首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Routine batch control of licensed inactivated viral vaccines for poultry usually includes a potency assay as a measure of vaccine efficacy. Potency assays often consist of vaccination‐challenge experiments in the target species or in laboratory animals. Instead of measuring the protection of vaccinated animals against virulent pathogens, the serological response after vaccination can be quantified for some vaccines. In vitro antigen quantification assays would be attractive alternatives for the current potency assays because the time and costs involved could be greatly reduced and animal use could be avoided. Such in vitro assays will only be acceptable when the correlation between results and efficacy or potency has been demonstrated convincingly.

The results of our studies on antigen quantification assays indicate that, in principle, quantification of viral antigens from inactivated oil‐adjuvanted vaccines is feasible and reproducible using specially developed antigen capture ELISAs in combination with specific software for statistical analysis of the ELISA data. We have developed methods to quantify the haemagglutination‐neuraminidase (HN) and fusion (F) proteins of Newcastle disease virus (NDV), the viral protein 3 (VP3) of the infectious bursal disease virus (IBDV), and the spike‐1 (S1) protein of the infectious bronchitis virus (IBV). Vaccination experiments with inactivated ND vaccines indicate that the in vitro quantified HN‐ or F‐proteins of NDV are reliable indicators of the serological response after vaccination.  相似文献   

2.
The potency of inactivated Newcastle disease virus (NDV) vaccines in the United States is currently determined using vaccination and challenge of experimental animals against a velogenic strain of NDV. Because velogenic strains of NDV are now classified as select agents in the United States, all vaccine potency testing must be performed in live animals under biosafety level 3 agriculture conditions. If the minimum amount of inactivated viral antigen required for clinical protection can be determined using other methods, vaccines meeting these criteria might be considered of adequate potency. The linearity of correlation between the hemagglutination (HA) assay measurement and the 50% embryo infectious dose titer ofNDV Hitchner B1 vaccine virus was determined. Correlation between hemagglutinin units (HAU) per vaccine dose, clinical protection, and antibody response was then determined using a vaccinate-and-challenge model similar to Chapter 9 of the U.S. code of federal regulations approved method for vaccine potency testing. The dose providing 50% protection of an in-house water-in-oil emulsion vaccine formulated with inactivated NDV B1 was determined to be between 400 and 600 HAU from two separate trials. A positive correlation (R2 = 0.97) was observed between antibody response and HAU per vaccine dose. Serum antibody responses from vaccinated birds indicate HA inhibition titers >2(5) log2 would provide 100% protection from morbidity and mortality and require a minimum protective dose of 1000 HAU per bird. These are the first studies to examine establishing both a minimum protective HAU content for inactivated ND vaccines and a minimum serologic response necessary to ensure potency.  相似文献   

3.
Avian metapneumovirus (aMPV), Newcastle disease virus (NDV), and infectious bronchitis virus (IBV) are important respiratory pathogens of chickens. To achieve early posthatch protection against all three diseases it would be helpful to deliver live aMPV, IBV, and NDV vaccines simultaneously at 1 day of age. However, previous work has indicated that the efficacy of aMPV vaccines may be affected when codelivered with IBV or NDV vaccines. The efficacy of an aMPV vaccine when codelivered to chickens in a trivalent combination with an NDV and an IBV vaccine was examined. The serological antibody response to the aMPV vaccine given with the IBV and NDV vaccine was significantly lower than when the aMPV vaccine was given alone. However, the aMPV vaccine did not affect the serological response to the IBV and NDV vaccines. Irrespective, the efficacy of the aMPV vaccine was not affected based on clinical signs postchallenge. This is the first report showing aMPV, IBV, and NDV vaccines can be codelivered without affecting the efficacy of the aMPV vaccine.  相似文献   

