首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
玉米对气象条件要求严格.属喜温、短日照作物,播种期要求日平均气温稳定高于8℃,10-12℃发芽正常.生长期间要求15℃.幼苗期要求日平均气温低于18℃.有利于“蹲苗”.后期要求适当高温.抽穗开花时期适宜温度为25-28℃.气温低于18℃或高于38℃不开花.气温在32。35℃以上花粉粒1-2小时即丧失生活力。在籽粒灌浆、成熟期要求日平均气温保持在20。24℃.有利于有机物质合成。籽粒成熟期日平均气温高于25℃或低于16℃均影响酶活动.不利于养分积累和运转。日平均气温13℃左右.灌浆极其缓慢。  相似文献   

2.
日光温室后墙蓄放热帘增温效果的性能测试   总被引:15,自引:12,他引:3  
为了增加日光温室有效蓄热量,改善日光温室夜间温度环境,保障作物安全越冬,该文设计了一种以日光温室后墙为结构支撑的温室蓄放热帘增温系统,白天利用该系统的集放热板吸收太阳辐射热,并通过水介质将热量储存于蓄热水池中;夜晚通过水介质的循环将蓄积的热量释放到温室中,以提高夜晚温室内空气温度。试验结果表明:晴天时应用温室蓄放热帘增温系统能将温室夜间平均气温提高4.6℃,阴天时能提高温室夜间平均气温4.5℃;试验期间当室外最低气温为-12.5℃时,对照温室最低气温仅为5.4℃,而试验温室最低气温为10.1℃;该系统在阴天平均集热效率为42.3%,在晴天时平均集热效率为57.7%;与电加热方式相比该系统的节能率达到51.1%以上。  相似文献   

3.
日光温室燃池-地中热交换系统加热效果的初步研究   总被引:3,自引:6,他引:3  
为保证日光温室作物在寒冷季节正常生长,在日光温室中设置了燃池-地中热交换系统,该系统将燃池和地中热交换系统结合起来,以达到提高温室内土壤温度和气温的目的。初步研究表明,在地面以下0.35 m沿温室长度方向3个测点土壤平均温度分别为15.5℃、15.6℃、15.5℃,土壤温度分布均匀,较参考点平均温度分别提高1.9℃、2.0℃、1.9℃;沿温室跨度方向3个测点土壤平均温度分别为15.2℃、15.6℃、14.7℃,分别较对应参考点平均温度提高2.7℃、2.0℃、3.7℃;温室内平均气温为21.4℃,较参考点平均气温提高2.6℃,室内外温差达到34.0℃。使用燃池-地中热交换加热系统,对提高温室内土壤温度、气温均具有较好的效果。  相似文献   

4.
山西寿阳县旱作农业气候生产潜力研究   总被引:1,自引:0,他引:1  
根据1967-1999年气象资料,依据布达哥夫斯基连乘原理,估算了寿阳县的光合生产潜力、光温生产潜力和光温水生产潜力,其多年平均值分别为19.3、12.9和4.9万kg/hm^2。4—9月作物生育期内气候生产潜力总值的逐年变化趋势为:光合、光温生产潜力呈总体减小变化,而光温水生产潜力总体减少趋势不明显;4—9月逐月气候生产潜力等值线图表明,20世纪90年代末光合、光温及光温水生产潜力均有不同程度的降低,1999年后的三种气候生产潜力保持继续减少的趋势。  相似文献   

5.
日光温室主动蓄放热系统应用效果研究   总被引:11,自引:0,他引:11  
针对日光温室冬季夜晚温度低、作物易发生冷害等问题,设计了以水为蓄热介质的主动蓄放热系统.系统由集/放热装置、储热装置和控制装置等组成.白天进行太阳辐射热的吸收与储存,夜晚释放热量用于温室增温.试验结果表明,晴天条件下,主动蓄放热系统的集热功率为0.3kW/m2,蓄热量为6.9MJ/m2;夜间放热功率为0.2kW/m2,放热量为5.7MJ/m2,热利用效率为0.83,试验温室与对照温室的平均气温相差6.3℃;阴天及多云天气条件下,试验温室与对照温室的夜间平均气温相差4.6℃,表明主动蓄放热系统能有效改善日光温室夜间低温状况,进而保障蔬菜安全越冬生产.  相似文献   

