首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study represents the first large-scale population genetic analysis of the marine fish gilthead sea bream (Sparus aurata), one of the most significant species in the South European aquaculture. Six wild and five cultivated sample sets covering the South Atlantic and Mediterranean European area have been screened for allozyme, microsatellite and mitochondrial DNA (mtDNA) variation. Microsatellites showed higher levels of polymorphism than allozymes. The low variability of mtDNA offered no basis for population differentiation.

The results reveal levels of variability for S. aurata above those from other sparids. Cultivated populations show a slight decrease of variability related to the wild ones, but not sufficient to document inbreeding depression effects, thus suggesting a fairly proper management. Wild populations reveal a slight degree of differentiation more pronounced with microsatellites than with allozymes, but not apparently associated with geographic or oceanographic factors. The cultivated populations seem to be highly divergent as a result of genetic drift caused by different factors pertaining to their respective histories. With both markers, the two cultivated Spanish sample sets are the most divergent. The high differentiation between cultivated and wild populations from the same area might indicate no evidence for significant genetic flow between them.

This study provides an insight into the population structure of S. aurata, although more questions have arisen that need to be solved. This can be achieved by further screening of small-scaled targeted sample sets in the studied area.  相似文献   


2.
The Apostichopus japonicus is a valuable aquaculture species in China. In this study, 51 single nucleotide polymorphisms (SNPs) were identified from expressed sequence tags of sea cucumber using high‐resolution melting. The average observed heterozygosity (Ho) and expected heterozygosity (He) were 0.2462 and 0.2897, respectively. Thirty‐two of these loci were used for estimating the genetic similarity and variation between the five hatchery stocks from China and two wild stocks from Japan. No significant differences in Ho or He were observed between the wild and hatchery populations. The pairwise Fst (which ranged from 0.0119 to 0.0236) and the genetic identity (which varied from 0.9802 to 0.9915) showed no significant differentiation between the wild and cultured stocks. The analysis of molecular variance indicated the source of variation was at the level of “within the populations.” The information on the genetic variation and differentiation in cultured and wild populations of A. japonicus obtained in this study is useful for setting up suitable guidelines for founding and maintaining of cultured stocks and for future genetic improvement by selective breeding.  相似文献   

3.
For the first generation of a selective breeding programme, it is important to minimize the possibility of inbreeding. This mostly occurs by mating between closely related individuals, while proper mating can provide an opportunity to establish the base families with wide genetic variation from which selection for subsequent generations can be more effective. Genotyping with microsatellite‐based DNA markers can help us determine the genetic distances between the base populations. The genetic markers further facilitate the identification of the correct parents of the offspring (parentage assignments) reared together with many other families after hatching. We established a genetic analysis system with microsatellite DNA markers and analysed the genetic distances of three farmed stocks and a group of fish collected from wild populations using eight microsatellite markers. The averaged heterozygosity of the farming stocks was 0.826 and that of the wild population was 0.868. The hatchery strains had an average of 8.6 alleles per marker, which was less than a wild population that carried an average of 14.3 alleles per marker. Significant Hardy–Weinberg disequilibrium (HWDE) was observed in two farming stocks (P<0.05). Despite relatively low inbreeding coefficiency of the hatchery populations, the frequency of a few alleles was highly represented over others. It suggests that the hatchery stocks to some extent have experienced inbreeding or they originated from closely related individuals. We will develop a selective program using the DNA markers and will widen the usage of the DNA‐based genetic analysis system to other fish species.  相似文献   

4.
Abstract

Anderson theorizes that development of the aquaculture of a fish species (also captured in an open‐access fishery) favours the conservation of its wild stocks, if competitive market conditions prevail. However, his theory is subject to significant limitations. While this is less so within his model, it is particularly so in an extended one outlined here. These other models allow for the possibility that aquaculture development can impact negatively on wild stocks thereby shifting the supply curve of the capture fishery, or raise the demand for the fish species subject both to aquaculture and capture. Such development can threaten wild fish stocks and their biodiversity. While aquaculture development could in principle have no impact on the biodiversity of wild stocks or even raise aquatic biodiversity overall, its impact in the long‐term probably will be one of reducing aquatic diversity both in the wild and overall. The development of aquaculture does not automatically ensure long‐term sustainability of fish and other aquatic supplies.  相似文献   