4.
Knowledge of the dose-response relation of inactivated vaccines and of the factors that influence this relation is essential for the evaluation of existing vaccine potency assays and the development of new potency assays that are based on the antigen content of the inactivated vaccines. We quantified the relation between vaccine dose, serologic response, and clinical protection after vaccination for three different inactivated Newcastle disease (ND) vaccines. Qualitatively, similar dose-response curves were obtained for the three vaccines when either the serologic response or the clinical protection of specific-pathogen-free (SPF) chickens was plotted against the different vaccine doses applied. However, the vaccines differed quantitatively: doses of vaccines that induced similar antibody titers or clinical protection differed 2-8-fold. In contrast with the narrow range of antibody titers induced by a full vaccine dose, a very broad range of titers was obtained after dilution of the vaccines. At least 95% of the SPF chickens with detectable antibody in the serum were protected against a challenge with virulent Herts ND virus. The relation between the dosage of two different ND vaccines and the serum antibody titers remained markedly constant between 3 and 18 wk after vaccination. Vaccination of broilers instead of layers with a dilution series of inactivated ND vaccine resulted in significantly lower antibody levels and less clinical protection against virulent challenge. In conclusion, despite quantitative differences, we found comparable dose-response relations for the three inactivated ND vaccines studied.  相似文献   

5.
本研究以新城疫病毒(NDV)V蛋白羧基端结构域(Vc)的重组蛋白为包被抗原,建立了用于检测NDV V蛋白抗体的间接ELISA方法,并采用该方法检测了鸡群免疫或接毒后血清中的V蛋白抗体水平。结果显示:两组不同NDV灭活疫苗组在免疫后的3周内检测结果均为阴性;两组灭活疫苗免疫3周后再人工感染NDV强毒的鸡群,攻毒后第7、14和21 d,NDV阳性率分别为60%、80%、70%和50%、80%、70%;两组不同的NDV弱毒疫苗免疫组鸡群,仅在免疫后第21 d阳性率分别为20%和10%。以上结果表明,NDV疫苗免疫组与强毒感染组的V蛋白抗体阳性率存在明显差异,本方法可在群体水平上区分新城疫疫苗免疫与强毒感染鸡群,为NDV血清学诊断和流行病学调查提供了一种新的检测手段。  相似文献   

6.
Two types of live attenuated vaccines have been used worldwide for the control of infectious laryngotracheitis virus (ILTV): 1) chicken embryo origin (CEO) vaccines; and 2) tissue culture origin vaccines (TCO). However, the disease persists in spite of extensive use of vaccination, particularly in areas of intense broiler production. Among the factors that may influence the efficiency of ILTV live attenuated vaccines is a possible interference of Newcastle Disease virus (NDV) and infectious bronchitis virus (IBV) vaccines with the protection induced by ILTV vaccines. The protection induced by CEO and TCO vaccines was evaluated when administered at 14 days of age alone or in combination with the B1 type strain of NDV (B1) and/or the Arkansas (ARK) and Massachusetts (MASS) serotypes of IBV vaccines. Two weeks after vaccination (28 days of age), the chickens were challenged with a virulent ILTV field strain (63140 isolate, group V genotype). Protection was evaluated at 5 and 7 days postchallenge by scoring clinical signs and quantifying the challenge virus load in the trachea using real-time PCR (qPCR). In addition, the viral load of the vaccine viruses (ILTV, NDV, and IBV) was quantified 3 and 5 days postvaccination also using qPCR. The results of this study indicate that the NDV (B1) and IBV (ARK) vaccines and a multivalent vaccine constituted by NDV (B1) and IBV (ARK and MASS) did not interfere with the protection induced by the CEO ILTV vaccine. However, the NDV (BI) and the multivalent (B1/MASS/ARK) vaccines interfered with the protection induced by the TCO vaccine (P < 0.05). Either in combination or by themselves, the NDV and IBV vaccines decreased the tracheal replication of the TCO vaccine and the protection induced by this vaccine, since the ILTV-vaccinated and -challenged chickens displayed significantly more severe clinical signs and ILTV load (P < 0.05) than chickens vaccinated with the TCO vaccine alone. Although NDV and IBV challenges were not performed, the antibody responses elicited by NDV and/or the IBV vaccinations were significantly reduced (P < 0.05) when applied in combination with the CEO vaccine.  相似文献   