6.
不同氮水平下黄瓜-番茄日光温室栽培土壤N_2O排放特征   总被引:7,自引:3,他引:4  
为探讨日光温室黄瓜—番茄种植体系内N2O排放动态变化及其对不同氮水平的响应规律,采用密闭静态箱法,研究了常规氮量(黄瓜季1 200 kg/hm2,番茄季900 kg/hm2)、比常规氮量减25%(黄瓜季900 kg/hm2,番茄季675 kg/hm2)、减50%(黄瓜季600 kg/hm2,番茄季450 kg/hm2)以及不施氮对日光温室土壤N2O排放的影响。结果表明,温度是影响日光温室土壤N2O排放强度的重要因素,4-10月(平均气温为27.4℃)的N2O排放通量最高达818.4μg/(m2·h);而2-3月(平均气温15.1℃)以及11-12月(平均气温14.7℃)期间的N2O排放通量最高仅为464.5μg/(m2·h),比4-10月的N2O排放峰值降低了43.2%。N2O排放峰值在氮肥追施后5 d内出现,N2O排放量集中在氮肥施用后7 d内,可占整个监测期(271 d)排放量的64.7%~67.8%。施氮因增加了土壤硝态氮含量而引起N2O排放爆发式增长,0~10 cm土壤硝态氮含量与N2O排放量呈指数函数关系(P0.01)。日光温室黄瓜—番茄种植体系内的N2O排放量为0.99~9.92 kg/hm2,其中75.6%~90.0%由施氮造成。与常规氮用量相比,氮减量25%和50%处理的N2O排放量分别降低了40.4%和59.3%,总产量却增加4.9%和7.4%。综上所述,合理减少氮用量不仅可显著降低日光温室土壤N2O排放,而且不会引起产量的降低。该研究为日光温室蔬菜生产构建科学合理的施氮技术及估算中国设施农田温室气体排放量提供参考。  相似文献   

7.
彩钢板保温装配式节能日光温室的温光性能   总被引:11,自引:8,他引:3  
针对传统日光温室防雨、防雪、防风、防火能力差,以及室内光温环境分布不均匀等问题,研制开发彩钢板保温装配式节能日光温室,该温室骨架为半圆弧形钢结构,采用岩棉彩钢板滑动保温覆盖形式和可移动保温山墙方法,温室跨度12 m、脊高5.5 m、长度65 m,屋面采光角高达41.5°。该日光温室采用水循环系统和空气-地中热交换系统代替土墙和砖墙等蓄热体,解决了装配式日光温室的蓄放热问题,实现了日光温室部件的工厂化生产和安装的标准化装配。与对照(辽沈Ⅲ型土墙日光温室)比较,彩钢板保温装配式节能日光温室脊高前移、位于温室中部,温室后部遮光减少,土地利用率提高20%以上,屋面采光角增加16.3°,采光率提高5.3%,晚间室外大气温度在-25.8℃时,室内气温在13℃以上,室内外温差达到39.1℃,比对照温室提高2.3~3.5℃。彩钢板保温装配式节能日光温室栽培空间大,采光好,升温快,室内横向和纵向光照和温度分布均匀,植株生长整齐,有效解决了传统日光温室抵御雨、雪、风、火自然灾害能力差的问题。该温室集成了大型连体温室温光分布均匀和传统日光温室蓄热保温好的优点,提高了太阳能的利用效率,温室总体温光性能超过对照温室,且滑动覆盖易于实现日光温室保温覆盖件的精准控制,为中国日光温室的自动化控制和现代化提供新途径。  相似文献   

