首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
代冬  陈度  张宾  王玲  王书茂 《农业机械学报》2020,51(S1):568-575
针对当前拖拉机检测系统功能集成度低、检测参数不全面、传输距离有限的问题,开发了拖拉机田间作业参数无线检测系统。该系统由传感器、数据采集仪及上位机软件监测平台3部分组成,能够实现PTO转矩及转速、油耗、发动机转速、悬挂提升力、力位调节加载力、加载角度、行驶速度、车轮转速、牵引力等多种参数的采集、无线发送与存储。系统工作时,数据采集仪中的车载检测仪将采集的传感器数据发送至无线数据接收器,无线数据接收器通过串口将数据传输至上位机软件监测平台,实现对各类试验参数的实时监测与数据处理。为验证检测系统的可行性与稳定性,对系统进行了采集通道的计量,结果显示模拟信号通道绝对误差绝对值最大为0.003V,引用误差最大为0.03%,频率信号通道检测绝对误差最大为2Hz,引用误差最大为0.013%,满足对拖拉机作业参数的采集需求。在此基础上,进行了PTO转矩参数及拖拉机无负载行驶速度采集试验。试验结果表明,检测系统可以实现转矩参数的稳定采集及数据的无线传输;在5、8、14km/h 3挡车速匀速行驶下,拖拉机车轮转速与实际行驶速度基本一致,最大相对误差分别为2.0%、1.2%及0.7%。本系统可满足对拖拉机工作性能参数的无线检测需求,数据采集稳定且采集精度较高,为拖拉机多作业参数的无线采集提供有效手段。  相似文献   

2.
三点悬挂系统是拖拉机关键工作系统之一。由于田间作业工况的复杂多变,拖拉机三点悬挂液压系统承受较大的随机载荷,容易发生零部件破坏与液压故障等问题,直接影响拖拉机安全及作业效率。基于以上问题,研发了拖拉机三点悬挂电液加载系统,并基于NI Compact-RIO开发了拖拉机加载平台测控仪与上位机测控软件,实现了信号采集与加载控制。利用ARMAX模型进行系统辨识,得到电液系统模型,并与MatLab传递函数辨识箱比较,平均绝对误差降低33.90%,均方误差降低87.36%,均方根误差降低64.45%;基于PID控制方法,上位机以20Hz加载频率将阶梯信号、正弦信号、田间三点悬挂牵引力载荷应用于加载系统进行复现,效果完全可以满足试验台的控制加载要求。试验结果表明:基于ARMAX模型的系统辨识及基于PID的控制方法结合三点悬挂电液加载系统,可将田间三点悬挂牵引力载荷加载复现,为基于田间动态载荷加载的拖拉机三点悬挂零部件与系统可靠性试验提供了平台和方法支撑。  相似文献   

3.
为了解决后悬挂农具田间测试效率和精度低,测试成本高等问题,根据田间测试需求,设计了一套基于虚拟仪器原理的田间测试系统。该系统采用上、下位机模式,多种传感器融合及无线传输等技术,实现后悬挂农具多类型参数的实时同步测试。在田间拖拉机牵引试验平台和试验平台三点悬挂2BMSF-12/6型免耕施肥播种机2种工况下进行拖拉机燃油消耗、尾气排放、驱动轮滑转率、农具地轮滑移率、六分力、PTO扭矩和转速等田间试验。试验结果表明,后悬挂农具田间测试系统通讯正常,数据量大且准确可信,满足一般后悬挂农具田间试验要求,可为农具设计优化、适用性评价等技术提供理论支持。  相似文献   

4.
针对拖拉机田间试验数据不足、机组作业质量无法实时评估与准确预测的问题,设计了涵盖多参数、多工况的车载测试终端,构建了全国范围的田间作业试验拖拉机作业载荷数据平台系统,以获取拖拉机各关键零部件的田间作业载荷数据。在此基础上,研究了准确预测、评价拖拉机田间旋耕作业质量的智能算法,为产品研发、性能预测以及作业评估提供全面的基础数据与可靠的预测结果。基于农业大数据,融合BP神经网络与遗传算法对数据平台基础作业载荷进行分类挖掘,预测评价了拖拉机田间旋耕作业质量,结果表明,基于遗传算法的神经网络预测精度高达96.77%,均方根误差(RMSE)小于0.01,说明拖拉机作业载荷数据平台的基于遗传算法的神经网络预测模型可准确预测评价拖拉机田间旋耕工况的作业质量。  相似文献   

