首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ontogenetic development of the digestive system in golden pompano (Trachinotus ovatus, Linnaeus 1758) larvae was histologically and enzymatically studied from hatch to 32 day post-hatch (DPH). The development of digestive system in golden pompano can be divided into three phases: phase I starting from hatching and ending at the onset of exogenous feeding; phase II starting from first feeding (3 DPH) and finishing at the formation of gastric glands; and phase III starting from the appearance of gastric glands on 15 DPH and continuing onward. The specific activities of trypsin, amylase, and lipase increased sharply from the onset of first feeding to 5–7 DPH, followed by irregular fluctuations. Toward the end of this study, the specific activities of trypsin and amylase showed a declining trend, while the lipase activity remained at similar levels as it was at 5 DPH. The specific activity of pepsin was first detected on 15 DPH and increased with fish age. The dynamics of digestive enzymes corresponded to the structural development of the digestive system. The enzyme activities tend to be stable after the formation of the gastric glands in fish stomach on 15 DPH. The composition of digestive enzymes in larval pompano indicates that fish are able to digest protein, lipid and carbohydrate at early developmental stages. Weaning of larval pompano is recommended from 15 DPH onward. Results of the present study lead to a better understanding of the ontogeny of golden pompano during the larval stage and provide a guide to feeding and weaning of this economically important fish in hatcheries.  相似文献   

2.
We describe digestive enzyme activity during the larval development of spotted rose snapper, Lutjanus guttatus. Trypsin, chymotrypsin, leucine aminopeptidase, pepsin, amylase, lipase, and acid and alkaline phosphatase activities were evaluated using spectrophotometric techniques from hatching through 30 days. The spotted rose snapper larvae present the same pattern of digestive enzyme activity previously reported for other species in which pancreatic (i.e., trypsin, chymotrypsin, amylase, and lipase) and intestinal (i.e., acid and alkaline phosphatases and leucine aminopeptidase) enzymatic activities are present from hatching allowing the larvae to digest and absorb nutrients in the yolk-sac and live prey by the time of first feeding. The digestive and absorption capacity of the spotted rose snapper increases during the larval development. A significant increase in individual activity of all enzymes occurs at 20 DAH, and around 25 DAH, the juvenile-type of digestion is observed with the appearance of pepsin secreted by the stomach, suggesting that maturation of the digestive function occurs around 20–25 DAH. Our results are in agreement with a previous suggestion that early weaning may be possible from 20 DAH. However, the patterns of enzymatic activities reported in our study should be considered during the formulation of an artificial diet for early weaning of the spotted rose snapper.  相似文献   

3.
The development of digestive enzymes was examined in laboratory-reared yellowtail kingfish larvae from hatching to 36 days after hatching (DAH). The specific activities of amylase, lipase, and alkaline phosphatase showed three distinct phases: a sharp increase in enzyme activity from hatching to the onset of exogenous feeding on 3 DAH, followed by a fluctuation and a general decline toward 18 DAH, and then a period of low activity from 18 to 36 DAH. The total activities of these three enzymes showed a gradual increase from hatching to 18 DAH, followed by a sharp increase toward 36 DAH. In contrast to other enzymes, the specific and total activities of trypsin reached the maximum on 15 DAH and 24 DAH, respectively, and then both activities declined to low levels toward 36 DAH. The dynamics of digestive enzymes corresponded to the anatomical development of the digestive system. The enzyme activities tend to be stable after the formation of gastric glands in the stomach on 15 DAH. The composition of digestive enzymes indicates that yellowtail kingfish is able to digest protein, lipid and carbohydrates at an early stage. However, due to the low level of amylase specific activity after 18 DAH, the carbohydrate component should remain at a low level in formulated diets for fish larvae.  相似文献   