7.
Hatchery vaccination protocols in day-old chicks are designed to provide early priming and protection against several poultry diseases including, but not limited to, Marek's disease (MD), infectious bursal disease (IBD), and Newcastle disease (ND). The constraint of concomitant administration of live MD and IBD vaccines plus ND inactivated oil-adjuvanted vaccines (IOAVs) requires improvements in vaccine technology. Single-needle concomitant subcutaneous (SC) application of IBD/MDV and killed NDV vaccine and the use of viral vectors for expression of immunogenic proteins are a current trend in the industry. The objective of this work was to assess the compatibility of a turkey herpesvirus (HVT)-infectious bursal disease (vHVT-IBD) vector vaccine applied simultaneously with IOAV and to evaluate the consequences for vaccine intake, the need for additional immunizations with the respective vaccines, and protection. Five separate trials were performed using double- and/or single-needle injectors. The levels and persistence of vaccine intake, serologic response, vHVT-IBD virus combination with the MD Rispens strain, and/or live NDV vaccination were also assessed. Histopathology and PCR at injection sites showed adequate vaccine intake detected up to 44 days postvaccination. Serologic evidence of vaccine priming was observed, and all vaccinated groups differed (P < 0.05) from the control at different time points. MD, NDV, and IBD protection results after concomitant double-shot single-needle vaccination were near 85%, 95%, and 100%, respectively. Taken together the results indicate no deleterious effects on the efficacy of the vHVT-IBD vaccine monitored by vaccine intake, serologic and challenge results, and combinations after concomitant live/killed vaccination, suggesting the suitability of its use in hatchery vaccination. All types of injectors used as well as injection techniques, vaccines injected separately or together, gave the same results.  相似文献   

8.
To help in the control of fowl plague caused by highly pathogenic avian influenza A viruses of hemagglutinin (HA) subtypes H5 and H7 several vaccines have been developed. A prophylactic immunization of poultry with inactivated influenza viruses in non-endemic situations is questionable, however, due to the impairment of serological identification of field virus-infected animals which hinders elimination of the infectious agent from the population. This problem might be overcome by the use of genetically engineered marker vaccines which contain only the protective influenza virus hemagglutinin. Infected animals could then be unambiguously identified by their serum antibodies against other influenza virus proteins, e.g. neuraminidase or nucleoprotein. For such a use, purified HA or HA-expressing DNA vaccines are conceivable. Economically advantageous and easier to apply are modified live virus vaccines in use against other poultry diseases, which have been modified to express influenza virus HA. So far, recombinant HA-expressing fowlpox virus (FPV) as well as infectious laryngotracheitis and Newcastle disease viruses have been asssessed in animal experiments. An H5-expressing FPV recombinant is already in use in Central America and Southeast Asia but without accompanying marker diagnostics. Advantages and disadvantages of the different viral vectors are discussed.  相似文献   

9.
Vaccination of chickens with an oil-emulsion vaccine containing a recombinant baculovirus that expressed the hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV)-induced hemagglutination-inhibition (HI) and virus-neutralizing antibodies against NDV. HI antibody titers obtained in response to vaccination with the live recombinant virus were higher than those obtained when the recombinant was inactivated with beta-propiolactone, and the titers were lower than those obtained in response to the same HN concentrations in live or beta-propiolactone-inactivated NDV strain B1. The serological response to the recombinant baculovirus was differentiated from the response to NDV by an enzyme-linked immunosorbent assay in which purified NDV nucleoprotein was used as antigen. Chickens vaccinated with the live recombinant or with inactivated NDV resisted an oculonasal challenge with the neurotropic velogenic Texas GB strain of NDV, which was lethal in unvaccinated controls. It was concluded that the HN protein of NDV expressed as a subunit by a recombinant baculovirus was protective against Newcastle disease.  相似文献   

10.
Control/eradication plans of bovine herpesvirus 1 (BHV1) and suid herpesvirus 1 (SHV1) infections involve vaccination with inactivated or attenuated gE-deleted marker vaccines and associated companion serological tests to discriminate naturally infected from vaccinated animals. Blocking or competitive enzyme-linked immunosorbent assays (ELISAs) have been designed for the detection of specific antibodies against BHV1 or SHV1 gE glycoprotein. The antigen source usually consists of a crude viral preparation in which gE is associated with other envelope glycoproteins. Such assays suffer from a lack of specificity which is not due to serological cross-reactions with other pathogens. Interestingly, false-positive results occur with sera collected from multivaccinated cattle or pigs. After multivaccination with a marker vaccine, the binding of the conjugated monoclonal antibody used as a tracer, could be hampered by antibodies directed against the other viral glycoproteins.In order to validate the steric hindrance hypothesis, a simple preadsorption of such samples was carried out with a preparation of antigen devoid of gE, prior to the blocking ELISA itself. The decrease in antibody concentrations against the major glycoproteins, clearly leads to a better discrimination between positive and negative samples; that is between infected and multivaccinated animals, without significant loss of sensitivity. This experiment confirms the steric hindrance hypothesis, therefore serum preadsorption could be an easy way to improve the specificity of currently available diagnostic tests.  相似文献   

