首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
日光温室土质墙体内温度与室内气温的测定分析   总被引:9,自引:0,他引:9  
为研究日光温室土质墙体的保温性及室内温度环境特征,对日光温室的后墙、地面、空气进行了不同层次的温度监测和理论分析.结果表明:日光温室后墙在传热过程中,由内向外随墙体厚度的增大传入热量逐渐减少.在后墙垂直方向内表层0.2 m处,墙体中下部温度最高,顶部和基部温度较低;3月份一日内墙体表面温度平均比地表面温度高3.3℃;夜间放热时间比地面长约3 h,且单位面积墙体比单位面积地面放热多.白天,在温室南北方向由北向南气温逐渐增高;垂直方向气温由下到上逐渐升高;夜间,在南北方向由北向南气温逐渐降低,垂直方向气温没有明显变化.无论白天夜间,日光温室内南北方向气温差异比垂直方向气温差异大.  相似文献   

2.
大跨度日光温室室内微气候环境测试分析   总被引:17,自引:0,他引:17  
为了解大跨度日光温室室内的微气候环境特点,对沈阳地区12 m跨日光温室在无辅助热源情况下的温、光、湿环境及各壁面蓄放热情况进行了测试.测试结果显示温室1 m处日均气温和0.2 m处日均地温在2月6日后均达到10~15℃以上,室内最低气温在2月中旬后达到8℃以上.温室内气温差值较小,而地温白天最大温差为10.3℃,夜间温室内土壤及墙体为热源,单位面积土壤向室内放热是墙体的近3倍.晴天日均透光率为60%左右.夜间,膜附近室内空气相对湿度通常为100%,高出后墙附近相对湿度8个百分点.  相似文献   

3.
日光温室太阳能地热加温系统应用效果研究   总被引:7,自引:1,他引:6  
为保证日光温室作物在沈阳地区寒冷季节正常生长,在日光温室中设置了太阳能地热加温系统,以期提高温室内土壤温度.采用自主研发的太阳能地热加温系统,在16:00~20:00对辽沈Ⅳ型日光温室土壤进行加温,结果表明:日光温室使用地热加温系统后,室内15cm深土温在晴天时平均比不加温的对照区提高2.94℃,阴天提高2.56℃.最低土温由11.0℃提高到13.9℃.而且发现对5cm以上的土壤温度和温室内气温的差异较小.太阳能地热系统能够对土壤温度有明显的提升作用,热能主要集中加热了15~25cm深度的土壤.  相似文献   

4.
[目的]研究解决日光温室冬季夜间温度过低,难以满足作物正常生长需求的问题。[方法]在前人研究成果的基础上,设计并建造了一种以毛细管为热交换器的太阳能-毛细管蓄放热系统,该系统以水为蓄热介质,通过水循环将白昼温室过余的太阳能存储在水中;夜间再通过水循环将热量释放回温室中,起到增温效果。[结果]在晴朗天气下,白昼水温升温明显,可提高4.9℃以上水温,蓄热量在207.8MJ以上,单位蓄热量可达5.0MJ·m~(-2);在放热阶段,放热量在110~140MJ之间,夜间可提高室内气温2.7℃以上。[结论]增温效果显著,表明系统可以有效地实现热量在空间、时间上的转移、利用,达到削峰填谷的作用。  相似文献   

5.
[目的]研究高寒区戈壁日光温室不同类型土质的温度与气温变化规律及相关性,为高寒区延晚葡萄栽培日光温室提供管理依据.[方法]通过对最冷月戈壁温室室外、室内气温和2种不同土质、不同深度(戈壁土30 cm、土壤10 cm、土壤30 cm)的土壤温度进行测定,比较不同土质类型及深度的温度变化,分析土温与气温的相关关系,建立以气温为基础的土温回归方程.[结果]戈壁土30 cm、土壤10 cm及土壤30 cm处的日最低温度和最高温度与气温变化趋势较同步,均随气温的逐渐降低而降低,升高而升高,但存在一定的滞后现象.土壤30 cm的各指标温度均略高于其余2种土质类型(土壤深度),其保温蓄热能力最强.温室气温极端最低温度测得1.9℃,副梢叶片保持绿色,部分老叶未完全黄化.室内气温、戈壁土30 cm处温度与室外气温之间呈显著或极显著正相关,相关系数分别为0.568和0.402,其线性回归方程分别为:y=6.759 +0.220 x;y=12.647 +0.130x.戈壁土30 cm、土壤10 cm、土壤30 cm处温度与室内气温之间呈正相关关系,相关系数分别为0.934、0.814、0.768,其线性回归方程分别为:y=7.866 +0.777 x;y =9.230 +0.632 x;y =9.940+0.561x.[结论]高寒区,温室冬季气温在2℃以上,能够满足设施葡萄延晚栽培需求.土壤温度与气温变化规律基本一致,但土温具有滞后性.利用回归方程中温室室外气温来推算室内气温和戈壁土30 cm处温度,用室内气温来推算土壤温度,可为戈壁日光温室冬季温度管理、延晚葡萄防寒及抗衰老栽培提供理论依据.  相似文献   