8.
下沉式日光温室内温光环境分析   总被引:9,自引:0,他引:9  
对下沉式日光温室内气温、后墙内表面温度和太阳总辐射进行多点连续测定,以了解其温、光环境特点,并与非下沉式日光温室进行对比分析.结果表明,晴天下沉式日光温室内气温和后墙内表面温度至13:00达到最高,分别为35.53℃和41.80℃,气温升高速率为6.48℃/h,室内外平均温差为17.47℃,差温为14.20℃.阴天下沉式日光温室内气温和后墙内表面温度至14:00达到最高,分别为15.83℃和15.35℃,气温升高速率为1.27℃/h,室内外平均温差为9.78℃,差温为2.47℃.小雪天下沉式日光温室内后墙内表面温度在13:00最高,为18.71℃,气温下降速率为0.10℃/h,室内外平均温差为5.67℃,差温为-0.19℃.冬季下沉式日光温室内平均最低温度为7.35℃.晴天下沉式日光温室内太阳总辐射透过率为25%~80%,室内外太阳总辐射呈直线正相关,室内太阳总辐射的日变化呈抛物线趋势,室内太阳总辐射在空间分布上比非下沉式日光温室更复杂,需要采取合理措施改善温室内光照环境并合理利用空间.试验结果可为下沉式日光温室的管理以及指导日光温室内作物生产提供依据.  相似文献   

9.
关中地区不同后屋仰角日光温室保温性能分析   总被引:4,自引:0,他引:4  
为了确定关中地区最适宜的后屋仰角,本试验将后屋仰角为35°、40°、45°、50°的日光温室,分别编号为1#、2#、3#、4#,在最冷月对四类温室及室外的气温、5cm和20cm地温、后屋内表面温度以及室内作物受冻表现进行了观测与分析。结果表明:各温室的保温性能顺序为3#〉2#〉1#〉4#,3#温室1月中下旬的最低气温平均为9.3℃,平均气温为11.3℃,气温日较差平均为11.4℃;3#温室土温及后屋内表面温度也高于同期其它温室。方差分析表明,3#温室气温日较差与1#、4#温室差异显著。4#温室日最低气温最低,并与外界最低气温间为极显著正相关关系(r=0.708〉r0.01),且作物绝收。试验结果认为,在关中地区最优的后屋面仰角应该为45°左右。  相似文献   

10.
基于模型的温室加温控制目标优化系统研究   总被引:7,自引:5,他引:7  
温室加温控制目标的设定合理与否,直接影响温室作物生长及温室环境调控的能耗。本研究以温室作物生长模拟模型和温室加温能耗预测模型为基础,建立了基于模型的温室加温控制目标计算机优化系统。系统包括一个数据库(温室、作物以及气象资料)和三个模型(作物生长模拟模型、温室加温能耗预测模型以及加温控制目标优化模型)。系统的输入主要为温室类型、温室结构、覆盖材料、作物信息以及室外气象资料,系统输出主要为作物干物质生产量、温室加温能耗量以及干物质生产能耗量利用效率最高和生物量最高的温室白天和夜间的加温控制目标(温度设置点)。以2003年1月20日~2月20日上海孙桥现代农业开发区Venlo型自控玻璃温室水果型黄瓜生产为实例进行分析,结果表明,在上海地区冬季进行温室水果型黄瓜生产时,在开花至果实采收初期将白天和夜间加温控制目标分别设为23℃和17℃时可以获得最高的干物质生产量;将白天和夜间的温室加温的温度分别设为20℃和15℃能够使黄瓜干物质生产的能耗量利用效率达最大,并能够使黄瓜干物质产量也处于较高的水平。本研究建立的基于模型的温室加温控制目标优化系统为中国温室气候控制中温度的优化调控提供了理论依据和决策支持。  相似文献   

