首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 640 毫秒
1.
为了对比硝化型和异养型生物絮团养殖系统的运行效果,实验在硝化组和异养组中养殖吉富罗非(GIFT Oreochromis niloticus)幼鱼51天,对比研究罗非鱼的生长性能、非特异性免疫酶活、消化酶活以及水体和肠道微生物的群落结构。结果显示:两组罗非鱼的成活率和增重率等生长性能指标均无显著性差异。异养组罗非鱼的非特异性免疫酶活显著高于硝化组。硝化组罗非鱼肠道的淀粉酶和脂肪酶活性均显著高于异养组,异养组的蛋白酶显著高于硝化组。罗非鱼肠道占比前5的优势门均为变形菌门 (Proteobacteria)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)和衣原体门(Chlamydiae),其中变形菌门是各组中最主要的菌群。硝化型水中占比前4的优势门为变形菌门,绿弯菌门,拟杆菌门(Bacteroidetes),浮霉菌门(Planctomycetes);异养型水中占比前4的优势门为变形菌门,绿弯菌门,拟杆菌门,放线菌门。分枝杆菌属(Mycobacterium)是是水体和肠道中最主要的潜在致病菌而Diplorickettsiaceae和邻单胞菌属(Plesiomonas)均保持在较低水平。水体和肠道中除梭菌属(Clostridium)外其余潜在致病菌如气单胞菌属(Aeromonas),黄杆菌属(Flavobacterium)等含量水平硝化型组均高于异养型组。  相似文献   

2.
[目的]探讨在零换水条件下开展凡纳滨对虾高密度养殖的可行性,为后续推动对虾零换水高效健康养殖模式的规模化产业应用提供参考依据.[方法]采用封闭式串联养殖池系统,凡纳滨对虾虾苗放养密度690尾/m3,养殖周期91 d(13周),以生物絮团技术调控养殖水质,养殖全程不换水,定期监测与分析养殖水体主要水质指标及细菌数量的动态变化特征.[结果]经13周的零换水养殖后,凡纳滨对虾平均存活率为(83.90±2.74)%,收获规格平均为14.50±0.99g/尾,单位水体对虾产量平均为8.39±0.48 kg/m3,饲料系数平均为1.25±0.06,养殖对虾单产平均耗水量为120.00±6.38 L/kg.从养殖第7周起,水体中生物絮团量维持在18.2~30.4 mL/L,pH基本维持在7.31~7.60,总碱度在116~224mg/L范围内波动变化,总氨氮(TAN)浓度降低至0.45 mg/L以下并保持至试验结束,亚硝酸盐氮(NO2-N)浓度保持低于0.70 mg/L,硝酸盐氮(NO3--N)浓度呈持续上升趋势,至试验结束时接近135.0mg/L.养殖水体中的异养细菌和弧菌数量均呈先升高后降低的变化趋势,其中,异养细菌从第9周后一直维持在×106 CFU/mL的数量级水平,弧菌从第7周后一直维持在×lo2 CFU/mL的数量级水平.[结论]科学运用生物絮团技术对凡纳滨对虾养殖水质进行原位调控能实现高密度零换水的高效健康养殖,还可有效提高水资源的利用效率,有助于推动对虾养殖产业的绿色健康发展.  相似文献   

3.
采用盐度变化法将已建立完全硝化功能的淡水生物过滤器驯化为具完全硝化功能的海水生物过滤器。在水温25℃的培养条件下,用盐度25的海水直接培养生物过滤器,建立完整硝化功能需70d;先用淡水培养生物过滤器,待硝化作用完全建立后,用盐度25的海水驯化,则建立完整硝化功能的海水生物过滤器需要61d;将已经建立完整功能的淡水生物过滤器,先用盐度10的海水驯化,待建立完整硝化功能后,再用盐度25的海水驯化,则建立完整硝化功能的海水生物过滤器共需要56d。运用PCR-DGGE技术分析盐度冲击前后生物膜细菌群落结构的变化,运用荧光素-荧光素酶法检测盐度冲击前后生物膜微生物ATP含量变化。结果表明,经盐度冲击后,生物膜的细菌群落结构发生了明显变化,优势菌群由β-变形菌纲细菌和δ-变形菌纲(Delta proteobacteria)细菌转变成γ-变形菌纲和α-变形菌纲细菌;盐度冲击24h后,生物膜微生物ATP总量分别下降了17.4%(盐度15)和47.7%(盐度25)。  相似文献   