6.
为探索寿光各代日光温室引进喀什地区后蓄热保温性能降低的原因,以气象学土壤热量收支平衡理论为依据,对2000—2020年越冬季潍坊市和喀什市的气象因素进行对比。结果表明,喀什市平均日照时数、地面接收到的太阳辐射强度分别为潍坊市的92.94%、91.55%~94.77%。喀什市白天最高气温比潍坊市最高气温低3.79℃;喀什市夜间最低气温比潍坊市最低气温低3.50℃,日光温室夜间放热量多。喀什市日光温室蓄放热更容易失去平衡,温室温度降低;外地引进寿光各代日光温室后,要对采光面倾斜程度、温室跨度、温室保温被厚度等进行调整,以适应引进地区的气象条件。  相似文献   

7.
为减少夜间日光温室前屋面的热量损失,提高雨雪天气温室保温高于对照效果,以日光温室为对象,在2015年冬季采用保温被外覆无接缝PE黑膜的方法测试温室内温度变化,分析对温室保温性能的影响。结果表明,外设PE黑膜对冬季日光温室的增温效果明显,温室气温、0.05 m处地温显著高于对照。其中:晴天与阴天夜间,处理温室最低气温分别较对照提高0.9、0.5℃,最低地温提高0.7℃;晴天效果优于阴天。雪天夜间最低棚温较对照高2.2℃,最低地温提高1.3℃,且雪后1周处理温室降温幅度明显小于对照温室。试验期间处理温室旬平均气温均高于对照温室,节能效果优于对照。  相似文献   

8.
为了研究复合相变墙体对日光温室热环境及乳瓜生长发育的影响,以北墙为土捣墙的日光温室为对照,对温室内环境参数(热通量、北墙内表面温度、气温、土壤温度)及乳瓜生长参数(叶片、茎、果实的生长状况)进行比较.结果表明:温室北墙涂抹40 mm相变材料可提升墙体吸放热的性能,且白天蓄热和夜间放热通量均高于对照温室.墙体内表面温度呈现出相变涂层温室好于对照温室,最高增加0.4℃.试验期间,相变涂层温室的旬平均气温总是高于对照温室,最高增加0.3℃,且温室内最高温度呈现出相变涂层温室小于对照温室,所以相变材料放热使得室内温度略高于对照温室,室内温度波动幅度大大减少.相变涂层温室的日均土壤温度高于对照温室,最高增加5.7℃.2个温室乳瓜的株高均与日均气温、日均土壤温度呈极显著正相关,且相变涂层温室处理的相关系数大于对照处理.在整个生育期,相变涂层温室内的乳瓜株高较对照温室增加12.7%,茎粗增加1.5%,叶面积增加2.9%.与对照温室相比,相变涂层温室内乳瓜维生素C含量、总糖含量、横宽分别增加41.9%、27.9%、9.8%.该试验结果对宁夏日光温室后墙墙体材料和相变温室种植作物选择提供理论依据.  相似文献   

9.
为探明保温措施对冬季日光温室室内温度的影响,采用对比试验的方法,分别测试了设置阴棚、阴棚覆盖保温被、附阴棚的日光温室墙体及前屋面保温被加强保温这3种措施下的日光温室温度及参照温室温度,重点关注早间及夜间温度的变化。结果表明:附阴棚日光温室与参照温室在外部温度低的早间及夜间气温平均相差一般在0.5℃以内,在外部温度高时二者气温差通常为1.0~4.0℃。阴棚覆盖保温被对日光温室增温效果不明显,1月早间及夜间最大差值为1.0℃。温室墙体及前屋面保温被加强保温的温室与具有相同阴棚设置的参照温室气温相比,早间及夜间二者在外温低的1月平均最大差值为4.2℃,在外温高的2月平均最大差值为6.5℃。研究结果对组合温室的设计建造、温室保温措施的选择以及温室管理具有参考价值。  相似文献   

