首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationships between different aspects of diversity(taxonomic,structural and functional)and the aboveground biomass(AGB)as a major component of global carbon balance have been studied extensively but rarely under the simultaneous influence of forest dieback and management.In this study,we investigate the relationships between taxonomic,functional and structural diversity of woody species(trees and shrubs)and AGB along a gradient of dieback intensity(low,moderate,high and no dieback as control)under two contrasted management conditions(protection by central government vs.traditional management by natives)in a semi-arid oak(Quereus brantii Lindl.)forest ecosystem.AGB was estimated and taxonomic diversity,community weighted average(CWM)and functional divergence indices were produced.We found that the aerial biomass was significantly higher in the intensively used area(14.57(±1.60)t/hm2)than in the protected area(8.70(±1.05)t/hm2)due to persistence of some large trees but with decreasing values along the dieback intensity gradient in both areas.CWM of height(H),leaf nitrogen content(LNC)and leaf dry matter content(LDMC)were also higher in the traditional managed area than in the protected area.In contrast,in the protected area,the woody species diversity was higher and the inter-specific competition was more intense,explaining a reduced H,biomass and LDMC.Contrary to the results of CWM,none of the functional diversity traits(FDvar)was affected by dieback intensity and only FDvar values of LNC,leaf phosphorus content(LPC)and LDMC were influenced by management.We also found significantly positive linear relationships of AGB with CWM and FDvar indices in the protected area,and with taxonomic and structural diversity indices in the traditional managed area.These results emphasize that along a dieback intensity gradient,the leaf functional traits are efficient predictors in estimating the AGB in protected forests,while taxonomic and structural indices provide better results in forests under a high human pressure.Finally,species identity of the dominant species(i.e.,Brant’s oak)proves to be the main driver of AGB,supporting the selection effect hypothesis.  相似文献   

2.
Biomass allocation patterns among plant species are related to their adaptive ecological strategies. Ephemeral, ephemeroid and annual plant life forms represent three typical growth strategies of plants that grow in autumn and early spring in the cold deserts of China. These plants play an important role in reducing wind velocity in the desert areas. However, despite numerous studies, the strategies of biomass allocation among plant species with these three life forms remain contentious. In this study, we conducted a preliminary quadrat study during 2014-2016 in the southern part of the Gurbantunggut Desert, China, to investigate the allocation patterns of above-ground biomass (AGB) and below-ground biomass (BGB) at the individual level in 17 ephemeral, 3 ephemeroid and 4 annual plant species. Since ephemeral plants can germinate in autumn, we also compared biomass allocation patterns between plants that germinated in autumn 2015 and spring 2016 for 4 common ephemeral species. The healthy mature individual plants of each species were sampled and the AGB, BGB, total biomass (TB), leaf mass ratio (LMR) and root/shoot ratio (R/S) were calculated for 201 sample quadrats in the study area. We also studied the relationships between AGB and BGB of plants with the three different life forms (ephemeral, ephemeroid and annual). The mean AGB values of ephemeral, ephemeroid and annual plants were 0.806, 3.759 and 1.546 g/plant, respectively, and the mean BGB values were 0.106, 4.996 and 0.166 g/plant, respectively. The mean R/S value was significantly higher in ephemeroid plants (1.675) than in ephemeral (0.154) and annual (0.147) plants. The mean LMR was the highest in annual plants, followed by ephemeroid plants and ephemeral plants, reflecting the fact that annual plants allocate more biomass to leaves, associated with their longer life span. Biomass of ephemeral plants that germinated in autumn was significantly higher than those of corresponding plants that germinated in spring in terms of AGB, BGB and TB. However, the R/S value was similar in plants that germinated in autumn and spring. The slope of regression relationship between AGB and BGB differed significantly among the three plant life forms. These results support different biomass allocation hypotheses. Specifically, at the individual level, the AGB and BGB partitioning supports the allometric hypothesis for ephemeroid and annual plants and the isometric hypothesis for ephemeral plants.  相似文献   