11.
低氮和干旱胁迫对富士和秦冠生长及氮素利用的影响   总被引:2,自引:2,他引:0  
【目的】以富士(Fuji)、 秦冠(Qinguan)嫁接在平邑甜茶(Malus hupehensis Rehd.)上的当年生盆栽苗为试验材料,采用砂培方法,研究了缺氮胁迫和干旱对富士和秦冠生长情况、 光合参数、 植株各部位氮磷钾含量及氮素利用效率的影响,分析比较了低氮干旱条件下富士和秦冠生长及氮素利用的差异,以期为果树生产高效肥水利用提供理论指导。【方法】试验共设四个处理: 正常氮正常水(ZZ)、 低氮正常水(DZ)、 正常氮干旱(ZG)、 低氮干旱(DG)。氮素和水分均设置两个水平,分别为正常氮(6 mmol/L NO-3-N)、 低氮(0.3 mmol/LNO-3-N)、 正常供水(保持盆中砂子相对含水量为饱和含水量的80%~85%)、 干旱处理(保持盆中砂子相对含水量为饱和含水量的60%~65%)。【结果】富士和秦冠的生物量(茎和叶)、 株高茎粗等生长指标以及光合速率、 气孔导度、 蒸腾速率均为正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG),并且相对应处理下秦冠的以上指标均高于富士;正常供水下,缺氮处理使富士、 秦冠的根冠比比正常氮处理均有所增加,富士提高了2.05%,秦冠提高了22.40%。富士和秦冠的氮、 磷、 钾含量均表现出正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG); 氮、 钾元素含量在植株各部位的分布顺序依次是叶>根>茎,磷元素则是根>叶>茎;光合氮素利用效率(PNUE)和氮素利用效率表现为秦冠处理之间差异极显著,富士处理之间差异不显著;秦冠的PNUE和NUE明显高于富士,在低氮正常水(DZ)处理下,秦冠氮肥利用率比富士高42.07%,在低氮干旱(DG)处理下高64.14%;低氮胁迫下富士和秦冠的NUE显著提高,并且秦冠提高的幅度高于富士。【结论】施用氮肥能够显著提高富士与秦冠的干物质量,同等水肥条件下,秦冠生长优于富士;水分亏缺会减少叶片对氮的吸收,干旱条件下适度增施氮肥,可提高果树的抗旱能力;低氮干旱胁迫下秦冠的生长指标、 光合指标及氮素利用效率指标均优于富士,表现出较强的抗低氮干旱胁迫的能力。  相似文献   

12.
Laser-induced breakdown spectroscopy (LIBS) is a new technique for the analysis of plant material. This study investigates the application of LIBS to pasture-based plant samples. The LIBS measurements were obtained from pelletized pasture samples (100 samples) that had been also analyzed by inductively coupled plasma–optical emission spectroscopy (ICP-OES) following microwave digestion for calibration and comparison purposes. Comparisons for elements sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), boron (B), phosphorus (P), and sulfur (S) showed that LIBS could be used for almost all the standard profile total elements with concentrations down to low mg/kg levels (observed error of Na: 0.024 percent, K: 0.18 percent, Mg: 0.016 percent, Ca: 0.073 percent, P: 0.017 percent, Mn: 31 mg/kg, Fe: 150 mg/kg, Zn: 6.6 mg/kg, and B: 1.1 mg/kg). Elemental analysis at less than mg/kg levels was not possible using LIBS. The elements S and Cu were particularly difficult to analyze with reliability using LIBS at the concentration levels found in the plant samples. Replacing microwave digestion and subsequent ICP analysis with a direct analysis of dried plant samples using LIBS has the potential to improve the productivity and reduce the cost of testing.  相似文献   

13.
正The Center for Agricultural Resources Research(CARR),the Institute of Genetics and Developmental Biology(IGDB),Chinese Academy of Sciences,invites applicants for several research group leader positions.CARR is one of the research organizations in Chinese Academy of Sciences(CAS).We seek nominations and applications from individuals who have expertise and a record of accomplishment in research areas related to ecology,agro-hydrology,  相似文献   

14.
The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups, and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station, we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term experiment designed to examine the effects and interactions of annual fire, mowing, and fertilization (N and P) on prairie soil communities and processes. For nearly all taxa, in both years, responses were characterized by significant treatment interactions, but some general patterns were evident. Introduced European earthworms (Aporrectodea spp. and Octolasion spp.) were most abundant in plots where fire was excluded, and the proportion of the total earthworm community consisting of introduced earthworms was greater in unburned, unmowed, and fertilized plots. Nymphs of two Cicada genera were collected (Cicadetta spp. and Tibicen spp.). Cicadetta nymphs were more abundant in burned plots, but mowing reduced their abundance. Tibicen nymphs were collected almost exclusively from unburned plots. Treatment effects on herbivorous beetle larvae (Scarabaeidae, Elateridae, and Curculionidae) were variable, but nutrient additions (N or P) usually resulted in greater densities, whereas mowing usually resulted in lower densities. Our results suggest that departures from historical disturbance regimes (i.e. frequent fire and grazing) may render soils more susceptible to increased numbers of European earthworms, and that interactions between fire, aboveground biomass removal, and vegetation responses affect the structure and composition of invertebrate communities in tallgrass prairie soils.  相似文献   