5.
Genetic variation in seven reared stocks of gilthead sea bream Sparus aurata, originating from Greek commercial farms, was assessed using five polymorphic microsatellite markers and was compared with that of two natural populations from the Ionian and the Adriatic Seas. The total number of alleles per marker ranged from 11 to 19 alleles, and hatchery samples showed the same levels of observed heterozygosity with samples from the wild but substantially smaller allelic diversity and expected heterozygosity. The global genetic differentiation for the cultivated samples was significant as indicated by Fst analysis, which might indicate random genetic drift and inbreeding events operating in the hatcheries. On the contrary, no significant difference was found between the two wild populations. Population pairwise tests between farmed and wild stocks were also significant, with the exception of one hatchery sample, the Central Greece 1, which was not significantly different from the two wild samples perhaps due to its recent use in aquaculture from wild‐caught animals. The UPGMA tree topology grouped the wild samples together with the Central Greece 1 stock, and showed a clear division between wild and farmed sample sets for the six remaining hatchery samples. Knowledge of the genetic variation in S. aurata cultured populations compared with that in the wild ones is essential for setting up appropriate guidelines for the proper monitoring and management of the stocks either under traditional practices or for the implementation of selective breeding programmes.  相似文献   

6.
Farming of the sea cucumber Apostichopus japonicus (Selenka) started 20 years ago and is still in rapid expansion in China. In order to assess the genetic status of both wild and cultivated stocks of this species, we used eight microsatellite markers to estimate the level of genetic diversity within five hatchery stocks and two wild populations of A. japonicus, and compared the degree of genetic differentiation between them. High levels of polymorphism were observed over all loci. The mean alleles and expected heterozygosities over the seven stocks were 10.4–12.3 and 0.735–0.783 respectively. The results of the microsatellite survey provide no evidence to show that hatchery practice of the sea cucumber in China to date has significantly affected the genetic variability of the cultured stocks. Significant differentiation was found between most pairs of the hatchery stocks and wild populations (Fst range: 0.008–0.036), and no obvious difference was detected between the wild populations (Fst=0.008). The information on the genetic variation and differentiation obtained in this study can be applied for future genetic monitoring of A. japonicus aquaculture stocks and will be useful for future genetic improvement by selective breeding, and for designing suitable management guidelines for these genetic materials.  相似文献   

7.
Offshore net pen fish farming provides a cost‐efficient means for production of marine finfish, and there is great interest in development of net pen operations in domestic waters. However, there are concerns over the possible genetic and ecological impacts that escaped fish may have on wild populations. We used individual‐based simulations, with parameter values informed by life history and genetic data, to investigate the short‐term (50 yr) impacts of net pen failures on the genetic composition of cobia, Rachycentron canadum, stocks in the Gulf of Mexico. Higher net pen failure rates resulted in greater genetic impacts on the wild population. Additionally, the use of more genetically differentiated source populations led to larger influxes of non‐native alleles and greater temporal genetic change in the population as a result of net pen failure. Our results highlight the importance of considering the appropriate source population for broodstock collection in net pen aquaculture systems and help to provide a general set of best management practices for broodstock selection and maintenance in net pen aquaculture operations. A thorough understanding of the genetic diversity, stock structure, and population demography of target species is important to determine the impact escapees can have on wild populations.  相似文献   

8.
The potential for genetic contamination of stocks arising from translocation and subsequent release or escape of translocated and/or genetically mixed stocks may be a significant risk to wild populations. In this context, we undertook a population genetic survey of stocks of lumpfish (Cyclopterus lumpus) along the Norwegian coast to establish the existing genetic population structure, which will aid the development of policy of the species’ use as cleaner fish in salmonid aquaculture. This was done by using 14 microsatellite loci and 287 specimens collected at five fishing grounds, covering most of the Norwegian coastline from south to north, with additional 18 samples of first-generation reared fish from a fish farm outside Tromsø (North Norway). Overall, there was no indication of significant spatial genetic structuring or of positive correlation between geographic and genetic distance among the wild lumpfish samples. These results suggest that, should translocated individuals escape from aquaculture in Norway, this will probably have little to no impact on the genetic composition of the local fish population.  相似文献   

