首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
Vanilla extract was prepared by extraction of cured vanilla beans with aqueous ethyl alcohol (60%). The extract was profiled by HPLC, wherein major compounds, viz., vanillic acid, 4-hydroxybenzyl alcohol, 4-hydroxy-3-methoxybenzyl alcohol, 4-hydroxybenzaldehyde and vanillin, could be identified and separated. Extract and pure standard compounds were screened for antioxidant activity using beta-carotene-linoleate and DPPH in vitro model systems. At a concentration of 200 ppm, the extract showed 26% and 43% of antioxidant activity by beta-carotene-linoleate and DPPH methods, respectively, in comparison to corresponding values of 93% and 92% for BHA. Interestingly, 4-hydroxy-3-methoxybenzyl alcohol and 4-hydroxybenzyl alcohol exhibited antioxidant activity of 65% and 45% by beta-carotene-linoleate method and 90% and 50% by DPPH methods, respectively. In contrast, pure vanillin exhibited much lower antioxidant activity. The present study points toward the potential use of vanilla extract components as antioxidants for food preservation and in health supplements as nutraceuticals.  相似文献   

2.
The global phenolic content of argan oil and press cake samples (alimentary and cosmetic) was evaluated using the Folin-Ciocalteu colorimetric method and the phenolic composition of argan oil (alimentary and cosmetic) and press cake (alimentary) samples were analyzed by GC-MS after extraction with 80:20 (v/v) methanol:water and silylation. Identification of chromatographic peaks was made by mass selective detection. Nineteen simple phenols were detected, 16 in press cake, 6 in the alimentary oil, and 7 in the cosmetic oil, among which 15 compounds [3-hydroxypyridine (3-pyridinol), 6-methyl-3-hydroxypyridine, catechol, resorcinol, 4-hydroxybenzyl alcohol, vanillin, 4-hydroxyphenylacetic acid, vanillyl alcohol, 3,4-dihydroxybenzyl alcohol, 4-hydroxy-3-methoxyphenethyl alcohol, methyl 3,4-dihydroxybenzoate, hydroxytyrosol, protocatechuic acid, epicatechin, and catechin] were identified for the first time in such materials.  相似文献   

3.
The in vitro antimicrobial activity of commercial coffee extracts and chemical compounds was investigated on nine strains of enterobacteria. The antimicrobial activity investigated by the disc diffusion method was observed in both the extracts and tested chemical compounds. Even though pH, color, and the contents of trigonelline, caffeine, and chlorogenic acids differed significantly among the coffee extracts, no significant differences were observed in their antimicrobial activity. Caffeic acid and trigonelline showed similar inhibitory effect against the growth of the microorganisms. Caffeine, chlorogenic acid, and protocatechuic acid showed particularly strong effect against Serratia marcescens and Enterobacter cloacae. The IC(50) and IC(90) for the compounds determined by the microtiter plate method indicated that trigonelline, caffeine, and protocatechuic acids are potential natural antimicrobial agents against Salmonella enterica. The concentrations of caffeine found in coffee extracts are enough to warrant 50% of the antimicrobial effect against S. enterica, which is relevant to human safety.  相似文献   

4.
Four kinds of solvent extracts from three Chinese barley varieties (Ken-3, KA4B, and Gan-3) were used to examine the effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley through free radical scavenging activity, reducing power and metal chelating activity, and individual and total phenolic contents. Results showed that extraction solvent mixtures had significant impacts on antioxidant activity estimation, as well as different extraction capacity and selectivity for free phenolic compounds in barley. The highest DPPH* and ABTS*+ scavenging activities and reducing power were found in 80% acetone extracts, whereas the strongest *OH scavenging activity, O2*- scavenging activity, and metal chelating activity were found in 80% ethanol, 80% methanol, and water extracts, respectively. Additionally, 80% acetone showed the highest extraction capacity for (+)-catechin and ferulic, caffeic, vanillic, and p-coumaric acids, 80% methanol for (-)-epicatechin and syringic acid, and water for protocatechuic and gallic acids. Furthermore, correlations analysis revealed that TPC, reducing power, DPPH* and ABTS*+ scavenging activities were well positively correlated with each other (p < 0.01). Thus, for routine screening of barley varieties with higher antioxidant activity, 80% acetone was recommended to extract free phenolic compounds from barley. DPPH* scavenging activity and ABTS*+ scavenging activity or reducing power could be used to assess barley antioxidant activity.  相似文献   