4.
利用硝化型生物絮团系统进行凡纳滨对虾的养殖,并通过设置不同的养殖密度探究不同养殖密度下硝化型生物絮团系统对凡纳滨对虾生长性能和水质情况的影响。实验选择同一批标粗到一定规格的健康凡纳滨对虾[体长(4.80±0.25) cm,体质量(0.98±0.16)g],分成5个密度梯度组放养到养殖池中,进行为期45 d的养殖。结果表明:80~610尾/m~3范围内,硝化型生物絮团系统对非离子氨和亚硝酸盐氮可以控制在警戒浓度(0.2 mg/L)附近波动,为凡纳滨对虾健康生长提供了良好的环境,保证养殖存活率,另外该系统下适当的排污可以避免高密度养殖下硝酸盐氮积累太快;80~610尾/m~3时存活率随密度升高而下降,但产量随密度升高而增加。  相似文献   

5.
运用Miseq高通量测序技术,分析高、中、低3种养殖密度(700、300、100尾/m3)下墨吉明对虾肠道和其养殖系统中生物絮团的菌群结构。结果显示:对虾肠道菌群中,高密度组的丰富度和多样性均最高,丰富度随放养密度的增大而增加,而在生物絮团菌群中,高密度组的丰富度最低;在门水平上,肠道和絮团样本菌群均以变形菌门(相对丰度49.25%~80.33%)、放线菌门、拟杆菌门、绿弯菌门为主,但丰度差异较大;在属水平上,优势菌属的组成和所占比例明显不同,梭菌属、Spongiibacter、Faecalibacterium、Rhodovulum、Blautia仅在肠道样本中存在,Coccinimonas仅在絮团样本中存在;肠道样本中,中密度组弧菌属的相对丰度最小,为5.23%,高密度组弧菌属的相对丰度最大,为23.39%,絮团样本中,低密度组弧菌属的相对丰度最大,为16.15%,中、高密度弧菌属的相对丰度均较小,分别为5.51%和4.20%;随养殖密度增大,肠道样本中拟杆菌属的相对丰度减小,分别为1.36%、0.41%、0.02%,而不同密度絮团样本拟杆菌属的相对丰度差异不明显。可见,生物絮团养殖模式下,养殖密度对墨吉明对虾的肠道和絮团菌群的影响较大。  相似文献   

6.
[目的]评价不同养殖方式对鳙肠道微生物菌群种类及其多样性的影响,为发展鳙的健康养殖提供参考依据.[方法]设生物絮团组、施肥组和网箱吊养组3种养殖方式,经过8周的饲养周期后,运用PCR-DGGE对不同养殖方式下鳙肠道定植菌进行比较分析.[结果]鳙肠道细菌多样性排序为生物絮团组>施肥组>网箱吊养组,其中,生物絮团组与施肥组、生物絮团组与网箱吊养组、施肥组与网箱吊养组的DGGE图谱相似性依次为53.8%、39.4%和42.8%.生物絮团组鳙肠道的特异条带代表α-亚群的葡糖醋杆菌属(Gluconacetobacter)、葡萄球菌属(Staphylococcus)、绿弯菌(Chloroflexi)和几类不可培养细菌(EU585886.1、FN824844.1、GU498473.1、GU486235.1和JN399992.1);施肥组和网箱吊养组鳙肠道的特异条带代表梭菌属(Clostridium)、气单胞菌属(Aeromonas)及不可培养细菌(EU376178.1).[结论]生物絮团的应用能有效增强养殖鳙肠道微生物菌群组成多样性,降低气单胞菌在鳙肠道的分布,可作为高蛋白饵料类型被鳙摄食.  相似文献   