9.
Inheritance of three kinds of molecular genetic markers (mtDNA, random‐amplified polymorphic DNAs (RAPDs) and allozymes) and sex were investigated in crossbreeding experiments between three populations of the Australian freshwater crayfish Cherax destructor. Crossbreeding did not disrupt the ively maternally inherited, and allozyme and RAPD markers were transmitted following expected Mendelian principles for co‐dominant and dominant traits respectively. Unlike these three markers, sex ratios were found to be distorted by crossbreeding in some families. Two crossbred families produced only females. The implications of these findings for freshwater crayfish population genetics, taxonomy and aquaculture are discussed.  相似文献   

10.
Hybridization among abalone species has been suggested as a possible means to increase their growth rates for aquaculture. As a first step to test the usefulness of the hybrids of Japanese abalone species (Haliotis discus discus, Haliotis gigantea and Haliotis madaka) for aquaculture, we characterized the genetic background and gonad development of hybrids that were produced by artificial insemination. The hybrid status of the resulting offspring was confirmed by assaying 14 allozymes and by RFLP analysis of the 16s rRNA and cytochrome oxidase I (COI) regions of mtDNA using 13 restriction enzymes. Histological examination of the gonads of the hybrids was conducted in comparison with those of the parental species. Cross‐breeding among the three species was conducted successfully in all combinations although with lower fertilization rates (means of 1.3–60.8%) than the parental species (34.3–90%). Crosses between H. discus discus and H. madaka had higher fertilization rates (22.4–60.8%) than those involving H. gigantea (1.3–19.9%). The hybrids were ascertained by the presence of both parental genotypes at the LDH‐A, ME‐A, MDH‐A and GPI loci. The maternal origin of the hybrid mtDNA was confirmed by digestion with DdeI, TaqI, HpaII of the COI region. No polymorphism was observed in the 16S rRNA region. The hybrids had gonadal development and maturity stages similar to the parental species up to fully mature oocytes and sperm. They spawned upon stimulation and produced viable offspring with high fertilization rates and successful development to the juvenile stage in back‐ and homologous hybrid crosses.  相似文献   

11.
For many aquaculture finfish species, the current broodstock have been collected from the wild or have undergone only a few generations of domestication. The Atlantic halibut (Hippoglossus hippoglossus) aquaculture industry in Atlantic Canada has retained F1 juveniles (n=145) from the 1996 spawning of wild adults for candidate broodstock. Through the development and use of a five-microsatellite DNA marker multiplex, we determined the parentage of these 1996 F1 individuals, which are being reared at one government and two industry hatcheries, and evaluated the change in genetic variation between the wild and the 1996 F1 stock. In the three groups of F1 fish, single parental pairs were assigned to 98%, 96% and 100% of individuals. Large full- and half-sibling groups were identified within and across F1 groups and, overall, only 36% of attempted crosses were represented in the retained fish. Effective population size in the parental group decreased from 27 to 13 when variance in family size was accounted for and to 12.5 when changes in gene diversity (compared to the combined F1 stocks) were considered. Statistically significant differences in measures of genetic variation were not widely observed between groups (original wild sample, parental group, three F1 groups and combined F1). However, the F1 population shows a 26% decrease in total allele numbers compared to the wild sample. These observations demonstrate the utility of genetic tools in the evaluation of genetic diversity and determination of pedigree during the establishment of new broodstock. They also emphasize the necessity for closely monitoring future matings among these fish and suggest the need to introduce additional genetic variation into this group of Atlantic halibut broodstock.  相似文献   

12.
Milkfish hatchery broodstock are either from on‐grown wild‐caught or hatchery‐produced fry/juveniles. To determine if a marker‐assisted management scheme can be formulated for improved milkfish hatchery production, milkfish stocks were genetically characterized using nine novel short tandem repeats or microsatellites. Eight wild‐bred Philippine stocks (CLA, CUR, CAM, SIH, SBH‐I1, HH, PAL and ZH‐P0), four hatchery‐bred stocks (SBH‐I2, SBH‐D, BoH and ZH‐F1), two farm stocks of known mixed lineages (SPH and BDH) and one Indonesian hatchery‐bred stock (WJH) were assessed. WJH was included since milkfish fingerlings from Indonesia reared in Philippine farms could be developed into future broodstock. Mean allelic richness (Ar) was highest in wild‐bred stocks (9.5) and lowest in hatchery‐bred spawners (9.1). Mean expected heterozygosities (He) were relatively similar in all stocks with wild‐bred stocks slightly higher (0.67) than the others. An analysis of molecular variance indicated significant yet low genetic differentiation among stocks (FST = 0.013; p = .000) where variation (98.6%) was explained by intra‐stock differences. In some of the domesticated stocks, reductions in mean allelic richness were observed in first generation hatchery broodstock (e.g. ZH‐F1; Ar = 8.3), compared with their founder stock (e.g. ZH‐P0; Ar = 9.4). The Indonesian stock was similar to local wild‐bred stocks based on genetic variability indices; thus, it might be likely that the local stocks’ fitness traits could be comparable with the imported milkfish stock which has been perceived to be better. The quality of locally available farmed milkfish and prospects of formulating a broodstock management scheme for the production of good quality milkfish seedstock are herewith discussed.  相似文献   