5.
Free and glycosidically bound volatiles obtained from the fruit pulp of Sicana odorifera by liquid-liquid extraction and by chromatography, followed by enzymatic hydrolysis with Rohapect D5L, respectively, were analyzed by capillary gas chromatography (HRGC), HRGC-mass spectrometry (HRGC-MS), and HRGC-Olfatometry (HRGC-O) analyses. A total of 37 free volatiles was detected, with the major components being 3-methyl-2-butanol, 3-hydroxy-2-butanone, ethyl 3-hydroxybutanoate, and (Z)-3-hexenol. Among the 22 detected glycosidically bound compounds, 4-hydroxybenzyl methyl ether, 4-hydroxybenzyl alcohol, and 2-phenylethanol were found to be the major constituents. Additionally, two glucoconjugates were isolated in pure form by multilayer coil countercurrent chromatography (MLCCC) of the glycosidic extrac and further purification. Their structures were elucidated by MS and NMR analyses to be the novel [4-(beta-D-glucopyranosyloxy)benzyl] 2,3-dihydroxy-3-methylbutanoate 2, and the known 4-(beta-D-glucopyranosyloxy)benzyl alcohol 1. Compounds 1 and 2 are precursors of 4-hydroxybenzyl alcohol, one of the major volatiles generated by enzymatic hydrolysis of the glycosidic fraction.  相似文献   

6.
Among the most important volatile compounds in the aroma of strawberries are 2,5-dimethyl-4-hydroxy-3(2H)-furanone (Furaneol) and its methoxy derivative (methoxyfuraneol, mesifuran). Three strawberry varieties, Malach, Tamar, and Yael, were assessed for total volatiles, Furaneol, and methoxyfuraneol. The content of these compounds sharply increased during fruit ripening, with maximum values at the ripe stage. An enzymatic activity that transfers a methyl group from S-adenosylmethionine (SAM) to Furaneol sharply increases during ripening of strawberry fruits. The in vitro generated methoxyfuraneol was identified by radio-TLC and GC-MS. The partially purified enzyme had a native molecular mass of approximately 80 kDa, with optimum activity at pH 8.5 and 37 degrees C. A high apparent K(m) of 5 mM was calculated for Furaneol, whereas this enzyme preparation apparently accepted as substrates other o-dihydroxyphenol derivatives (such as catechol, caffeic acid, and protocatechuic aldehyde) with much higher affinities (K(m) approximately 105, 130, and 20 microM, respectively). A K(m) for SAM was found to be approximately 5 microM, regardless of the acceptor used. Substrates that contained a phenolic group with only one OH group, such as p-coumaric and trans-ferulic acid, as well as trans-anol and coniferyl alcohol, were apparently not accepted by this activity. It is suggested that Furaneol methylation is mediated by an O-methyltransferase activity and that this activity increases during fruit ripening.  相似文献   

7.
This paper reports a study on the hydroxylation of ferulic acid and tyrosine by field bean (Dolichos lablab) polyphenol oxidase, a reaction that does not take place without the addition of catechol. A lag period similar to the characteristic lag of tyrosinase activity was observed, the length of which decreased with increasing catechol concentration and increased with increasing ferulic acid concentration. The activation constant K(a) of catechol for ferulic acid hydroxylation reaction was 5 mM. The kinetic parameters of field bean polyphenol oxidase toward ferulic acid and tyrosine were evaluated in the presence of catechol. 4-Methyl catechol, L-dihydroxyphenylalanine, pyrogallol, and 2,3,4-trihydroxybenzoic acid, substrates with high binding affinity to field bean polyphenol oxidase, could stimulate this hydroxylation reaction. In contrast, diphenols such as protocatechuic acid, gallic acid, chlorogenic acid, and caffeic acid, which were not substrates for the oxidation reaction, were unable to bring about this activation. It is most likely that only o-diphenols that are substrates for the diphenolase serve as cosubstrates by donating electrons at the active site for the monophenolase activity. The reaction mechanism for this activation is consistent with that proposed for tyrosinase (Sanchez-Ferrer, A.; Rodriguez-Lopez, J. N.; Garcia-Canovas, F.; Garcia-Carmona, F. Biochim. Biophys. Acta 1995, 1247, 1-11). The presence of o-diphenols, viz. catechol, L-dihydroxyphenylalanine, and 4-methyl catechol, is also necessary for the oxidation of the diphenols, caffeic acid, and catechin to their quinones by the field bean polyphenol oxidase. This oxidation reaction occurs immediately with no lag period and does not occur without the addition of diphenol. The kinetic parameters for caffeic acid (K(m) = 0.08 mM, V(max) = 32440 u/mg) in the presence of catechol and the activation constant K(a) of catechol (4.6 mM) for this reaction were enumerated. The absence of a lag period for this reaction indicates that the diphenol mechanism of diphenolase activation differs from the way in which the same o-diphenols activate the monophenolase activity.  相似文献   