3.
The quantification of carbon storage in vegetation biomass is a crucial factor in the estimation and mitigation of CO2 emissions. Globally, arid and semi-arid regions are considered an important carbon sink. However, they have received limited attention and, therefore, it should be a priority to develop tools to quantify biomass at the local and regional scales. Individual plant variables, such as stem diameter and crown area, were reported to be good predictors of individual plant weight. Stand-level variables, such as plant cover and mean height, are also easy-to-measure estimators of above-ground biomass (AGB) in dry regions. In this study, we estimated the AGB in semi-arid woody vegetation in Northeast Patagonia, Argentina. We evaluated whether the AGB at the stand level can be estimated based on plant cover and to what extent the estimation accuracy can be improved by the inclusion of other field-measured structure variables. We also evaluated whether remote sensing technologies can be used to reliably estimate and map the regional mean biomass. For this purpose, we analyzed the relationships between field-measured woody vegetation structure variables and AGB as well as LANDSAT TM-derived variables. We obtained a model-based ratio estimate of regional mean AGB and its standard error. Total plant cover allowed us to obtain a reliable estimation of local AGB, and no better fit was attained by the inclusion of other structure variables. The stand-level plant cover ranged between 18.7% and 95.2% and AGB between about 2.0 and 70.8 Mg/hm2. AGB based on total plant cover was well estimated from LANDSAT TM bands 2 and 3, which facilitated a model-based ratio estimate of the regional mean AGB (approximately 12.0 Mg/hm2) and its sampling error (about 30.0%). The mean AGB of woody vegetation can greatly contribute to carbon storage in semi-arid lands. Thus, plant cover estimation by remote sensing images could be used to obtain regional estimates and map biomass, as well as to assess and monitor the impact of land-use change on the carbon balance, for arid and semi-arid regions.  相似文献   

4.
Alpine meadow ecosystem is fragile and highly sensitive to climate change.An understanding of the allocation of above-and below-ground plant biomass and correlations with environmental factors in alpine meadow ecosystem can result in better protection and effective utilization of alpine meadow vegetation.We chose an alpine meadow in the Qinghai-Tibetan Plateau of China as the study area and designed experimental warming plots using a randomized block experimental design.We used single-tube infrared radiators as warming devices,established the warming treatments,and measured plant above- (AGB) and below-ground biomass (BGB) during the growing seasons (May to September) in 2012 and 2013.We determined the allocation of biomass and the relationship between biomass and soil environment under the warming treatment.Biomass indices including above-ground biomass,below-ground biomass and the ratio of root to shoot (R/S) ,and soil factors including soil moisture and soil temperature at different depths were measured.The results showed that (1) BGB of the alpine meadow had the most significant allometric correlation with its AGB (y=298.7x~ (0.44) ,P0.001) ,but the relationship decreased under warming treatment and the determination coefficient of the functional equation was 0.102 which was less than that of 0.188 of the unwarming treatment (control) ; (2) BGB increased,especially in the deeper soil layers under warming treatment (P0.05) .At 0–10 cm soil depth,the percentages of BGB under warming treatment were smaller than those of the control treatment with the decreases being 8.52% and 8.23% in 2012 and 2013,respectively.However,the BGB increased 2.13% and 2.06% in 2012 and 2013,respectively,at 10–50 cm soil depths; (3) BGB had significant positive correlations with soil moisture at 100 cm depth and with soil temperature at 20–100 cm depths (P0.05) ,but the mean correlation coefficient of soil temperature was 0.354,greater than the 0.245 of soil moisture.R/S ratio had a significant negative correlation with soil temperature at 20 cm depth (P0.05) .The warmer soil temperatures in shallow layers increased the biomass allocation to above-ground plant parts,which leading to the increase in AGB;whereas the enhanced thawing of frozen soil in deep layers causing by warming treatment produced more moisture that affected plant biomass allocation.  相似文献   