13.
凡纳滨对虾6个养殖群体遗传多样性的比较分析   总被引:4,自引:1,他引:3  
中国多批次引进凡纳滨对虾Litopenaeus vannamei并结合生产开展了相对独立的育苗工作,但对引进群体及引进后留种形成的本地群体的遗传变异水平缺乏了解,不利于种质管理及利用。此研究采用AFLP技术对抽查的6个养殖群体进行分析,发现进口群体具有相对较高的遗传多样性水平;养殖性能较好的东方、海星和旭明群体遗传多样性水平与进口群体相近;而乾塘群体遗传变异水平最高,推测可能是与其种质混杂有关;广益群体遗传多样性水平最低,可能已出现近交衰退。通过对各个群体间的遗传距离进行分析,为下一步根据亲缘关系的远近开展群体问杂交育种提供技术依据。  相似文献   

14.
Genetic improvement of aquaculture species offers a substantial opportunity for increased production efficiency, health, product quality and, ultimately, profitability in aquacultural enterprises. Technolo‐gies exist that can be implemented immediately to improve multiple traits that have economic value, while simultaneously accounting for inbreeding effects. Genetic improvement techniques for delivering genetic gain include formal definition of the breeding objective, estimation of genetic parameters that describe populations and their differences, evaluation of additive and non‐additive genetic merit of individuals or families and defining the structure of a breeding programme in terms of mating plans. Novel genetic technologies involving the use of DNA‐based tools are also under development for a range of aquaculture species. These gene marker technologies can be used for identification and monitoring of lines, families and individuals, monitoring and control of inbreeding, diagnosis of simply inherited traits and genetic improvement through selection for favourable genes and gene combinations. The identification of quantitative trait loci (QTL), and direct or linked markers for them, will facilitate marker‐assisted selection in aquaculture species, enabling improvement in economically important traits, particularly those that are difficult to breed for, such as food conversion efficiency and disease resistance.  相似文献   

15.
Freshwater prawn (Macrobrachium rosenbergii) culture in the Western Hemisphere is primarily, if not entirely, derived from 36 individual prawns originally introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding genetic variation within and among cultured prawn stocks worldwide. The goal of the current study was to characterize genetic diversity in various prawn populations with emphasis on those cultured in North America. Five microsatellite loci were screened to estimate genetic diversity in two wild (Myanmar and India‐wild) and seven cultured (Hawaii‐1, Hawaii‐2, India‐cultured, Israel, Kentucky, Mississippi and Texas) populations. Average allelic richness ranged from 3.96 (Israel) to 20.45 (Myanmar). Average expected heterozygosity ranged from 0.580 (Israel) to 0.935 (Myanmar). Many of the cultured populations exhibited reduced genetic diversity when compared with the Myanmar and the India‐cultured populations. Significant deficiency in heterozygotes was detected in the India‐cultured, Mississippi and Kentucky populations (overall Fis estimated of 0.053, 0.067 and 0.108 respectively) reflecting moderate levels of inbreeding. Overall estimate of fixation index (Fst = 0.1569) revealed moderately high levels of differentiation among the populations. Outcome of this study provide a baseline assessment of genetic diversity in some available strains that will be useful for the development of breeding programmes.  相似文献   