5.
悬挂式深松机耕整地耕深检测方法研究   总被引:3,自引:0,他引:3  
耕深作为深松作业质量的重要指标,长期以来无法实现在线评估,目前以人工抽测为主,误差大,效率低。以提高农机深松耕整地作业质量为目标,提出一种基于深松机组姿态估测的耕深检测方法及系统。首先分析了牵引拖拉机以及悬挂式深松机在作业过程中的运动轨迹,建立了拖拉机与深松机作业耕深检测模型。该模型通过检测安装在拖拉机后悬挂杆和悬挂式深松机上的姿态传感器输出角度,实时计算深松机耕深。为验证该检测模型的精度,设计了基于嵌入式ARM内核的耕深检测传感器和深松作业检测系统,该系统集卫星定位系统(GPS)、移动网络传输(GPRS)、数据存储(SD卡)等于一体,能实时采集深松机作业耕深、作业位置、作业速度及航向信息,数据存储在检测系统的终端设备中,并通过移动网络传送至远程数据中心做进一步融合处理,以对深松作业质量进行综合评价。将耕深检测传感器进行静态标定,耕深检测标定误差小于0.88 cm,平均误差小于0.21 cm,均方根误差小于0.66 cm。利用标定后的传感器及深松作业检测系统在田间开展多组试验,试验结果显示该系统耕深检测最大误差为1.18 cm,多组试验数据的平均误差小于0.45 cm,均方根误差小于0.64 cm,表明该系统耕深检测精度和稳定性较高。  相似文献   

6.
基于PXI的悬挂农机具受力田间在线遥测系统   总被引:2,自引:1,他引:1  
农机具的田间测试能反映机具在田间工作时的真实情况.由于田间运行环境恶劣,对测试设备的要求较高.采用PXI总线结构和高性能信号调理电路进行多种信号数据采集,能够最大限度地解决抗振、抗干扰和防灰尘等问题.针对悬挂式农机机具进行受力田间在线测试时,使用拉压力传感器进行力的测量,双轴倾角传感器测量各相关夹角;采用PXI嵌入式处理器将采集的数据转换成串行数据经无线数据传输至上位机.数据处理采用LABVIEW进行系统设计,可以对悬挂式机具田间的工作情况进行实时检测.  相似文献   

7.
农业机械自动转向是实现农业机械自动化和智能化的关键技术之一,农田作业工况较为复杂,拖拉机自动转向装置的现场安装调试费时费力。针对这一问题,本研究研制了一种拖拉机自动转向试验台,对拖拉机自动转向装置进行模拟调试与测试以保证其控制的准确性和可靠性,从而减少田间测试时间,降低安装使用成本。本研究选用120马力拖拉机前桥,通过对机械结构、液压系统和电气控制系统的设计计算,搭建了拖拉机自动转向试验台。利用惯性测量单元对转向系统工作性能进行测试,试验结果表明方向盘平均转向间隙为16.48°,车轮平均转角延迟时间为0.14s,响应速度和稳定性符合农业机械转向要求。所研制的拖拉机自动转向试验台能够用于测试拖拉机前桥的工作状态,并对其转向性能参数进行准确采集和记录,可为农业机械自动转向装置的调试和性能检测提供一个高效可靠的测试平台。  相似文献   

8.
拖拉机液压悬挂机构自动控制系统   总被引:7,自引:3,他引:7  
在原拖拉机半分置式液压悬挂机构中改进设计了自动控制系统.分别阐述了自动控制系统的组成、工作原理、土壤阻力传感器、农具提升高度传感器、主控制阀位移传感器信号的测取与处理以及单片机控制的实现.控制系统试验表明,拖拉机液压悬挂系统的自动控制是有效的.  相似文献   

9.
悬挂农具作业动力学参数田间实时测试系统   总被引:2,自引:0,他引:2  
为了满足农业机械研制过程中对多个动力学参数实时测试的需要,在分析其他测试装置及原理的基础上,将三销求和电路及测力销装置与农机通用的三点悬挂机构有机结合,研制出三点悬挂式测力装置。以LabVIEW为开发平台,针对所选传感器的特点,开发出大功率(150 kW以上)农机具动力学参数田间测试系统,实现农机具的位移、动力输出轴转速和扭矩、输出功率、打滑率、水平牵引力以及油耗等参数的实时测试,研制出CTM-5000型悬挂农机具田间综合测试系统,分析了系统误差产生的根源,并找出消除误差的措施。以拖拉机前、后配套农机具为试验对象进行了田间试验,在室内与现有类似测试系统进行了比较验证,试验运行和验证结果表明本系统测量数据可靠,操作方便,体现出其设计的合理性和优越性。  相似文献   