7.
1 投饵技巧根据对虾的摄食习性 ,在养殖过程中每天必须定时投饵 ,不应频繁变动投饵次数及时间。在水质恶化、虾体摄食量下降的情况下 ,应减少下次投饵量 ,而不应推迟投饵时间。高密度精养南美白对虾 ,投饵时要力求沿设定投饵区均匀撒布 ,切忌堆积 ;因为饵料成堆或分布过密会影  相似文献   

8.
生物絮团技术(BFT)在水产养殖中的应用是由以色列学者Avnimelech在1999年首次提出的,是指通过向养殖水体外加有机碳源调节水体的碳氮比(C/N),使水体中异养细菌大量繁殖以同化无机氮,将水体中残饵、养殖动物排泄物以及一些次级代谢产物等有害氮源转化成可以被吸收利用的菌体蛋白,即生物絮凝体,又称生物絮团。形成的生物絮团不但可以解决水体中腐屑和饲料滞留问题,而且可以被滤食性养殖动物摄食,实现了饲料蛋白的再利用。  相似文献   

9.
碳源添加方式对海水生物絮凝系统启动效率的影响   总被引:1,自引:1,他引:0  
合理地添加碳源有利于生物絮凝系统的构建。为快速完成海水生物絮凝系统启动,在盐度为30的生物絮凝系统启动阶段探究了3种添加碳源(葡萄糖)方式对启动效率的影响。第一种在实验初始时一次性添加葡萄糖到生物絮凝系统中,使碳与总氮质量比达到15以上;第二种在系统运行的第1~10天,每天加入A组所添加葡萄糖总量的10%,此后若氨氮(TAN)上升至1 mg/L以上,则按照C/TAN为6来添加葡萄糖;第三种每天按照C/TAN为6来添加葡萄糖。结果显示:3个处理组的氨氮在实验期间总体上处于较低水平,亚硝酸氮和硝酸氮均有明显积累,但在系统运行第59天时降至最低水平。3组系统中絮体的胞外聚合物和粗蛋白等营养指标均呈现下降趋势。利用高通量测序技术对生物絮体的细菌群落结构进行分析,检测结果表明:3组生物絮体的主要优势菌群都属于变形菌门(Proteobacteria),持续添加碳源能够丰富生物絮凝系统中微生物种类。实验进行第55天时,3个处理组的生物絮凝系统启动完成。实验表明:在启动初始阶段以DOC/TN为15的比例添加葡萄糖及在系统运行期间按DOC/TAN为6的比例添加葡萄糖能够更好地形成生物絮凝系统。  相似文献   

10.
《山西农业科学》2019,(9):1680-1682
生物絮团有望成为一种新的对抗水产养殖病原菌和减少水产养殖污染的有效方法,尤其是硝化型生物絮团养殖模式。生物絮团由细菌、藻类、原生动物及其胞外物等构成,其通过同化、硝化及光合作用可快速降低水体中的氨氮浓度,还可实现水体中营养物质再利用和养殖对象的生物防治。介绍了生物絮团技术的概念、组成、分类、主要功能及水处理优点,以期为水产养殖污染控制及废物资源利用提供参考。  相似文献   