15.
“Wicked” problems are those that are complex and that change when solutions are applied. Many conflicts in conservation fall into this category. The study approached the problem of how to constrain the apparent wickedness of a problem in the conservation management of a species by using simple empirical indicators to carry out iterative assessment of the risk to a population and to document how this risk evolves in relation to the addition of new data and the implementation of management actions. Effects of high levels of uncertainty within data and also concerning population structure were examined through stochastic simulation and by exploration of scenarios. Historical trends in the example used, the Steller sea lion, showed rapid declines in abundance in some regions during the 1980s. The current total population is 130,000-150,000 Steller sea lions through Alaska and British Columbia and this number has been stable since about 1990 in spite of regional differences in population dynamics. Regional differences in the sequence of changes in the number of pups and non-pups, suggested that an internal re-distribution of juveniles could have happened between 1980 and 1990. Current productivity also appears close to the long-term mean. Stochastic population projection using various scenarios showed that, based upon this history, the risk of extinction for the population has declined and is below reasonable thresholds for considering the population to be endangered. The trends in risk suggest that management actions taken since 1990 have probably been effective. Consequently, the conservation management objectives for the Steller sea lion are probably being met. The approach provides a mechanism, based upon experience and scenario analysis, for exploring future policy options and may help to constrain the debate amongst stakeholders about the cost-benefit trade-offs associated with different options.  相似文献   

16.
Nutrient distributions under no tillage (NT) compared with conventional disk-and-bed tillage (CT) management in the warm, humid region of the southeastern USA need to be assessed so that future placement, quantity, and type of fertilizers can be altered, if necessary, to efficiently match crop demands. We determined soil-profile distributions of pH, N, P, S, K, Ca, Mg, Na, Zn, Fe, Mn, and Cu to a depth of 0.9 m at the end of 8.5 years of continuous CT and NT management on a Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas. Most dramatic changes occurred within the 0–0.05 m depth, where soil under NT had lower pH, Fe, and Cu than under CT, but greater P, K, Zn, and Mn. Greater P and K under NT than under CT also occurred below the till-zone (0.15–0.3 m). At a depth of 0–0.3 m, soil under NT contained greater amounts of extractable P, K, Zn, Fe, Mn, and Cu than under CT. Nitrogen fertilization had little effect on nutrient distributions, except resulting in greater extractable K at 0–0.05 m and greater nitrate at 0–0.15 m. Few changes in soil-profile distributions were observed for extractable S, Ca, Mg, and Na. Long-term continuous use of NT on this fine-textured, high-fertility (except for N) soil had no apparent adverse effects on nutrient distributions relative to CT, but enhanced conservation and availability of P, K, Zn, Fe, Mn, and Cu near the soil surface where crop roots proliferate.  相似文献   

17.
Abstract

A 3-year study was carried out to investigate quality parameters in 14 tree fruit and berry species grown in southern Norway. The species were blueberry, apple, aronia, sour cherry, sweet cherry, red raspberry, strawberry, blackcurrant, gooseberry, red currant and elderberry, harvested along with wild bilberry, cloudberry and lingonberry. Significant differences between species were identified for all quality parameters. The coefficient of variation between species was lowest for pH (12.5%), dry matter (18.9%) and soluble solids (25.3%), followed by titratable acids (59.3%), total phenolics (83.8%), antioxidant capacity FRAP (85.7%) and antiradical power by the DPPH-assay (97.8%), total monomeric anthocyanins (132%) and ascorbic acid (137%). Average coefficient of variation within species were lower and ranged from 4 (pH) to 62% (ascorbic acid). Only the FRAP values were significantly affected by harvesting year with lower levels in 2004 than in 2005 and 2006. There were significant interactions between species and harvesting year for dry matter, soluble solids, pH, ascorbic acid and FRAP. The results indicate generic ranges in composition within species independent upon growing location and climate, and the composition of the tree fruits and berries is not likely to deviate from these ranges. It is concluded that desirable composition of tree fruits and berries and their products should primarily be achieved by selection among species rather than searching fors broadened variation within individual species.  相似文献   