10.
方续  王熙 《南方农机》2023,(11):1-5
【目的】精准测量拖拉机的实际行驶速度对于精量播种、变量播种、施肥、喷药至关重要,我国测速手段主要是通过GNSS和地轮测速,但GNSS价格高、阴雨天信号精度低,且需要差分来保证高精度;而地轮由于拖拉机作业环境原因存在着滑转率。【方法】课题组研究设计了一种基于微波多普勒效应的车速雷达传感器,分析了系统结构、工作原理及软硬件设计,基于VB6.0平台开发了微波雷达测速程序和GNSS接收轨迹图程序,运用阿尔泰USB3200便携式数据采集卡采集数据,采用FFT算法对采集的数据进行优化,并以麦赛福格森1204型拖拉机为试验对象,在水泥路面进行了拖拉机平均速度在3.05 km/h、5.18 km/h、7.11 km/h时的GNSS与多普勒雷达测速对比试验,在黑龙江八一农垦大学试验田进行了多次田间测速试验。【结果】在水泥路面试验中,测速绝对误差最大值为0.27 km/h,相对误差最大值为3.85%,相对误差平均值为1.98%;在田间试验中,测速绝对误差最大值为0.12km/h,相对误差最大值为3.82%,相对误差平均值为3.01%,该测速方式效果精准,满足农业机械作业的基本要求。【结论】1)该系统实现了...  相似文献   

11.
为提高农田平整作业过程中平后区域田面地形实时测量精度,本文提出一种农田精准平整过程中三维地形实时测量方法(Real-time 3D terrain measurement, Rt3DTM)。以安装有GNSS双天线和姿态传感器的支撑轮式旱地平地机为地形测量平台,利用卡尔曼滤波器融合GNSS与加速度提高定位精度,通过建立平地铲运动学模型获得支撑轮底点的车体坐标,结合平地铲位姿信息对支撑轮底点进行世界坐标解算,并利用最邻近插值法生成地形图。静态试验表明,Rt3DTM方法能准确解算支撑轮底点坐标,平面测量均方根误差小于10 mm,高程测量均方根误差不大于20 mm。水泥路面试验结果表明,在3组不同车速下测量同一段水泥路面三维地形,与真值的高差均方根误差均小于30 mm。田间试验结果表明,Rt3DTM测量的高程均方根误差为16.5 mm,平整度为16 mm,小于30 mm的高差分布列为95.8%,相比机载GNSS测量方法的均方根误差准确性提高29.5%,平整度准确性提高11.1%,高差分布列准确性提高9.5%。提出的Rt3DTM方法能实时准确地获取平整作业过程中平后区域的地形信息,为无人化农田平...  相似文献   

12.
铰接摆杆式重型拖拉机线控转向系统仿真与试验   总被引:1,自引:0,他引:1  
建立了拖拉机空间多体动力学机械系统与线控转向液压系统联合仿真模型,用Matlab编写了相应的模糊PID控制仿真程序,进行了拖拉机线控转向系统原地转向仿真。在平直水泥路面上进行了铰接摆杆式重型拖拉机线控原地转向试验与行驶试验。试验研究表明,所开发的线控转向系统能用于行驶速度小于13 km/h的作业工况。  相似文献   

13.
针对电液耦合转向方案转向特性尚不明晰、转向数据采集和记录困难等问题,提出一种硬件在环拖拉机电液耦合转向试验平台设计方案。平台参数设计过程主要考虑功率损耗,为了满足电液耦合转向系统的性能要求,进行精度设计与量程设计。通过总体参数设计,得到电动助力、液压助力和阻力加载系统的参数计算模型,并基于AMESim建立电液耦合转向系统的控制与机械模型仿真进行了参数优化。通过基于dSPACE以及PXI的硬件在环控制方案,进行了各类转向工况试验验证,验证结果表明:阻力加载模拟系统能根据不同的地面条件、行驶工况等参数实现动态加载,响应速度和控制精度均能实现田间阻力模拟要求;电液助力转向系统能够产生较好的平滑助力,具有良好的转向路感;控制系统能与各传感器硬件协同配合,使拖拉机电液耦合转向试验平台具有良好的响应特性,能够真实还原拖拉机转向过程。  相似文献   