10.
节能日光温室温度分布及其变化   总被引:10,自引:0,他引:10  
在冬季选择典型晴天和阴天 ,定时对节能日光温室内温度进行多点测定 ,结果表明 ,在水平方向上温度呈现南低北高的分布趋势 ,在靠近前屋面薄膜处温度较低 ,前底角处最低 ;顶部放风对栽培畦面温度影响较小 ;土壤温度在栽培畦表层变化较大 ,日较差达 7℃ ,2 0 cm土层日较差只有 1 .6℃ ,而且 2 0 cm土温始终比上层低 ;在连阴天时 ,温室采取补温措施 ,可以维持较高温度 ,补温用散热片安放位置以靠近南端为好 ,这样可使温室内温度分布更加均匀  相似文献   

11.
日光温室温度变化与热量状态分析   总被引:9,自引:1,他引:9  
对陕北和关中地区日光温室温度变化和热量状况的对比观测试验结果表明,陕北地区日光温室的最高气温、平均气温和10cm土温分别比关中高9.9~10℃、1.8~2.3℃和1.0~1.3℃,是理想的发展区域.日光温室夜间失热的主要途径为贯流放热,失热量占总热量76%以上;其次是土壤横向传热,失热量占总热量12.5%~13.2%,换气放热失热量最少,占总热量5.6%~10.7%.加强夜间草帘覆盖和挖防寒沟是保温的主要方法.  相似文献   

12.
日光温室主动蓄放热冠层增温系统性能研究   总被引:2,自引:0,他引:2  
【目的】设计日光温室主动蓄放热冠层增温系统(Active heat storage-release system for canopy warming,AHSCW)并进行实地试验,分析该系统对番茄冠层的增温效果,为进一步探讨主动蓄放热热能的高效应用方式和作物局部增温系统的设计提供参考。【方法】在第六代主动蓄放热系统基础上设计AHSCW,以太阳能为热源,白天通过水循环将太阳能以热能的形式收集于蓄热水池内,夜间通过冠层增温管道释放热量,对番茄冠层进行局部增温。以使用AHSCW的日光温室为试验温室,未加温的日光温室为对照温室,通过测定太阳辐射强度、番茄冠层空气温度、水温及水泵耗电量参数及不同时期番茄的株高、茎粗和产量,对系统的增温效果进行测试与分析。【结果】白天AHSCW的蓄热量为166~194 MJ,夜间放热量为129~142 MJ,能量利用效率为67%~86%;该系统能够提高番茄冠层区域气温1.4~3.0℃;AHSCW温室果实产量为1.14 kg/m~2,是对照温室(0.64 kg/m~2)的1.77倍。【结论】AHSCW可以明显提高番茄冠层气温,保证番茄的越冬生产,促进番茄生长,增加其产量并可使果实提前成熟上市。  相似文献   

13.
日光温室蔬菜种植生产中温室的保温性能是冬季重要限制因子,采用双膜覆盖是温室增加保温性能的有效方法。对双膜日光温室和单膜日光温室内部气温、土温进行监测、分析。结果表明,在冬季最冷时间段(12月21日—次年1月9日),双膜日光温室的气温较单膜日光温室在08:30—15:30,最高气温温差为3.7℃,最低气温温差为0℃;在15:30—次日08:30,最高气温温差达13.5℃,最低气温温差为3.9℃,尤其在温室的东西两端2个温室的夜间温差更加明显,达到8.5℃。双膜日光温室的土温较单膜日光温室在8:30—15:30,最高温差为3.5℃,最低温差为0℃;在15:30—次日08:30,最高温差达到5.5℃,最低温差为2.3℃。并且在夜晚时段双膜日光温室的气温、土温降温速度低于单膜日光温室,各点的温度差相对较小。双膜日光温室良好的保温能力,为大庆市冬季日光温室正常生产提供了保障。  相似文献   

14.
高寒丘陵地区机建厚墙体日光温室保温性能研究   总被引:1,自引:0,他引:1  
高寒丘陵地区建造厚土墙日光温室,在冬季1月份,以砖墙和普通土板墙日光温室为对照,对温室内的温度变化,以及机建土墙温室后墙不同深度的温度变化进行了测定,其结果说明,机建土墙温室的保温性能最好,1月份温室内日平均温度比土板墙温室高5.7℃,比砖墙温室高7.8℃,比外界温度高26.5℃.机建厚墙体日光温室,依山坡而建,背风向阳,厚厚的墙体形成了一个蓄热体,白天吸收太阳光蓄热,夜间随着墙体温度的下降而放热,适宜高寒丘陵地区使用.  相似文献   

15.
在严冬季节,温室的温度应该比作物的适宜温度上限再高2.3℃。这是因为以下几方面:一是温室栽培进入寒冬后,白天土壤5cm深处温度可比室内气温低5~7℃,夜间比室内气温高3~5℃,其温度变化范围在13~26℃之间。  相似文献   

