宜控制在2.0m左右为宜;当地下水埋深大于2.0m时,目前的灌溉制度已经不能满足作物的正常生长需要,出现亏缺灌溉,需要增加灌水定额,本研究说明适宜地下水位的控制对于河套灌区节水改造具有重要的意义。  相似文献   

15.
为研究红壤区域蓄水渗灌关键参数变化对水氮分布的影响,试验设灌水量和灌水器埋深两个因素,每个因素设3个水平,共9个处理.分析影响各因素对土壤入渗率、湿润体内含水率和硝态氮分布影响.结果表明:入渗达到稳定之前灌水量对入渗率的影大于灌水器埋深,垂向湿润锋运移距离随着灌水器埋深增加而减小,随着灌水量的增加而增加;并随着灌水器埋深加大,湿润体范围向右下方移动.土壤含水率随土壤深度增大再逐渐变小,随着灌水量的增加,土壤湿润范围增加;灌水量增加,促进硝态氮的入渗;土壤硝态氮的分布规律为由灌水器周边至湿润体边缘呈现"低-高-低"的分布态势.对土壤水氮的分布显著影响为:灌水量>灌水器埋深.增加一定的灌水量可以促进蓄水渗灌红壤水氮入渗,而增加灌水器埋深则使得湿润体范围向灌水器右下方移动;在红壤地区脐橙等经济作物灌溉中推荐采用高灌水量与深埋灌水器的方式.  相似文献   

16.
在引黄水量大幅减少且河套灌区大范围实施节水改造工程的背景下,为研究河套灌区渠道衬砌前后对农田水土环境的影响,通过对隆盛节水改造典型示范区的环境效应进行监测分析研究,结果显示示范区环境变化主要与灌水量有关,渠道衬砌有效提高了灌溉水利用系数,对地下水埋深及土壤盐碱化有一定影响。为控制灌区土壤盐碱化,示范区地下水埋深阈值为1.6~1.8 m,西济支渠区域适宜引水量为1 645~1 850万m~3。渠道衬砌后灌区具有535万m~3节水潜力,研究结果将为灌区节水改造提供理论基础。  相似文献   

17.
不同地下水埋深对土壤水、盐及作物生长影响的试验研究   总被引:5,自引:0,他引:5  
对20个地中测坑进行不同地下水埋深下土壤水、盐运移及作物生长的分析,研究了地下水埋深对土壤水分利用效率(WUE)、养分(NO3-N)及作物生物性状指标的影响.结果表明:埋深为1.5~2.5 m时,有利于作物生长,但从盐渍化控制角度看,地下水埋深宜控制在2.0 m左右为宜;当地下水埋深大于2.0 m时,目前的灌溉制度已经不能满足作物的正常生长需要,出现亏缺灌溉,需要增加灌水定额,本研究说明适宜地下水位的控制对于河套灌区节水改造具有重要的意义.  相似文献   

18.
为了研究渠系引水量以及气象因素与地下水埋深之间的联系,以河套灌区为研究对象,通过描述性统计分析方法,建立起引水量———地下水埋深、水面蒸发量———地下水埋深关系图。结果表明:在生育期内(4月-11月),引水量、蒸发量与地下水埋深的区域整体变化趋势较好,相关性显著。因此,充分研究出引水量、水面蒸发量对地下水埋深的关系,将对于灌区地下水的合理开采与配置以及灌区全面实施节水改造工程具有重要的意义。  相似文献   

19.
【目的】分析探讨河套灌区当前地下水适宜埋深、节水阈值和水盐平衡状况。【方法】采用数理统计的方法,对河套灌区1998—2018年的引黄用水量、地下水埋深、水盐平衡等资料进行统计分析。【结果】2016—2018年,灌区由黄河水带来的盐分每年平均约254万t;排入乌梁素海的盐份年均约106万t,每年约有148万t盐分滞留在灌区内,灌区土壤仍然处于连续积盐状态。由于引入和排出大量的生态水,乌梁素海排入黄河的盐分年均188万t,属于脱盐状态,乌梁素海水质持续改善。河套灌区地下水适宜开采量约为3.2亿~3.6亿m3/a,灌区近年地下水实际开采量2016年为2.1亿m3,2017年为2.4亿m3,2018年为2.15亿m3,目前灌区还有约1.5亿m3的地下水开采潜力。【结论】河套灌区目前地下水年均适宜埋深为1.8~2.5 m,认为灌区农业引黄水量下限(节水阈值)约为40亿m3,每年还应该引入3亿~4亿m3的生态用水,用于维持乌梁素海和灌区湖泊湿地的的生态环境。  相似文献   

20.
土壤水基质势膜下滴灌春玉米生长和耗水特性研究   总被引:2,自引:0,他引:2  
为缓解内蒙古河套灌区水资源短缺并实现农业节水,在河套灌区连续开展2 a(2016年和2017年)的田间试验,采用膜下滴灌种植春玉米,设置5个基于土壤水基质势的灌水下限水平,分别为-10(S1)、-20(S2)、-30(S3)、-40(S4)、-50 kPa(S5),研究不同灌溉处理下的土壤水分分布与春玉米生长及耗水特性。研究结果表明2个生长季内不同基质势水平下土壤含水率差异明显,基质势越高土壤剖面平均体积含水率越高。不同土壤水基质势下限控制的灌水水平显著影响玉米生长,随着生育期内土壤水基质势控制下限的降低,玉米株高与叶面积指数显著降低(p0.05),其中基质势下限为-50 kPa的处理玉米发生早衰现象。地上部分干物质积累量、百粒质量、穗粒数等产量构成指标都随土壤水基质势下限的升高而增加。土壤水基质势水平越高,玉米产量越高,其中S1、S2和S3处理玉米产量显著高于S4和S5,但是前三者之间不存在显著差异(p0.05)。随着土壤水基质势的降低水分利用效率先增大后减小,-30 kPa时水分利用效率最高。综合考虑作物产量和水分利用效率,建议将河套灌区玉米膜下滴灌土壤水基质势下限控制在-30 kPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号