14.
为了使遥操作拖拉机驾驶员对路面信息有更直观的感受,在课题组前期设计的一套拖拉机遥操作系统的基础上设计了路感模拟系统.首先提出路感模拟系统的总体设计方案.然后分析拖拉机路感产生机理,并对遥操作拖拉机的转向执行机构以及控制器进行改造,设计出路感测试系统.最后根据所设计的路感测试系统,在草地、水泥地等路面上对遥操作拖拉机进行...  相似文献   

15.
接触式拖拉机导航控制系统   总被引:3,自引:0,他引:3  
为提高接触式拖拉机导航系统性能和导航精度,针对玉米秸秆行间作业,设计了双层控制器接触式导航控制系统.在分析接触式导航传感器检测信号的基础上,以触杆转角为输入、前轮目标转角为输出设计了模糊控制器作为导航控制的上层控制.下层控制针对电液系统的非线性,采用带非线性补偿的PID控制器实现对拖拉机前轮转向角的控制.该导航控制方法在Matlab/Simulink平台上进行了仿真,导航控制系统在秸秆行间进行了试验验证.仿真和田间试验结果表明,导航控制算法的响应快、稳定性好.当行驶速度不超过1 m/s时,拖拉机导航精度在50 mm以内,平均误差15 mm,能满足玉米秸秆行间作业要求.  相似文献   

16.
温室株间电驱锄草机控制系统设计与试验   总被引:2,自引:0,他引:2  
根据温室机械锄草的需要,针对电驱锄草机械设计了一种圆盘锄刀株间锄草控制系统。该系统以MC9S12DG128双核单片机为硬件核心,融合霍尔传感器、旋转编码器的信号实时输入,通过RS232串口中断实时接收上位机(PC)视觉信息,采用CAN总线与下位机(电动机驱动器)实时通信,对圆盘锄刀转速与转角进行实时控制,从而实现株间锄草和避苗。温室大棚内锄草试验结果表明,前进速度为1.2 km/h时,伤苗率小于10%。  相似文献   

17.
针对丘陵山地拖拉机电液悬挂控制系统田间试验困难、可重复性差等问题,基于半实物仿真技术开展电液悬挂控制系统试验研究。首先通过对试验拖拉机和悬挂作业装置进行受力分析,建立了丘陵山地拖拉机整机动力学模型、铧犁体的土壤阻力模型和拖拉机悬挂装置动力学模型。然后对丘陵山地拖拉机电液悬挂系统横向仿形控制、位控制、牵引力控制以及力位综合控制的系统原理进行了分析,设计了丘陵山地拖拉机电液悬挂模糊PID控制器。之后搭建拖拉机电液悬挂控制系统半实物仿真试验平台,开发电液悬挂控制系统,开展电液悬挂系统仿地形控制、力控制、位控制和力位综合控制等试验,对比分析模糊PID控制和经典PID控制方法性能。试验结果表明,模糊PID控制性能较好:在位置控制模式下,模糊PID控制无超调,控制系统响应时间为0.6s,较经典PID控制提高约33.3%;耕深控制系统稳态误差约为0.05cm,较经典PID控制降低约50%;在力控制模式下,模糊PID控制耕深的跟随误差最大值为0.38cm,标准差为0.17cm,较经典PID控制分别下降了64.5%、39.3%,验证了所开发的电液悬挂控制系统的有效性。  相似文献   

18.
为了获取轮式拖拉机行进过程中的实时滑移率,设计了基于LabVIEW和单片机的轮式拖拉机实时滑移率监测系统。系统以LabVIEW和单片机为数据处理核心,包括霍尔传感器模块、单片机测速模块、LCD1602A液晶显示模块、下位机和上位机通信模块、LabVIEW上位机处理数据显示实时滑移率模块。下位机系统主要负责采集拖拉机驱动轮速度和机身速度数据,上位机系统主要负责计算实时滑移率,同时系统将拖拉机工作过程中的驱动轮速度、机身速度及实时滑移率数据在上位机显示并储存到数据库中。不同路面工况下的试验结果表明:监测系统上位机与下位机运行稳定性可靠,测速误差率平均值为1. 61%,能够满足轮式拖拉机行驶时的实时性要求。该研究可为轮式拖拉机农耕作业陷车安全预警系统设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号