16.
为研究野生与养殖大黄鱼(Larimichthys crocea)群体的遗传多样性,对大黄鱼8个野生群体及6个养殖群体共336个样本的线粒体COⅠ基因部分序列进行了扩增和测序分析。实验最终获得序列片段长621 bp,总变异位点38个,简约信息位点23个,单变异位点15个,其中野生群体包含38个变异位点,占总变异的100%,养殖群体包含8个变异位点,占总变异的21.05%。在所有样本中共检测出单倍型34个,单倍型多样性为0.587,核苷酸多样性为0.00194,野生及养殖群体单倍型多样性指数分别为0.714~0.952、0.000~0.581。大黄鱼养殖与野生两个组群间的遗传分化指数为0.04982,占总变异的4.98%,差异极显著(P0.01),组群间群体间的变异占1.46%(P0.05),群体内的变异占93.56%(P0.01)。以上结果表明,大黄鱼的遗传变异主要来自于群体内,养殖群体的遗传多样性显著低于野生群体,两者的遗传多样性程度均处于较低水平,养殖群体间或野生群体间不存在显著的遗传分化,而养殖与野生两大组群间存在着显著的遗传分化。此外,通过对群体遗传结构及进化树的分析表明,东、黄海大黄鱼应属于同一地理种群,但两者间存在较低程度的遗传分化现象,黄海的大黄鱼群体遗传多样性高于东海群体。本研究可为大黄鱼种质资源的保护和恢复提供理论依据。  相似文献   

17.
Aquaculture is the fastest growing sector in agriculture. Substantial genetic gains have been achieved in a few cultured species using conventional selective breeding approaches. However, the majority of fish and shellfish species remain in their wild state. Due to the recognition of the enormous potential of marker‐assisted selection (MAS) to speed up genetic gain through early selection, aquaculture scientists have constructed linkage maps in over 40 species and mapped quantitative trait loci (QTL) for important traits in over 20 species since the 1990s. Although MAS and genomic selection (GS) have not been widely used in aquaculture, their application in breeding programmes is expected to be a fertile area of research. In this paper, I summarized the recent advances of linkage and QTL mapping, as well as MAS in aquaculture species. I also discussed the potentials of genome‐wide association studies (GWAS) and GS in aquaculture species.  相似文献   

18.
不同地理群体裸体方格星虫遗传结构及种群分化研究   总被引:1,自引:0,他引:1  
本研究对福建长乐、古雷、晋江海区裸体方格星虫自然群体91个个体的线粒体COI基因进行序列测定,并与厦门、北海、三亚3个地理群体15个个体的线粒体COI基因序列进行了比较分析。在106个个体中共发现193个核苷酸多态位点和52个单倍型,长乐、古雷、晋江海区3个地理群体中单倍型多样性指数(h)在0.626到0.972之间,核苷酸多样性(π)在0.00155到0.01325之间,表现出较高的遗传多样性。分子方差分析(AMOVA)显示1.97%的变异存在于群体内,而群体间的遗传变异为98.03%,群体间变异是总变异的主要来源。构建的单倍型系统关系树显示单倍型聚合为A、B、C、D 4个不同的具有高支持率的分支,表明我国沿海至少存在4个线粒体具显著差异的类群,并可能存在隐蔽种。单倍型最小拓展网络图揭示裸体方格星虫类群A存在福建沿海和北部湾两个明显的分支,是否可提升为亚种有待进一步考证。研究结果为中国沿海裸体方格星虫种质资源保护、人工苗种放养及遗传育种工作的开展提供了依据。  相似文献   

19.
20.
The agricultural world today is dominated by a few domesticated mammal species, that is, animals modified from their wild ancestors through selective breeding in captivity for traits beneficial to human usages. As a result, a clear dichotomy exists between wild (from hunting) and domesticated mammals (produced in farms) used for human consumption. Similar to agriculture, aquaculture is often viewed as the only solution that can provide more fish products given that harvesting wild stocks have reached an upper limit. Aquaculture is considerably younger than agriculture relying on natural sources to farm numerous species. To better describe the diverse strategies for fish production, we propose a new classification comprising five levels of ‘domestication’ with 1 being the least to 5 being the most domesticated. Our classification places 70% of the 250 farmed finfish species recorded in the 2009 FAO database into levels 1, 2 and 3 representing a transitory form of fish production dependent on the availability of the wild resource. In contrast, only a few species, or more accurately populations, can be considered truly domesticated, similar to cattle or sheep. Based on this classification, two scenarios for the future of aquaculture are discussed: either the industry focuses on few truly domesticated species, similar to the path taken by agriculture, but avoiding its negative impacts or aquaculture proceeds with inter‐specific diversification by focusing primarily on the domestication of native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号