4.
Squaliobarbus curriculus is an economically important freshwater fish. The ontogenetic development of the digestive system of S. curriculus larvae was studied histologically and enzymatically from hatching to 30 days posthatching (DPH). Amylase, lipase, alkaline phosphatase and pepsin activities were detected from the hatching stage, indicating that these enzymes were genetically preprogrammed. Marked increases in intestinal amylase, trypsin and alkaline phosphatase activities between 10 and 20 DPH corresponded to feed acquisition and transformation. Larval development in S. curriculus could be divided into three phases: phase I (endotrophic period): 1–3 DPH; phase II (endo‐exotrophic period): 4–5 DPH; and phase III (exclusively exotrophic period): from 6 DPH onward. At hatching, the digestive tract of the larvae was an undifferentiated straight tube. On 3 DPH, the digestive tract differentiated into the mouth cavity, oesophagus and intestine. On 6 DPH, feeding was totally exotrophic and the yolk sac was completely exhausted. During the growth of S. curriculus larvae, the intestinal mucosa formed and the number of goblet cells and microvilli increased, demonstrating maturation of the digestive system. The study about the digestive development of S. curriculus larvae will contribute to better larval‐rearing strategies.  相似文献   

5.
The leopard grouper is an endemic species of the Mexican Pacific with an important commercial fishery and good aquaculture potential. In order to assess the digestive capacity of this species during the larval period and aid in the formulation of adequate weaning diets, this study aimed to characterize the ontogeny of digestive enzymes during development of the digestive system. Digestive enzymes trypsin, chymotrypsin, acid protease, leucine–alanine peptidase, alkaline phosphatase, aminopeptidase N, lipase, amylase and maltase were quantified in larvae fed live prey and weaned onto a formulated microdiet at 31 days after hatching (DAH) and compared with fasting larvae. Enzyme activity for trypsin, lipase and amylase were detected before the opening of the mouth and the onset of exogenous feeding, indicating a precocious development of the digestive system that has been described in many fish species. The intracellular enzyme activity of leucine–alanine peptidase was high during the first days of development, with a tendency to decrease as larvae developed, reaching undetectable levels at the end of the experimental period. In contrast, activities of enzymes located in the intestinal brush border (i.e., aminopeptidase and alkaline phosphatase) were low at the start of exogenous feeding but progressively increased with larval development, indicating the gradual maturation of the digestive system. Based on our results, we conclude that leopard grouper larvae possess a functional digestive system at hatching and before the onset of exogenous feeding. The significant increase in the activity of trypsin, lipase, amylase and acid protease between 30 and 40 DAH suggests that larvae of this species can be successfully weaned onto microdiets during this period.  相似文献   

6.
The ontogenetic development of the digestive enzymes amylase, lipase, trypsin, and alkaline phosphatase and the effect of starvation in miiuy croaker Miichthys miiuy larvae were studied. The activities of these enzymes were detected prior to exogenous feeding, but their developmental patterns differed remarkably. Trypsin activity continuously increased from 2 days after hatching (dah), peaked on 20 dah, and decreased to 25 dah at weaning. Alkaline phosphatase activity oscillated at low levels within a small range after the first feeding on 3 dah. In contrast, amylase and lipase activities followed the general developmental pattern that has been characterized in fish larvae, with a succession of increases or decreases. Amylase, lipase, and trypsin activities generally started to increase or decrease at transitions from endogenous to exogenous feeding or diet changes, suggesting that these enzymatic activities can be modulated by feeding modes. The activities of all the enzymes remained stable from 25 dah onwards, coinciding with the formation of gastric glands and pyloric caecum. These results imply that specific activities of these enzymes underwent changes due to morphological and physiological modifications or diet shift during larval development but that they became stable after the development of the digestive organs and associated glands was fully completed and the organs/glands functioned. Trypsin and alkaline phosphatase were more sensitive to starvation than amylase and lipase because delayed feeding up to 2 days after mouth opening was able to adversely affect their activities. Enzyme activities did not significantly differ among feeding groups during endogenous feeding; however, all activities were remarkably reduced when delayed feeding was within 3 days after mouth opening. Initiation of larvae feeding should occur within 2 days after mouth opening so that good growth and survival can be obtained in the culture.  相似文献   