11.
采用3种浮植方式水培水蕹菜、羽衣甘蓝、生菜,进行蔬菜种类、浮植方式筛选,并以最佳品种与浮植方式浮植规模化养虾塘,进行水生菜生长状况与净化虾塘水质效果试验.结果表明,水蕹菜为生长良好、可有效净化养虾水质的蔬菜品种,以绳结式浮植方式培植水蕹菜可获得最佳的生长效果;据此将水蕹菜以绳结式浮植于规模化养虾塘.对虾生态养殖试验探讨了水蕹菜对虾塘水质的净化效果及对虾生长状况的影响,结果表明,种植水蕹菜虾塘和对照塘中对虾输出的TN、TP分别为36.21%、21.01%和32.03%、17.98%.种植塘收获水蕹菜重量为初始种植重量的32.5倍,具有一定经济价值,特别是能有效去除塘水中TN、TP,去除率分别为5.86%和3.73%.试验期间,种植塘的TAN、TN、TP、PO43--p及CODMn含量均低于对照塘.种植塘对虾终末体长、体重、饵料系数均优于对照塘,对虾产量(4768.75±111.69 kg/hm2)也高于对照塘(4 120.46±90.00 kg/hm2).这种生态养殖模式不仅可有效净化水质,减少养殖废水对环境的污染,还能提高对虾养殖的经济效益.  相似文献   

12.
研究线纹海马(Hippocampus erectus)在室内水泥池不同养殖密度下,水体环境因子和细菌数量的动态变化情况.结果表明,在一个倒池换水周期中,养殖组1和养殖组2的磷酸磷(pO434-p)、硝酸氮(NO3--N)、亚硝酸氮(NO2--N)和氨氮(NH4+-N)等离子物质的浓度和细菌、弧菌和异养菌数量均随着养殖时间的推移不断上升,通常在换水后9d或12d达到最高,再次换水后降到极低值.单因素方差分析结果表明,在不同养殖密度下,PO43--p、NO3--N、NO2--N和NH4+-N等离子浓度随着养殖密度的升高而升高;而低密度养殖池中细菌数比高密度养殖池的细菌数显著更高.养殖水体中的pO43--p浓度与异养细菌数呈负相关关系,NO2--N浓度与细菌数量和弧菌数呈正相关关系,NO3--N浓度与细菌数、异养菌数和弧菌数呈负相关关系,NH4+-N浓度与细菌数、异养菌数和弧菌数均呈正相关关系.研究结果可为科学开展海马室内规模化养殖提供理论参考.  相似文献   

13.
吴卿  赵新华 《安徽农业科学》2007,35(8):2390-2391
为了研究饮用水管网中氮化合物的分布变化规律,及其对细菌指标的影响,对我国北方某市配水管网中细菌总数、氨氮(NH4+-N)、硝酸盐氮(NO3--N)、亚硝酸盐氮(NO2--N)、自由余氯、浊度、总有机碳等水质指标进行了监测.结果表明:该管网微生物学水质较差.从管网入口到管网末梢,水中氨氮、亚硝酸盐氮浓度沿管网逐渐降低;氨氮与硝酸盐氮呈一定的负相关关系;氨氮与亚硝酸盐氮的变化趋势一致.应严格控制出厂水中氨氮的含量,降低饮用水中亚硝酸盐氮的含量,同时也在一定程度上降低管网中微生物的繁殖水平,进而对保障管网饮用水生物稳定性及管网饮用水的微生物学水质安全起到一定作用.  相似文献   

14.
生物絮团在罗氏沼虾育苗中的应用   总被引:3,自引:1,他引:2  
对罗氏沼虾育苗水体连续添加不同浓度的葡萄糖和定量的枯草芽孢杆菌培育生物絮团,自1日龄幼体培育至仔虾,连续监测水体的氨氮、亚硝酸氮、溶解氧、COD、葡萄糖和生物絮团等浓度;通过变性梯度凝胶电泳(DGGE)分析生物絮团中微生物组成,测定出苗率及育成仔虾个体大小。通过27 d室内罗氏沼虾育苗试验发现:各组生物絮团含量无显著差异,应用生物絮团后,葡萄糖终浓度为20 mg/L组的氨态氮和亚硝酸氮明显低于对照组(P<0.05),溶解氧和COD浓度在试验组与对照组之间不存在显著差异。DGGE分析结果和序列测定结果显示,添加葡萄糖和枯草芽孢杆菌制剂产生的生物絮团,条件致病菌气单胞菌属细菌(Aeromonas sp.)显著少于自然产生的生物絮团,并促进水产有益菌芽孢杆菌属细菌(Bacillus sp.)的生长。出苗率及生长测定表明,对照组出苗率为32.60%,20 mg/L试验组为60.60%,比对照组高85.90%。对照组仔虾体长平均值为8.193 mm,20 mg/L试验组体长平均值为10.488 mm,比对照组高28.00%。添加一定浓度葡萄糖和枯草芽孢杆菌产生的生物絮团能有效地控制水质和减少有害细菌的生长。  相似文献   