11.
CAV与REV共感染SPF鸡对疫苗免疫反应的抑制作用   总被引:3,自引:0,他引:3  
用1日龄SPF鸡人工感染鸡贫血病毒(CAV)和禽网状内皮增生病病毒(REV),探讨病毒感染对鸡体疫苗免疫反应的影响。结果表明,在用禽流感病毒(AIV,H5和H9)疫苗免疫后,CAV与REV单独感染均显著抑制了鸡体对H5和H9亚型禽流感病毒灭活疫苗的HI抗体反应,在CAV与REV共感染后,这种抑制作用更为明显。CAV单独感染后鸡体对新城疫病毒(NDV)和传染性法氏囊病病毒(IBDV)疫苗的免疫反应受到抑制,但与对照组在统计学上的差异不显著,然而,CAV可以显著加重REV感染对鸡体在NDV和IBDV疫苗免疫后抗体反应的抑制作用。从而证实CAV与REV共感染在疫苗免疫抑制上有协同作用。  相似文献   

12.
用新城疫病毒克隆79株,减蛋综合征病毒NE_4株和传染性支气管炎病毒M_(41)株分别接种于鸡胚和鸭胚,并收取其鸡、鸭胚尿囊液毒,经甲醛灭活,按一定比例配比,以矿物油为佐剂制成三联油佐剂灭活苗。本苗接种于产蛋后备鸡,免疫后7天产生免疫应答,免疫后30天保护率达90%~100%,免疫后六个月攻毒,ND和IB保护宰为100%,EDS_(76)为95%。1992~1994上半年,本苗在江苏、安徽、山东等省的一些鸡场免疫十万余只鸡,均获得满意效果。  相似文献   

13.
Two experiments were conducted to determine the effect of breeder vaccination program and maternal antibody on the efficacy of Newcastle disease immunization of 1-day-old chicks. Experimental protocol was the same for both. In the first experiment, broilers were from breeders that were 32 weeks old, and in the second experiment, broilers were from breeders 50 weeks old. Breeders received three live Newcastle disease virus (NDV) vaccines and either a killed vaccine at 18 weeks or continual live boosting at 60-to-70-day intervals through lay. Broilers were vaccinated at 1 day of age with a commercial coarse-spray machine; they were bled, sera were examined for antibody against NDV, and broilers were challenged with virulent NDV at 2, 4, and 6 weeks of age. In the first experiment, maternal antibody was higher in chicks from the younger breeders given the inactivated vaccine, and in the second experiment maternal antibody was higher in chicks from older breeders given continual live vaccines. Higher antibody in 1-day-old broilers resulted in fewer vaccine-induced reactions, less vaccine virus shed, and decreased duration of vaccine-induced immunity from coarse-spray vaccination.  相似文献   

14.
Z X Xie  H D Stone 《Avian diseases》1990,34(1):154-162
Inactivated Newcastle disease virus (NDV), avian influenza virus (AIV), and infectious bronchitis virus (IBV) antigens were evaluated for immunological efficacy in monovalent and polyvalent vaccines. Vaccinated broilers were bled for hemagglutination-inhibition (HI) tests at 1- or 2-week intervals. Half of the chickens were challenged with the Largo isolate of velogenic viscerotropic (VV) NDV at 8 weeks post-vaccination, and the remainder were challenged with the Massachusetts 41 strain IBV at 9 weeks post-vaccination. Newcastle disease HI titers were reduced significantly (P less than 0.05) from those of monovalent control vaccine groups when IBV antigen was emulsified in mixtures with low (1-3x) concentrated NDV or NDV and AIV antigens. Avian influenza HI titers were significantly (P less than 0.05) lower than those of the control monovalent groups when highly concentrated NDV was part of the polyvalent vaccine. Infectious bronchitis HI titers were higher than those of control monovalent groups in 13 of 15 vaccine groups when IBV antigen was in polyvalent formulations. VV NDV challenge killed all non-NDV vaccinates and induced increased HI titers in NDV vaccinates but no morbidity or mortality. Sixty of 80 IBV vaccinates experienced a fourfold or greater HI titer increase following challenge. All non-IBV vaccinates seroconverted at 1 week post-challenge.  相似文献   