7.
In order to assess the digestive physiological capacity of the American shad Alosa sapidissima and to establish feeding protocols that match larval nutritional requirements, we investigated the ontogenesis of digestive enzymes (trypsin, amylase, lipase, pepsin, alkaline phosphatase, and leucine aminopeptidase) in larvae, from hatching to 45 days after hatching (DAH). We found that all of the target enzymes were present at hatching, except pepsin, which indicated an initial ability to digest nutrients and precocious digestive system development. Trypsin rapidly increased to a maximum at 14 DAH. Amylase sharply increased until 10 DAH and exhibited a second increase at 33 DAH, which coincided with the introduction of microdiet at 30 DAH, thereby suggesting that the increase was associated with the microdiet carbohydrate content. Lipase increased until 14 DAH, decreased until 27 DAH, and then increased until 45 DAH. Pepsin was first detected at 27 DAH and then sharply increased until 45 DAH, which suggested the formation of a functional stomach. Both alkaline phosphatase and leucine aminopeptidase markedly increased until 18 DAH, which indicated intestinal maturation. According to our results, we conclude that American shad larvae possess the functional digestive system before mouth opening, and the significant increases in lipase, amylase, pepsin, and intestinal enzyme activities between 27 and 33 DAH suggest that larvae can be successfully weaned onto microdiets around this age.  相似文献   

8.
Devil stinger is a valuable demersal scorpaenid fish while the rearing of stinger larvae still relies on live prey. This study was conducted to illustrate the development of the main digestive enzymes and digestive system during larval development of this species to provide evidence for the application of artificial feeds. Enzymatic and histological assays were conducted from 1 day post hatching (dph) to 36 dph in larvae. The result showed that the selected digestive enzyme activities increased significantly after 15 dph. Specifically, the total trypsin activities increased significantly from 18 dph to 33 dph. The total pepsin and amylase activities increased significantly first and thereafter decreased significantly. The lipase activities followed the similar pattern with trypsin. With regard to the histological study, the stinger larvae open their mouth to first feeding at 3 dph and turned into totally exogenous nutritional stage at 6 dph. In addition, mucous membrane, rich in goblet cells, was widely distributed in oesophagus epithelium at 18 dph. The height and amounts of gastric gland in cardia and main body of the stomach increased gradually with the development of stinger larvae after 15 dph. The intestine length of stinger larvae was short, and goblet cell was abundant in anterior intestine after 12 dph, not the posterior intestine. The ontogeny of liver and pancreas started from newly hatched stage, and the differentiation of liver was prior to pancreas. The above findings would provide evidence for the use of artificial feeds from the larval stage of stinger larvae (at least from 21 dph).  相似文献   

9.
The function of digestive physiology during ontogenetic development is essential to ensure high survival and growth rates. In order to evaluate the digestive physiological capacity of the black Amur bream (Megalobrama terminalis), changes of morphology and digestive enzyme activity (trypsin, lipase, amylase, pepsin, leucine aminopeptidase and alkaline phosphatase) in larvae were examined from hatching to 40 days after hatching (DAH). Results indicated that fluctuation patterns differed between the total and specific activities of the digestive enzymes. The total activities of these six enzymes gradually increased throughout the fish growth. The specific activity of trypsin peaked at 5 DAH and then decreased dramatically, while it increased remarkably again from 8 to 10 DAH and remained stable level after 20 DAH. Pepsin activity was first examined in M. terminalis at 15 DAH and gradually elevated towards the end of the experiment. The specific activity of lipase displayed obvious peaks at 5 and 20 DAH. For the amylase, its specific activity reached plateau at 4 DAH, underwent sharp decrease, and remained stable after 20 DAH. In addition, we found that the specific activity of alkaline phosphatase raised significantly from hatching to 5 DAH, and tended to keep slight fluctuation after 15 DAH. From the above, we concluded that the specific activities of digestive enzymes in the larvae varied constantly from 3 to 20 DAH and turned relatively stable after 20 DAH. The present study provides effective information that is useful to improve the seedling cultivation and the technology for healthy breeding.  相似文献   