5.
Boreal forests are important carbon sinks and have tremendous potential to mitigate climate change. Aboveground biomass of Siberian larch (Larix sibirica Ledeb.) stands in the Altay Mountains, Northwest China was studied and allometric equations that are related to the biomass of aboveground components using diameter at breast height (DBH) or both DBH and height (H) as independent variables for L. sibirica trees were derived in this paper. A linear simultaneous equation system by using either DBH or both DBH and H (DBH&H) indices, was used to ensure additivity of the biomass of individual tree components, and was fitted for L. sibirica. Model performance was validated using the jackknifing test. Results indicate that the goodness-of-fit for the regressions was lowest for the needles (R2 ranging from 0.696 to 0.756), and highest for the stem wood (R2 ranging from 0.984 to 0.997) and the aggregated biomass components (R2 ranging from 0.994 to 0.995). The coefficient of determination for each component was only marginally improved in terms of model fit and performance in the biomass equations that used DBH&H as the independent variables compared to that used DBH as the independent variable, and needles yielded an even worse fit. Stem biomass accounted for the largest proportion (87%) of the aboveground biomass. Based on the additive equations that used DBH as the single predicitor in this study, the mean aboveground carbon stock density and the carbon storage values of L. sibirica forests were 74.07 Mg C/hm2 and 30.69 Tg C, respectively, in the Altay Mountains. Empirical comparisons of published equations for the same species growing in the Altay Mountains of Mongolia were also presented. The mean aboveground carbon stock density estimated for L. sibirica forests was higher in the Chinese Altay Mountains than in the Mongolian Altay Mountains (66.00 Mg C/hm2).  相似文献   

6.
Understanding the effects of degradation on belowground biomass (BGB) is essential for assessment of carbon budget of the alpine meadow ecosystem on the Tibetan Plateau, China. This ecosystem has been undergoing serious degradation owing to climate change and anthropogenic activities. This study examined the response of the vertical distribution of plant BGB to degradation and explored the underlying mechanisms in an alpine meadow on the Tibetan Plateau. A field survey was conducted in an alpine meadow with seven sequential degrees of degradation in the Zoige Plateau on the Tibetan Plateau during the peak growing season of 2018. We measured aboveground biomass (AGB), BGB, soil water content (SWC), soil bulk density (SBD), soil compaction (SCOM), soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), soil available nitrogen (SAN), and soil available phosphorus (STP) in the 0-30 cm soil layers. Our results show that degradation dramatically decreased the BGB in the 0-10 cm soil layer (BGB0-10) but slightly increased the subsoil BGB. The main reason may be that the physical-chemical properties of surface soil were more sensitive to degradation than those of subsoil, as indicated by the remarked positive associations of the trade-off value of BGB0-10 with SWC, SCOM, SOC, STN, SAN, and STP, as well as the negative correlation between the trade-off value of BGB0-10 and SBD in the soil layer of 0-10 cm. In addition, an increase in the proportion of forbs with increasing degradation degree directly affected the BGB vertical distribution. The findings suggest that the decrease in the trade-off value of BGB0-10 in response to degradation might be an adaptive strategy for the degradation-induced drought and infertile soil conditions. This study can provide theoretical support for assessing the effects of degradation on the carbon budget and sustainable development in the alpine meadow ecosystem on the Tibetan Plateau as well as other similar ecosystems in the world.  相似文献   

7.
Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential responses of plants to the changes in rainfall regimes, such as rainfall intensity and duration, and length of dry intervals. In this study, we investigated the effects of different rainfall patterns(e.g. small rainfall event with high frequency and large rainfall event with low frequency) on biomass, growth characteristics and vertical distribution of root biomass of annual plants in Horqin Sandy Land, Inner Mongolia of China during the growing season(from May to August) of 2014. Our results showed that the rainfall patterns, independent of total rainfall amount, exerted strong effects on biomass, characteristics of plant growth and vertical distribution of root biomass. Under a constant amount of total rainfall, the aboveground biomass(AGB), belowground biomass(BGB), plant cover, plant height, and plant individual and species number increased with an increase in rainfall intensity. Changes in rainfall patterns also altered the percentage contribution of species biomass to the total AGB, and the percentage of BGB at different soil layers to the total BGB. Consequently, our results indicated that increased rainfall intensity in future may increase biomass significantly, and also affect the growth characteristics of annual plants.  相似文献   