15.
The German Regulation on Fowl plague which is in force since 1994 laid down that any chicken of all races and all hybrids must be vaccinated against Newcastle disease (ND) in a mode that an adequate immunity is achieved. Onset, duration, and resistance to challenge of immunity induced by vaccination is well documented in the scientific literature for hybrid chicken of the layer and meat types. These data prove also innocuity and efficacy of the registered vaccines. In contrast, only a few and incomplete data exist on the development of ND directed immunity in fancy chickens. The present study describes vaccinations of chickens of 14 different hobby breeds with live LaSota vaccine (conjunctival application of 10(6) embryo-infective dose50 per bird) and with an inactivated oil-emulsion vaccine (intramuscular application of 0.5 ml per bird) and subsequent intramuscular challenge infections using the highly virulent NDV strain Herts 33/66. Chickens of all 14 breeds tolerated the application of both vaccines. All fancy chickens reacted with the production of serum antibodies which were measured in the haemagglutination inhibition (HI) and virus neutralisation (VN) tests. According to the scientific literature, maximal antibody levels are reached in hybrid chickens between day 10 and 20 post vaccination. In contrast, in fancy chickens the antibody maxima are delayed to the seventh to eighth week post vaccination. All fancy chickens vaccinated either once with live LaSota virus or with live and inactivated vaccines resisted challenge with the highly virulent Herts 33/66 strain of NDV and did not develop any signs of disease. There are indications for gradual differences in susceptibility of different breeds of fancy chickens. The levels of non-specific neutralisation as measured in the virus neutralisation test differ between breed. Also, the viral content in tissues obtained from non-vaccinated but challenged birds differ markedly. It is concluded from the results of this study that fancy chickens can also successfully protected against Newcastle disease by using live and inactivated vaccines which are licensed for hybrid chickens. However, the optimal time for the detection of maximal antibody levels in fancy chickens is reached seven to eight weeks post vaccination.  相似文献   

16.
In serum, tracheal wash fluid, and bile from chickens that were inoculated with live or inactivated Newcastle disease virus (NDV), the kinetics and immunoglobulin (Ig) class distribution of an antibody response were demonstrated. The Ig classes (IgM, IgG, and IgA) were captured using monoclonal antibodies (MAbs) in enzyme-linked immunosorbent assays (Ig-capture ELISA). The antibody specificity of the captured Ig was confirmed by binding of NDV. After inoculation with live virus, antibodies of the IgG and IgM classes were mainly found in serum. IgM was produced early from day 4 postexposure (PE) onward, IgG was detected later from day 7 PE onward, and in the tracheal wash fluid and bile, all three Ig classes were demonstrated. After inoculation of inactivated virus, a delayed response of all three classes was observed in serum, and only IgM and IgG were recognized in the tracheal fluid and bile. The type of vaccine and the mute of antigen entrance may have determined the immunoglobulin class produced. The Ig-capture ELISA assay developed in this study can be useful for evaluating various strategies to improve the efficacy of Newcastle disease vaccines and to study the evoked immune mechanisms.  相似文献   

17.
口蹄疫自然感染动物与免疫动物鉴别诊断研究进展   总被引:5,自引:0,他引:5  
口蹄疫是偶蹄动物高度接触性传染病 ,能引起巨大经济损失。国际兽医局将其列为 A类动物传染病之首。除发达国家外 ,大多数发展中国家都采用注射疫苗的办法来控制该病的流行。因此如何区分感染动物和免疫动物是口蹄疫防制中迫切需要解决的问题。目前口蹄疫灭活疫苗的生产工艺可以将绝大部分的非结构蛋白除去 ,因而灭活疫苗免疫动物只能产生结构蛋白抗体 ,而感染动物能产生结构蛋白抗体 ,也能产生非结构蛋白抗体 ,因此 ,检测非结构蛋白抗体为鉴别口蹄疫感染动物与免疫动物提供了美好前景。文章从鉴别诊断的原理 ,非结构蛋白的免疫特性 ,鉴别诊断所面临的问题及解决方案 ,应用非结构蛋白作为鉴别诊断抗原的研究现状等方面进行了综述。  相似文献   