10.
泥鳅仔稚鱼发育期间消化酶及碱性磷酸酶比活力的变化   总被引:2,自引:0,他引:2  
研究了泥鳅(Misgurnus anguillicaudatus)从孵化至30 DAH(日龄,Days after hatching)几种消化酶及碱性磷酸酶比活力的变化情况。胃蛋白酶直至30 DAH仍未检出活性。而胰蛋白酶表现出较高的比活力,其比活力在初次摄食之后显著上升,6 DAH达到最大值之后开始显著降低(P<0.05)。脂肪酶与淀粉酶的变化模式相似,在内源性营养向外源性营养转变及仔鱼向稚鱼转变这两个时间段出现两个高峰值。碱性磷酸酶比活力在2-6 DAH显著上升(P<0.05),之后开始下降并趋于平稳。研究表明,泥鳅在仔稚鱼阶段只具有结构性的胃而缺乏分泌细胞的分化。2-6 DAH是泥鳅仔鱼肠道功能迅速发育的阶段,也是向成鱼消化模式转变的一个重要过程。脂肪酶和淀粉酶比活力的持续性表明了泥鳅仔鱼对糖类和脂肪有较好的利用能力。  相似文献   

11.
Ontogenic development of some digestive enzymes (proteases, amylase and lipase) in common pandora Pagellus erythrinus larva was assayed during larval development. The green‐water technique was employed for larval rearing, and whole‐body homogenates were used for enzymatic assays in triplicate. Important alterations in specific activities of all digestive enzymes measured during the period of this study were mostly related to metamorphosis and weaning. Mouth opening was observed on day 3 at 2.23±0.01 mm total length synchronously with the first determination of trypsin and chymotrypsin activities. After this date, the specific activities of these slightly increased until 25 days after hatching (DAH), respectively, and then slightly decreased and changed. The pattern determined for pepsin was strongly related to stomach formation on day 25 at 9.72±2.3 mm total length and a sharp increase was found until 30 DAH and then a slight decrease was measured from this date until the end of the experiment. Both amylase and lipase were measured for the first time on days 2 and 4, respectively, and also the specific activities of these showed similar patterns during the first week of the study. Then, slight variations were observed until 30 DAH and while lipase‐specific activity had declined, an increase in the specific activity of amylase was found until the end of the experiment. Finally, it is thought that the variations observed in the specific activity in the profile of digestive enzymes were related to either metamorphosis such as formation of stomach (25 DAH) or to changes in characteristics of food (30 DAH). The pattern of development of the main digestive enzymes found in P. erythrinus is similar to that described in other Sparid species.  相似文献   

12.
中国对虾幼体消化酶活力的实验研究   总被引:56,自引:3,他引:56       下载免费PDF全文
潘鲁青 《水产学报》1997,21(1):26-31
以酶学分析方法测定了中国对虾各期幼体几种消化酶活力,实验结果表明,在中国对虾幼体发育过程中,五种消化酶活力表现出四种变化模式,其中胃蛋白酶和类胰蛋白酶活力逐渐增大,淀粉酶活力呈下降趋势,纤维素酶和脂肪酶活力极微,在食性转换过程中,胃蛋白酶、类胰蛋白酶和淀粉酶出现较明显的变化。中国对虾幼体消化酶活力对饵料中的营养物质有着明显的适应性,而且饥饿实验表明消化酶活力受个体发育的影响。作者认为中国对虾幼体消  相似文献   

13.
This study reports the ontogenetic development of the digestive system of larval Pacific red snapper (Lutjanus peru), an important candidate species for aquaculture on the Pacific coast of Mexico. Histological sections of larvae were cut and dyed using the haematoxylin–eosin technique. The development of the digestive tract of Pacific red snapper larvae follows a general pattern of differentiation that can be divided into three stages. Stage I lasted from 1–3 days post hatching (DPH) and included the endogenous nutrition period; it was characterized by the initial differentiation of the digestive tract in preparation for the onset of exogenous feeding (3 DPH). At this time, the digestive tract was differentiated into buccopharynx, oesophagus, stomach anlage, anterior intestine, posterior intestine and a short rectum. The liver, pancreas and kidney were also present. The mouth and anus were open. Stage II occurred after first feeding, lasted for 16 days (4–23 DPH) and included both preflexion and flexion larvae. The main changes that occurred during this stage reflected the adaptation to exogenous feeding and the concomitant growth. Stage III (24–30 DPH) included post‐flexion larvae and started with the appearance of the gastric glands and pyloric caeca. The presence of the gastric glands suggests that early weaning during culture trials of the Pacific red snapper larvae may be possible at this early age.  相似文献   