15.
农肥和化肥对黑土氮素淋溶的影响   总被引:3,自引:0,他引:3  
采用树脂袋法,研究了培肥措施对黑土氮素淋溶的影响。结果表明,①2006年和2007年施化肥的3个处理土壤NO3--N淋失量显著高于施农肥处理,其中2006年化肥高量、化肥低量和农化1:1的3个处理分别是对照的36.88、28.91和27.06倍,是农肥高量处理的8.29、6.49和6.08倍;2007年不同培肥处理总体表现为化肥高量化肥低量农肥高量农化1:1农肥低量对照,各处理60 cm土层NO3--N淋溶量均大于30 cm土层NO3--N淋溶量;②不施肥处理比施肥处理土壤NO3--N淋溶量低,在施用等量氮素条件下,农肥施用处理的淋失率要远远小于化肥施用处理,玉米氮的平均淋失损失占所施氮肥的1.4%~13.6%,单施用农肥NO3--N淋失率才只有1.4%~5.2%,而使用化肥的处理NO3--N淋失率则高达12.5%~15%;大豆氮的平均淋失损失占所施氮肥的0.5%~4.3%,单施用农肥NO3--N淋失率只有0.5%~0.81%,而使用化肥的处理NO3--N淋失率则高达2.97%~4.3%;③土壤pH与土壤NO3--N淋失量呈负相关;④土壤NO3--N含量与土壤NO3--N淋溶量呈正相关,随着土层的加深,土壤NO3--N含量降低,深层土壤NO3--N含量对土壤NO3--N淋溶影响更显著;⑤土壤NO3--N淋溶量随土壤硝化强度的增强而增加,硝化作用强度是影响土壤NO3--N淋溶主要因素。  相似文献   

16.
采用挂膜法在曝气式生物滤池中比较分析不同用量的呼吸环和陶瓷环处理养殖废水时NH_4~+-N,NO_2~--N的质量浓度变化,并构建浓度变化模型公式。结果表明,不同生物滤料、不同用量的NH_4~+-N质量浓度均随处理时间延长而逐渐下降,NO_2~--N质量浓度先上升至峰值然后下降。14%红色呼吸环、10%红色呼吸环NH_4~+-N和NO_2~--N处理效果最优,处理的第21~23天NH_4~+-N达最低值(0.056±0.014)mg·L~(-1),去除率为97.37%;处理的第10天NO_2~--N达到峰值(1.722±0.014)mg·L~(-1),第24~26天达最低值(0.024±0.009)mg·L~(-1)。不同比例不同生物滤料NH_4~+-N去除效果满足模型公式y=a/(1+be~(cx))+d,NO_2~--N去除效果满足模型公式y=x~ae~((b/x+cx))+d。  相似文献   