18.
A Newcastle disease virus (NDV) isolate designated IBS002 was isolated from a commercial broiler farm in Malaysia. The virus was characterised as a virulent strain based on the multiple basic amino acid motif of the fusion (F) cleavage site 112RRRKGF117 and length of the C-terminus extension of the hemagglutinin-neuraminidase (HN) gene. Furthermore, IBS002 was classified as a velogenic NDV with mean death time (MDT) of 51.2 h and intracerebral pathogenicity index (ICPI) of 1.76. A genetic distance analysis based on the full-length F and HN genes showed that both velogenic viruses used in this study, genotype VII NDV isolate IBS002 and genotype VIII NDV isolate AF2240-I, had high genetic variations with genotype II LaSota vaccine. In this study, the protection efficacy of the recombinant genotype VII NDV inactivated vaccine was also evaluated when added to an existing commercial vaccination program against challenge with velogenic NDV IBS002 and NDV AF2240-I in commercial broilers. The results indicated that both LaSota and recombinant genotype VII vaccines offered full protection against challenge with AF2240-I. However, the LaSota vaccine only conferred partial protection against IBS002. In addition, significantly reduced viral shedding was observed in the recombinant genotype VII-vaccinated chickens compared to LaSota-vaccinated chickens.  相似文献   

19.
在正常饲养条件下,在肉种鸡鸡群中试用网状内皮增生病病毒(reticuloendotheliosis virus,REV)的弱毒疫苗,观察其对体重增长、产蛋生产性能、对其他疫苗应答有无影响。同时连续定期测定种鸡血清REV抗体,并测试抗体阳性鸡的后代有无病毒垂直传播。结果表明,该疫苗接种18周龄种鸡后,对生长、产蛋率、受精率和孵化率等生产性能均无不良影响,对正常疫苗免疫的抗体应答也无影响。经免疫接种REV弱毒疫苗的种鸡,在开产后及产蛋高峰期,均不表现病毒的垂直传播。免疫种鸡后,其激发的抗体可持续280d以上,且雏鸡血清中母源抗体可持续至少7d。结果表明,该REV弱毒在开产前种鸡应用时有很高的安全性,并能为雏鸡提供足够的特异性母源抗体。  相似文献   

20.
Different infectious bursal disease virus (IBDV) live vaccines (intermediate, intermediate plus) were compared for their immunosuppressive abilities in specific-pathogen-free (SPF) layer-type chickens or commercial broilers. The Newcastle disease virus (NDV) vaccination model was applied to determine not only IBDV-induced immunosuppression but also bilateral effects between IBDV and NDV. None of the IBDV vaccines abrogated NDV vaccine-induced protection. All NDV-vaccinated SPF layers and broilers were protected against NDV challenge independent of circulating NDV antibody levels. Sustained suppression of NDV antibody development was observed in SPF layers, which had received the intermediate plus IBDV vaccine. We observed a temporary suppression of NDV antibody development in broilers vaccinated with one of the intermediate, as well as the intermediate plus, IBDV vaccines. Different genetic backgrounds, ages, and residual maternal antibodies might have influenced the pathogenesis of IBDV in the different types of chickens. Temporary suppression of NDV antibody response in broilers was only seen if the NDV vaccine was administered before and not, as it was speculated previously, at the time the peak of IBDV-induced bursa lesions was detected. For the first time, we have demonstrated that the NDV vaccine had an interfering effect with the pathogenesis of the intermediate as well as the intermediate plus IBDV vaccine. NDV vaccination enhanced the incidence of IBDV bursa lesions and IBDV antibody development. This observation indicates that this bilateral effect of an IBDV and NDV vaccination should be considered in the field and could have consequences for the performance of broiler flocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号