14.
This study was performed to determine the effect of starvation and delayed feeding on activities of digestive enzymes and alkaline phosphatase (ALP) of larval red swamp crayfish (Procambarus clarkii), so as to reveal the tolerance to prolonged starvation and the recovery of digestive enzymes after delayed feeding in larval and juvenile P. clarkii. In the control group, activities of trypsin and ALP increased significantly (< .05) with day‐age and then kept constant at 24 days after hatching (DAH) and 10 DAH, respectively, whereas the activities of amylase and pepsin increased firstly then decreased with day‐age, and the activity of lipase increased firstly then decreased and then increased again during the development period of juvenile P. clarkii (1–31 DAH). In the group with continuous starvation (CS), activities of pepsin and lipase both decreased (< .05) after fasting, and the activities of pepsin, lipase and trypsin in the groups with delayed feeding all increased (< .05) and recover to the levels of the control group after food supply. However, the activity of amylase increased (< .05) in the CS group, and it decreased to normal level after food supply. The ALP activity did not significantly (> .05) vary after starvation, whereas it decreased in the groups with delayed feeding after 1 day of food supply, and then increased back to the level similar with the control group. Results from this study could provide information for diet preparation and feeding regime in larval and juvenile red swamp crayfish culture.  相似文献   

15.
16.
为了解黄条鰤(Seriola aureovittata)早期发育阶段的消化生理特性,测定了黄条鰤胚胎、仔稚幼鱼阶段脂肪酶、淀粉酶、胰蛋白酶和碱性磷酸酶活性变化。结果显示,在黄条鰤仔鱼出膜前胚胎阶段,即能检测到脂肪酶、淀粉酶和碱性磷酸酶活性;初孵仔鱼体内(1 d)初次检测出胰蛋白酶的活性。脂肪酶和碱性磷酸酶比活力在仔鱼孵化后迅速增强(P<0.05),在4 d开口时,2种酶比活力达最高值;淀粉酶比活力在7 d时达最大值;胰蛋白酶比活力在仔鱼阶段缓慢上升,15 d时比活力最大。稚鱼阶段内脏团中脂肪酶、碱性磷酸酶和胰蛋白酶活性基本维持稳定,幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶活性都呈现上升趋势;稚鱼和幼鱼阶段内脏团中淀粉酶活性下降并基本稳定于较低水平。研究表明,黄条鰤仔稚幼鱼发育过程中,各种消化酶活性变化明显,且与其发育阶段和食性密切相关。在尚未摄食饵料的早期仔鱼体内已存在消化酶,认为其是母源传递而来,不是由外源性饵料所致;幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶比活力明显提高,这反映出随苗种生长发育,其肠道结构和消化机能逐渐完善,并且对脂肪、蛋白质的需求逐渐增强。  相似文献   

17.
为了解黄条(Seriola aureovittata)早期发育阶段的消化生理特性,测定了黄条胚胎、仔稚幼鱼阶段脂肪酶、淀粉酶、胰蛋白酶和碱性磷酸酶活性变化。结果显示,在黄条仔鱼出膜前胚胎阶段,即能检测到脂肪酶、淀粉酶和碱性磷酸酶活性;初孵仔鱼体内(1 d)初次检测出胰蛋白酶的活性。脂肪酶和碱性磷酸酶比活力在仔鱼孵化后迅速增强(P<0.05),在4 d开口时,2种酶比活力达最高值;淀粉酶比活力在7 d时达最大值;胰蛋白酶比活力在仔鱼阶段缓慢上升,15 d时比活力最大。稚鱼阶段内脏团中脂肪酶、碱性磷酸酶和胰蛋白酶活性基本维持稳定,幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶活性都呈现上升趋势;稚鱼和幼鱼阶段内脏团中淀粉酶活性下降并基本稳定于较低水平。研究表明,黄条仔稚幼鱼发育过程中,各种消化酶活性变化明显,且与其发育阶段和食性密切相关。在尚未摄食饵料的早期仔鱼体内已存在消化酶,认为其是母源传递而来,不是由外源性饵料所致;幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶比活力明显提高,这反映出随苗种生长发育,其肠道结构和消化机能逐渐完善,并且对脂肪、蛋白质的需求逐渐增强。  相似文献   