17.
在室内构建硝化型生物絮凝系统过程中不用药、添加益生菌和零换水条件下,采用300、600、900尾/m33种养殖密度,通过90 d海水养殖试验,探索了密度对该养殖模式下凡纳滨对虾生长性能与水质的影响以及养殖的合适密度。结果表明:在构建硝化型生物絮凝系统过程中,随密度增加水质逐步下降,如BFT900组的DO由8. 21 mg/L降至3. 34 mg/L,p H由8. 24降至6. 75,TAN由0. 08 mg/L升至1. 64 mg/L,NO2--N由0. 10 mg/L升至10. 80 mg/L,NO3--N由0. 54 mg/L升至153. 70 mg/L,上述各组指标差异显著(P 0. 05),硝化型生物絮凝系统转化成功后,各组水质指标均处于对虾生长合适范围;存活率随密度增加而下降,BFT300、BFT600和BFT900这3个处理组存活率分别为84. 59%±8. 83%、74. 26%±6. 66%和54. 95%±4. 23%,3组之间存在显著差异(P 0. 05);养殖结束时,对虾的平均体长和体质量随密度增加而降低,BFT300组的对虾平均体长和体质量显著高于BFT600和BFT900组(P 0. 05);养殖产量BFT600组最高,为(5. 45±0. 48) kg/m3,与BFT900组差异不显著(P 0. 05),但显著高于BFT300组产量[(4. 08±0. 63) kg/m3];饵料系数随密度增加而升高,其中BFT300和BFT600组差异不显著(P 0. 05),但均显著低于BFT900组的饵料系数(1. 82±0. 62,P 0. 05)。据养殖综合效果和生产效益,构建硝化型生物絮凝系统过程中海水养殖凡纳滨对虾可据自身条件,养殖密度可参考300~600尾/m3确定。  相似文献   

18.
以纸为固体碳源去除水中硝酸盐的研究   总被引:1,自引:0,他引:1  
采用批实验和连续实验对以报纸为固体碳源的反硝化过程进行了研究。批实验结果表明,以报纸为碳源的反硝化反应受温度影响较大。室温条件下(25℃左右),细菌活力旺盛,代谢速度快,反硝化速率很高,是低温条件下的2.73倍。在连续实验中,室温条件下反应器启动快;稳定运行了2个月时间,进水NO3--N浓度变化范围为20.5~105.1 mg/L,当进水NO3--N浓度为20 mg/L左右时,出水NO3--N浓度最低为0.12 mg/L,去除率为99.41%;随着进水NO3--N浓度的升高,NO3--N去除率逐渐下降。实验后期,由于报纸表面变得光滑,没有足够的表面积供细菌生长附着,导致反硝化效率持续下降。  相似文献   

19.
基于因子分析法的罗非鱼养殖池水质影响要素的研究   总被引:1,自引:1,他引:0  
池塘养殖的水质指标众多且彼此相关,找出养殖过程中应重点监测的少量指标是养殖工作者的现实需求。因子分析是在损失较少信息的前提下,把原来多个变量转化为少数几个综合指标的一种统计方法。运用该方法对基于生物絮团技术养殖罗非鱼的池塘水质进行分析。试验分4组,其中对照组投喂正常量的商品饲料,试验组A、B和C分别投喂100%、80%和75%正常量的饲料,同时添加小麦淀粉作为水体碳源;定期对pH、DO、水温(T)、透明度(SD)、氨氮(TAN)、亚硝酸盐氮(NO2--N)、硝酸盐氮(NO3--N)、总氮(TN)、总磷(TP)、叶绿素a(Chl.a)、絮体体积(FV)、悬浮物(TSS)和异养细菌总量(THB)进行检测。结果表明:当提取3个主因子时,水温、pH、TSS和THB的共同度都低于0.5,故分析时将其排除。在溶氧充足的条件下,有3个主因子影响养殖水质,第1主因子为有机营养盐,由TP、Chl.a和TN构成;第2主因子为无机氮和透明度,由TAN、SD、NO3--N和NO2--N构成;第3主因子为絮团生成量,由FV构成。对各池的3个因子得分进行加权计算得到综合得分,C组综合得分最低且显著低于对照组,表明在不影响罗非鱼生长性状的情况下,添加碳源并减少投喂量时养殖水质最好,养殖时应重点监测水体总氮、总磷和叶绿素a的浓度,并对氨态氮和亚硝氮进行定期监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号