8.
内蒙古自治区森林碳储量及其动态变化   总被引:4,自引:2,他引:2  
利用内蒙古森林资源清查资料,依据不同森林类型生物量和蓄积量之间的回归方程,估算了内蒙古自治区不同时段的森林生物量和碳储量,并分析其动态变化特征。结果表明:在1977-2003年间内蒙古森林面积由1.10×10^7hm^2增加到1.61×10^7hm^2,每年森林面积平均增长率为1.85%;森林碳储量由378.86TgC...  相似文献   

9.
Caatinga is a Brazilian dry ecosystem that occupies around 1 million km2 and is one of the largest tropical dry forests of the world. About 46% of the area that was originally covered has been deforested. Land use can cause pronounced reduction in soil carbon stocks that play a major role in the global carbon cycle. The objective of this study was to improve our understanding of the effect of land use on oxidizable carbon fractions, total carbon stocks and humic substances in different layers of soil in a Brazilian semi-arid region. We analyzed soils from tropical dry forest (TDF), forest succession with Anadenanthera falcata (ANA), with Tabebuia alba (TAB), secondary scrubby regeneration (SCR), and non-irrigated maize (MS). Forests showed larger fractions of more labile carbon, except for TDF. The most recalcitrant fraction of carbon stock, humin fraction stock, with the different land use decreased by 38–53% compared to TDF. Oxidizable carbon fractions, carbon stocks, and humic fraction stocks were able to differentiate the successional land uses and agricultural cover from TDF, mainly in the 0–5?cm layer. Our results show that changes in land use, especially with ANA forest succession, showed a larger labile carbon fraction, indicating easy decomposition and loss. Our results provide an alternative tool for the management of deforested areas in tropical dry caatinga ecosystems. This would contribute to the conservation of dry forest systems and could serve as guideline for sustainable management of agriculturally impacted caatinga areas.  相似文献   

10.
3种棒果芥属植物生物量分配及异速生长分析   总被引:1,自引:0,他引:1  
类短命植物是准噶尔荒漠早春草本植物类群的重要而独特的组成部分,研究其生物量分配和异速生长关系,有助于深入了解类短命植物的生存策略与生态功能。以棒果芥( Sterigmostemum tomentosum )、福海棒果芥( S . fuhaiense )和黄花棒果芥( S . sulfureum )为研究对象,采用挖掘法获取野外成株全株生物量,对三者的器官生物量、分配比例及异速生长关系进行了对比分析。结果表明,3种植物器官生物量及其分配比例均差异明显。福海棒果芥生物量最大,但根冠比(R/S)和叶冠比(L/S)最小;棒果芥生物量最小,但L/S最大;黄花棒果芥则具有最大的R/S。棒果芥和黄花棒果芥的根冠比(R/S)均随个体的增大而显著下降,表明二者地上(AGB)与地下生物量(BGB)分配受到个体大小的强烈影响。福海棒果芥AGB-BGB间为等速生长关系(幂指数α=1),而另外2种均为异速生长关系;棒果芥、福海棒果芥的叶生物量(LB)与AGB间为等速生长关系,而黄花棒果芥符合异速生长关系(α<1);3个物种的LB-BGB间具有共同的异速生长指数(0.816),表现出强烈的功能趋同性。总之,3个物种间的生物量分配及异速生长关系没有一致规律,但体现了类短命植物生物量分配的特点。  相似文献   