16.
徐全辉  赵强 《安徽农业科学》2010,38(24):12999-13000
[目的]研究秸秆生物反应堆技术的应用对温室生态环境因子的影响。[方法]以温室为研究对象,栽培试验和室内测定分析相结合,在玉米秸秆反应堆技术应用过程中,对温室生态环境因子地温、气温及湿度进行跟踪观测。[结果]秸秆生物反应堆使10cm地温提高1.13~1.52℃,20cm地温提高1.71~2.01℃,棚内温度平均提高1.5~2.3℃;应用秸秆生物反应堆的温室较对照温室夜间湿度下降2%~4%,而对白天的室内湿度影响不明显。[结论]秸秆生物反应堆技术,能够明显改善温室的生态环境,解决了日光温室冬季生产地温低的问题,为温室蔬菜增产提供基础保证。  相似文献   

17.
一种新型温室的冬夏季室内温度场数值模拟研究   总被引:1,自引:0,他引:1  
以计算流体力学(CFD)为理论依据,以某市的气象因子为输入条件,对比研究了一种新型温室与单栋塑料大棚、传统日光温室的冬季保温性能和夏季通风降温效果,以期为该新型温室的应用提供理论依据。该新型温室后墙由可拆卸的秸秆板组成。冬季,后坡与后墙覆盖秸秆板以维持室内温度;夏季,拆除秸秆板以增加温室通风面积。研究结果显示:冬季,新型温室与传统日光温室的白天室内温差为0~0.9℃,夜间温差为0~0.7℃;新型温室全天室内温度高于塑料大棚0~5℃。夏季,在通风口关闭时,新型温室的室内温度、地面温度与塑料大棚差异不明显,当通风口开启时,新型温室的室内高温区域较小。  相似文献   

18.
拆装型黄麻纤维后墙温室墙体传热特性研究   总被引:2,自引:0,他引:2  
[目的]为实现日光温室的全年型生产,设计了拆装式黄麻纤维后墙温室,以探讨黄麻纤维材料作为温室拆装墙体的可行性。[方法]以拆装式黄麻纤维后墙温室为试验温室,以当地传统黏土砖后墙日光温室为对照,对温室墙体的热工性能、传热特性以及室内热环境进行了试验研究。[结果]冬季温室内部气温保持在4℃以上,黄麻墙结构保温效果良好;夏季黄麻墙拆除后,室内最高气温在40℃以下。温室墙体内、外表面温度受太阳辐射及室内、外气温的共同影响,呈现与气温相同的日变化规律。室内气温、墙面温度影响墙内各深度层次的温度分布,温度的总体变化趋势是由内表面向外表面沿厚度方向递减。与砖墙相比,黄麻墙蓄热性能较低,但保温隔热效果较好,能量利用率较高。[结论]黄麻纤维材料保温隔热性能较好,质量轻便于安装与拆卸且建造与维护成本较低,因此可作为一种新型温室墙体材料。  相似文献   

19.
日光温室后屋面内设反光幕环境效应分析   总被引:1,自引:0,他引:1  
为研究日光温室后屋面内设反光幕对室内环境和植株的影响,在秋冬季节测定了反光幕对日光温室室内光强、温度、湿度和植株株高、茎粗的影响。结果表明:后屋面张挂反光幕有补光效果,室内光照强度平均增加7%~14%,可缓解温室内南北方向光分布不均,室内温度增加1.8~7.2℃;同时温室内植株茎粗平均提高1mm,且改善了室内植株南北高度不均的问题。因此,冬季在温室后屋面张挂反光幕,既可以补光又不影响后墙正常蓄热保证室内温度。  相似文献   

20.
为提高日光温室冬季保温蓄热的能力,同时推动日光温室的快速建造,设计3种新型墙体结构的日光温室:相变固化土主动蓄热温室(G2)、模块化素土主动蓄热温室(G3)、现浇混凝土被动蓄热日光温室(G4)。测定3种温室室内环境,以传统主动蓄热温室(G1)为对照温室进行对比分析。结果表明:4种温室在典型晴天条件下夜间的平均温度分别为15.7、16.4、17.8、16.6℃;在典型阴天情况下夜间的平均温度分别为12.4、13.8、13.8、13.1℃;在连续雪天情况下最低平均温度分别为7.3、8.3、8.8、7.8℃。G3即模块化素土主动蓄热温室在夜间和连续低温条件下都表现出了较好的保温性能,能够在室外温度较低时给室内作物提供更好的生长环境,且建造方便,在适宜日光温室发展的地区具有一定的推广价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号