18.
Potassium (K) fixation and release in soil are important factors in the long-term sustainability of a cropping system. Changes in K concentration and characteristics of K fixation and release in rhizosphere and nonrhizosphere soils in the rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation were investigated using a rhizobox system. The concentrations of different forms of K in both rhizosphere and nonrhizosphere soils decreased with plants compared to without plants, regardless of K fertilizer application. Potassium uptake by crops mainly came from the rhizosphere soil. In the treatment without K fertilizer (–K), the main form of K supplied by the soil to the crops was 1.0 mol L?1 nitric acid (HNO3) nonextractable K, followed by nonexchangeable K, and then exchangeable K. In the treatment with K fertilizer (+K), the main K forms supplied by the soil to the crops were exchangeable K and nonexchangeable K. The amount and rate of K fixation after one cycle of the rapeseed–rice rotation was greater in rhizosphere soil than in nonrhizosphere soil. The amount and rate of K fixation of soil in the +K treatment were significantly less than in the –K treatment. The cumulative amounts of K released with 1.0 mol L?1 ammonium acetate (NH4OAc) and 1.0 mol L?1 HNO3 extraction increased with the increasing numbers of extractions, but the K-releasing power of soil by successive extraction decreased gradually and finally became almost constant. The release of K was less in rhizosphere soil than in nonrhizosphere soil. The release of K in the +K treatment was similar to that in the –K treatment in rhizosphere soil, but the K release in nonrhizosphere soil was greater with the +K than the –K treatment. Overall, the information obtained in this study will be helpful in formulating more precise K fertilizer recommendations for certain soils.  相似文献   

19.
Biologically enhanced dissolution offers a method to speed removal of chlorinated solvent dense non-aqueous-phase liquid (DNAPL) sources such as tetrachloroethene (PCE) and trichoroethene (TCE) from aquifers. Bioremediation is accomplished by adding an electron donor to the source zone where fermentation to intermediates leading to acetic acid and hydrogen results. The hydrogen and possibly acetic acid are used by dehalogenating bacteria to convert PCE and TCE to ethene and hydrochloric acid. Reductive dehalogenation is thus an acid forming process, and sufficient alkalinity must be present to maintain a near neutral pH. The bicarbonate alkalinity required to maintain pH above 6.5 is a function of the electron donor: 800 mg/L of bicarbonate alkalinity is sufficient to achieve about 1.2 mM TCE dechlorination with glucose, 1.7 mM with lactate, and a much higher 3.3 mM with formate. Laboratory studies indicate that in mixed culture, formate can be used as an electron donor for complete conversion to ethene, contrary to pure cultures studies indicating it cannot. Various strategies can be used to add electron donor to an aquifer for DNAPL dehalogenation while minimizing pH problems and excessive electron donor usage, including use of injection-extraction wells, dual recirculation wells, and nested injection-extraction wells.  相似文献   

20.
To evaluate the feasibility of long-term desert reforestation technology of mixed vegetation, cardon cactus (Pachycereus pringlei) seedlings from indoor and outdoor nurseries were planted in the field adjacent to one seedling of potential legume nurse trees: mesquite amargo (Prosopis articulata), yellow palo verde (Parkinsonia microphylla), and blue palo verde (Parkinsonia florida). Some of the planting holes were also supplemented with common dairy compost. Additionally, the combinations of legume tree–cactus were inoculated with either a consortium of desert arbuscular mycorrhizal (AM) fungi, plant growth promoting bacteria (PGPB; the diazotroph Azospirillum brasilense Cd, and the phosphate solubilizer Paenibacillus sp.), or a mixture of all. The field experiments were evaluated periodically during 30 months for survival and growth. Cardons reared in an outdoor screen house survived better in the field than those reared in a controlled growth chamber and hardened later outdoors. Association with any legume nurse tree increased survival and enhanced growth of untreated cardons. For cardons growing alone, application of either compost, AM fungi, and all the treatments combined increased survival. For these plants, no treatment affected plant growth during the first 3 months after transplanting. Later, all treatments, except for AM fungi, enhanced plant growth. However, only 2 years after transplanting the enhanced growth effect of AM fungi was also significant. In the presence of the legume nurse trees, transient positive effects on cardon growth were recorded. General evaluation after 30 months of cultivation showed that the treatments positively affected cardon growth when growing alone or in combination only with mesquite amargo but not with the other two legume trees. This study proposes that young legume trees have the capacity to enhance survival and growth of cardon cactus, depending on the legume cactus combination. Additional treatments such as compost or PGPB can either amplify the effect or else attenuate it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号