11.
SUN Lipeng 《干旱区科学》2019,11(6):928-938
The lack of clarity of how natural vegetation restoration influences soil organic carbon (SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest ecosystems. The aim of this study was to explore how natural vegetation restoration affects the SOC content and ratio of SOC components in soil macroaggregates (>250 μm), microaggregates (53-250 μm), and silt and clay (<53 μm) fractions in 30-, 60-, 90- and 120-year-old Liaodong oak (Quercus liaotungensis Koidz.) forests, Shaanxi, China in 2015. And the associated effects of biomasses of leaf litter and different sizes of roots (0-0.5, 0.5-1.0, 1.0-2.0 and >2.0 mm diameter) on SOC components were studied too. Results showed that the contents of high activated carbon (HAC), activated carbon (AC) and inert carbon (IC) in the macroaggregates, microaggregates and silt and clay fractions increased with restoration ages. Moreover, IC content in the microaggregates in topsoil (0-20 cm) rapidly increased; peaking in the 90-year-old restored forest, and was 5.74 times higher than AC content. In deep soil (20-80 cm), IC content was 3.58 times that of AC content. Biomasses of 0.5-1.0 mm diameter roots and leaf litter affected the content of aggregate fractions in topsoil, while the biomass of >2.0 mm diameter roots affected the content of aggregate fractions in deep soil. Across the soil profiles, macroaggregates had the highest capacity for HAC sequestration. The effects of restoration ages on soil aggregate fractions and SOC content were less in deep soil than in topsoil. In conclusion, natural vegetation restoration of Liaodong oak forests improved the contents of SOC, especially IC within topsoil and deep soil. The influence of IC on aggregate stability was greater than the other SOC components, and the aggregate stability was significantly affected by the biomasses of litter, 0.5-1.0 mm diameter roots in topsoil and >2.0 mm diameter roots in deep soil. Natural vegetation restoration of Liaodong oak forests promoted SOC sequestration by soil macroaggregates.  相似文献   

12.
风沙土区黄柳根系及其碳储量分布特征   总被引:1,自引:0,他引:1  
以内蒙古敖汉旗风沙土区15 a、25 a和35 a林龄的黄柳(Salix gordejevii)林为研究对象,分别设置3个样地,采用分层分段挖掘法,测定不同土层、土段的根系生物量、含碳率,计算根系碳储量,分析不同林龄黄柳根系及根系碳储量分布特征变化。随着土层深度的增加,黄柳根系生物量呈现先增加后减少的趋势,主要分布在0~100cm土层,均占根系总量的80%以上;15 a、25 a和35 a生黄柳根系总生物量分别为516.50、4 448.60 g·株~(-1)和7 257.7 g·株~(-1),随着林龄的增加,黄柳根系生物量呈增长趋势。根系碳储量分布特征呈梭形,15 a、25 a和35 a生黄柳根系总生物量分别为30.81、158.56 g·株~(-1)和229.9 g·株~(-1);随着林龄的增加呈增加趋势。  相似文献   

13.
In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with vegetation restoration in this region are poorly understood. This study examined the changes of carbon stocks in mineral soil(0–100 cm), plant biomass and the ecosystem(plant and soil) following vegetation restoration with different models and ages. Our results indicated that cultivated land returned to native vegetation(natural restoration) or artificial forest increased ecosystem carbon sequestration. Tree plantation sequestered more carbon than natural vegetation succession over decades scale due to the rapid increase in biomass carbon pool. Restoration ages had different effects on the dynamics of biomass and soil carbon stocks. Biomass carbon stocks increased with vegetation restoration age, while the dynamics of soil carbon stocks were affected by sampling depth. Ecosystem carbon stocks consistently increased after tree plantation regardless of the soil depth; but an initial decrease and then increase trend was observed in natural restoration chronosequences with the soil sampling depth of 0–100 cm. Moreover, there was a time lag of about 15–30 years between biomass production and soil carbon sequestration in 0–100 cm, which indicated a long-term effect of vegetation restoration on deeper soil carbon sequestration.  相似文献   

14.
Remote sensing is a valuable and effective tool for monitoring and estimating aboveground biomass (AGB) in large areas.The current international research on biomass estimation by remote sensing technique mainly focused on forests,grasslands and crops,with relatively few applications for desert ecosystems.In this paper,Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images from 1988 to 2007 and the data of 283 AGB samples in August 2007 were used to estimate the AGB for Mu Us Sandy Land over the past 30 years.Moreover,temporal and spatial distribution characteristics of AGB and influencing factors of climate and underlying surface were also studied.Results show that:(1) Differences of correlations exist in the fitted equations between AGB and different vegetation indices in desert areas.The modified soil adjusted vegetation index (MSAVI) and soil adjusted vegetation index (SAVI) show relatively higher correlations with AGB,while the correlation between normalized difference vegetation index (NDVI) and AGB is relatively lower.Error testing shows that the AGB-MSAVI model established can be used to accurately estimate AGB of Mu Us Sandy Land in August.(2) AGB in Mu Us Sandy Land shows the fluctuant characteristics over the past 30 years,which decreased from the 1980s to the 1990s,and increased from the 1990s to 2007.AGB in 2007 had the highest value,with a total AGB of 3.352×106 t.Moreover,in the 1990s,AGB had the lowest value with a total AGB of 2.328×106 t.(3) AGB with relatively higher values was mainly located in the middle and southern parts of Mu Us Sandy Land in the 1980s.AGB was low in the whole area in the1990s,and relatively higher AGB values were mainly located in the southern parts of Uxin.In 2007,AGB in the whole area was relatively higher than those of the last twenty years,and higher AGB values were mainly located in the northern,western and middle parts of Mu Us Sandy Land.  相似文献   