18.
California halibut Paralichthys californicus is an important commercial species with high aquaculture potential in Baja California Sur, México. To optimize the feeding process using live prey and/or inert diets, we evaluated alkaline proteases, pepsin, trypsin, chymotrypsin, leucine aminopeptidase, lipase, α-amylase, and acid and alkaline phosphatase activities on starved larvae and larvae fed live prey. Highest activities were observed for alkaline protease, trypsin, chymotrypsin, leucine aminopeptidase, and alkaline phosphatase in feeding larvae than starved larvae on day 4 after hatching. At day 5, a sizeable increase in all enzymatic activities was detected in feeding larvae. Alkaline protease, trypsin, chymotrypsin, and alkaline phosphatase decreases progressively from day 5 until day 18. At day 18, a slight pepsin activity was observed. This was considered an indicator of the start of digestive system maturation. We concluded that total enzymatic equipment for this species is complete between day 18 and 30 after hatching. Based on this evidence, early weaning from live prey to inert feed would be possible at this time.  相似文献   

19.
The digestive tract of many marine fish larvae undergoes numerous morphological and functional changes during ontogeny that can substantially influence larval survival under culture conditions. Increasing our knowledge of the digestive capacity and nutritional requirements of the larvae of new candidate species for aquaculture will aid in the development of optimal feeding protocols and greatly improve production under hatchery conditions. In this study, we assess the proteolytic capacity of California halibut (Paralichthys californicus) larvae using biochemical and histological analyses. Newly hatched larvae were reared in a semiclosed recirculating system and fed with highly unsaturated fatty acid (HUFA)–enriched rotifers from hatching until 19 d posthatch (dph) and HUFA‐enriched Artemia nauplii thereafter. Total and specific activity of trypsin and leucine‐aminopeptidase (LAP) and acid and alkaline protease activities were assessed throughout development using spectrophotometric techniques. Trypsin‐like activity and LAP and alkaline protease activities were detected shortly after hatching and before the opening of the mouth. Acid protease activity was not detected until 36–40 dph, concomitant with the development of the gastric glands. The specific activity of trypsin and LAP showed two distinct peaks at 8 and 20 dph. The second peak coincided with the shift from rotifers to Artemia. Hence, newly hatched California halibut larvae possess alkaline proteolytic activity before first feeding. Based on the digestive capacity evaluated in this study and the timing of the development of the functional stomach, we propose that California halibut can be adequately weaned to formulated microdiets around 36 dph.  相似文献   

20.
对主养草鱼(Ctenopharyngodon idellus)池塘中4种鱼类消化器官的胃蛋白酶、胰蛋白酶、脂肪酶和淀粉酶的活性与鱼体长、体重及主要水质指标的相关性进行了研究。结果显示,草鱼肠道和肝胰脏的胃蛋白酶与水温具有显著正相关(P<0.05),而草鱼肠道胰蛋白酶、肠道和肝胰脏的脂肪酶以及鲢(Hypophthalmichthys molitrix)肝胰脏中淀粉酶与水温呈负相关(P>0.05)。4种鱼的消化酶活性与总氮和总磷呈正相关。匙吻鲟(Polyodon spathula)的脂肪酶和淀粉酶活性与化学耗氧量呈负相关;除鲢外,其他3种鱼的胃蛋白酶活性均与水体硬度和碱度呈正相关,而胰蛋白酶、脂肪酶和淀粉酶均与水体硬度和碱度呈负相关。草鱼和鳙(Aristichthys nobilis)肠道胰蛋白酶、脂肪酶和淀粉酶以及匙吻鲟消化道和肝脏胰蛋白酶与鱼的体长、体重均具有显著的正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号