15.
Di KANG 《干旱区科学》2017,9(1):122-131
Reforestation or natural forest regeneration is an alternative measure for controlling soil erosion in degraded land on the Chinese Loess Plateau(CLP). However, our understanding of the temporal dynamics and the spatial patterns of forest regeneration remains inadequate. Two oak forests at different development stages were investigated to determine the spatial patterns of competitions(intraspecies and interspecies) during different successional stages. The intraspecies and interspecies spatial relationships among different tree diameters at breast height were analyzed at multiple scales by Kriging interpolation method and univariate and bivariate O-ring statistics. Our analytical results indicated that self-correlation and competition intensity were relatively high between oak and pine trees in the early development stage of oak forests due to their clumped distributions of heavy seeds. Birch trees had a lower competition in comparison to oak trees although birch was the dominant species. Therefore, asymmetric competition of oak trees was most likely to have led to their edge dispersal and their success in replacing the pioneer species. Asymmetric competition means that larger individuals obtained a disproportionately large share of the resources and suppressed the growth of smaller individuals. Kriging interpolation analysis showed a tendency towards homogenization caused by interspecies competition during the succession of oak forests. Our results demonstrated that the competition was the driving factor in the spatial distribution of oak forests on the CLP.  相似文献   

16.
Soil organic carbon(SOC) and soil inorganic carbon(SIC) are important C pools in the Loess Plateau of Northwest China, however, variations of SOC and SIC stocks under different cultivation practices and nitrogen(N) fertilization rates are not clear in this area. A long-term field experiment started in June 2003 was conducted to investigate the SOC and SIC stocks in a calcareous soil of the Chinese Loess Plateau under four cultivation practices, i.e., fallow(FA), conventional cultivation(CC), straw mulch(SM), and plastic film-mulched ridge and straw-mulched furrow(RF), in combination with three N fertilization rates, i.e., 0(N0), 120(N120), and 240(N240) kg N/hm~2. Results indicate that the crop straw addition treatments(SM and RF) increased the contents of soil microbial biomass C(SMBC) and SOC, and the SOC stock increased by 10.1%–13.3% at the upper 20 cm soil depth in comparison to the 8-year fallow(FA) treatment. Meanwhile, SIC stock significantly increased by 19% at the entire tested soil depth range(0–100 cm) under all crop cultivation practices in comparison to that of soil exposed to the long-term fallow treatment, particularly at the upper 60 cm soil depth. Furthermore, moderate N fertilizer application(120 kg N/hm~2) increased SOC stock at the upper 40 cm soil depth, whereas SIC stock decreased as the N fertilization rate increased. We conclude that the combined application of crop organic residues and moderate N fertilization rate could facilitate the sequestrations of SOC and SIC in the calcareous soil.  相似文献   

17.
The association between biodiversity and belowground biomass (BGB) remains a central debate in ecology. In this study, we compared the variations in species richness (SR) and BGB as well as their interaction in the top (0-20 cm), middle (20-50 cm) and deep (50-100 cm) soil depths among 8 grassland types (lowland meadow, temperate desert, temperate desert steppe, temperate steppe desert, temperate steppe, temperate meadow steppe, mountain meadow and alpine steppe) and along environmental gradients (elevation, energy condition (annual mean temperature (AMT) and potential evapotranspiration (PET)), and mean annual precipitation (MAP)) based on a 2011-2013 survey of 379 sites in Xinjiang, Northwest China. The SR and BGB varied among the grassland types. The alpine steppe had a medium level of SR but the highest BGB in the top soil depth, whereas the lowland meadow had the lowest SR but the highest BGB in the middle and deep soil depths. The SR and BGB in the different soil depths were tightly associated with elevation, MAP and energy condition; however, the particular forms of trends in SR and BGB depended on environmental factors and soil depths. The relationship between SR and BGB was unimodal in the top soil depth, but SR was positively related with BGB in the middle soil depth. Although elevation, MAP, energy condition and SR had significant effects on BGB, the variations in BGB in the top soil depth were mostly determined by elevation, and those in the middle and deep soil depths were mainly affected by energy condition. These findings highlight the importance of environmental factors in the regulations of SR and BGB as well as their interaction in the grasslands in Xinjiang.  相似文献   

18.
天山云杉林碳储量研究   总被引:6,自引:1,他引:5  
以南山林场为例,对天山云杉林碳储量进行研究。结果表明:南山林场的总碳储量为332664.4305t,碳密度为59.5492 tC/hm2,高于全国的平均水平;针叶林碳储量占全林场碳储量的96.16%,而天山云杉的碳储量就占全林场的95.67%;成龄林的碳储量占全林场的95.09%;由此说明天山云杉是该林区碳储量的主要来源,但该林区正处于碳积累速率下降的成熟阶段,要加大对成熟林中幼树更新以及幼龄林的人工抚育的力度。以确保在森林碳储量急剧下降时,幼龄林已成长起来,使该林区的碳储量处于较稳定的状态。  相似文献   

19.
LIU Yulin 《干旱区科学》2022,14(9):1055-1068
Litter and root activities may alter the temperature sensitivity (Q10) of soil respiration. However, existing studies have not provided a comprehensive understanding of the effects of litter and root carbon inputs on the Q10 of soil respiration in different seasons. In this study, we used the trench method under in situ conditions to measure the total soil respiration (Rtotal), litter-removed soil respiration (Rno-litter), root-removed soil respiration (Rno-root), and the decomposition of soil organic matter (i.e., both litter and root removal; RSOM) in different seasons of pioneer (Populus davidiana Dode) and climax (Quercus liaotungensis Mary) forests on the Loess Plateau, China. Soil temperature, soil moisture, litter biomass, fine root biomass, litter carbon, and root carbon were analyzed to obtain the drive mechanism of the Q10 of soil respiration in the two forests. The results showed that the Q10 of soil respiration exhibited seasonality, and the Q10 of soil respiration was higher in summer. The litter enhanced the Q10 of soil respiration considerably more than the root did. Soil temperature, soil moisture, fine root biomass, and litter carbon were the main factors used to predict the Q10 of different soil respiration components. These findings indicated that factors affecting the Q10 of soil respiration highly depended on soil temperature and soil moisture as well as related litter and root traits in the two forests, which can improve our understanding of soil carbon-climate feedback in global warming. The results of this study can provide reference for exploring soil respiration under temperate forest restoration.  相似文献   

20.
内蒙古温带草地植被的碳储量   总被引:18,自引:3,他引:18  
草地生态系统在全球碳循环中起着极为重要的作用。大部分草地碳储存在地下,但是实测数据十分匮乏,因此准确估算温带草地植被碳储量对评价草地生态系统碳循环具有重要意义。作为一个区域性资料积累工作,作者对内蒙古温带草地的碳储量进行了大范围的实测研究,以估算该地区草地植被的碳储量。主要结果如下:(1)内蒙古温带草地总面积为58.46×106hm2,总植被碳储量为226.0±13.27Tg C(1 Tg=1012g),平均碳密度为3.44Mg C.hm-2;(2)地下根系储存的碳是地上碳储量的6倍左右,地上、地下生物量碳储量分别为33.22±1.75和193.88±12.6 Tg C,平均碳密度分别是0.51和2.96 MgC.hm-2;(3)不同草地类型的碳储量差异较大,典型草原最大(113.25 Tg C),占草地总碳储量的50%,其次是草甸和草甸草原,荒漠草原碳储量最低(15.37 Tg C)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号