8.
The antioxidant activity of 3-dehydroshikimic acid (DHS), an intermediate in the biosynthesis of aromatic amino acids, was evaluated in three assay systems: bulk oil (lard), liposomes, and a 10% corn oil-in-water emulsion. Upon initiation of peroxidation in the liposome or emulsion systems, DHS exhibited weak antioxidant activity. In contrast, DHS displayed strong antioxidant activity in lard, suppressing peroxidation with activity comparable to that of tert-butylhydroquinone, propyl gallate, and gallic acid and superior to that of alpha-tocopherol. Two major DHS oxidation products, gallic acid and protocatechuic acid, were identified by gas chromatography/mass spectral analysis of lard extracts; both compounds are effective antioxidants in the bulk oil system. In the liposome system, DHS remained intact throughout the assay period. A small amount of gallic acid was observed in extracts of the emulsion; however, protocatechuic acid was not detected. A mechanism to explain the different activities of DHS in the three lipid systems is proposed.  相似文献   

9.
Alcoholic extracts of leaves and stems of Vanilla fragrans were fractionated with ethyl acetate and aqueous butanol. All three fractions of ethyl acetate, butanol, and water were screened for toxic bioactivity against mosquito larvae. The results of these experiments showed that the fractions from the ethyl acetate and butanol phases were both active in the bioassay. Bioactivity of the ethyl acetate fraction was found to be much greater than that from the butanol fraction in mosquito larvae toxicity. The water phase appeared to contain no substances that impaired mosquito larval growth. Repeated column chromatography of the ethyl acetate fraction on silica gel led to the isolation of 4-ethoxymethylphenol (1), 4-butoxymethylphenol (2), vanillin (3), 4-hydroxy-2-methoxycinnamaldehyde (4), and 3,4-dihydroxyphenylacetic acid (5). Compounds 4 and 5 were isolated from Vanilla species for the first time and 2 has not been reported to have been found in a natural form. 4-Ethoxymethylphenol (1) was the predominant compound, but 4-butoxymethylphenol (2) showed the strongest toxicity to mosquito larvae. The structures of the compounds were determined on the basis of their mass spectra and (1)H or (13)C NMR data.  相似文献   

10.
The efficiency of Trametes versicolor laccase in the transformation of phenols (caffeic acid, catechol, hydroxytyrosol, methylcatechol, protocatechuic acid, syringic acid, m-tyrosol, 3-hydroxybenzoic acid, 3-hydroxyphenylacetic acid, 2,6-dihydroxybenzoic acid, 4-hydroxybenzaldehyde) usually present in waste water, such as that derived from an olive oil factory, was investigated. According to their response to 24 h laccase action the 11 phenolic compounds were classified in three groups: reactive (88-100% transformation), intermediate reactive (transformation lower than 50%), and recalcitrant (not transformed at all). The enzyme was able to transform the 11 substrates even when they were present in a mixture and also toward a phenolic extract from a Moroccan olive oil mill waste water (OMW) sample. The disappearance of protocatechuic, 3-hydroxyphenylacetic, and 2,6-dihydroxybenzoic acids, and 4-hydroxybenzaldehyde was enhanced whereas that of caffeic acid and m-tyrosol was depressed when the phenols were present in the mixture. A reduction of enzyme activity occurred in single and/or complex phenolic mixtures after enzymatic oxidation. No correspondence between phenol transformation and disappearance of enzymatic activity was, however, observed. The overall results suggest that laccases are effective in the transformation of simple and complex phenolic mixtures.  相似文献   

11.
The activity of a purified urease, obtained from Bacillus pasteurii, was inhibited by humic and fulvic acids obtained from an agricultural soil. Enzyme kinetic studies showed that the humic substances affected the affinity of the enzyme for its substrate (Km) and the maximum velocity of the reaction (Vmax). The Vmax was inhibited to the same extent by both humic (HA) and fulvic (FA) acids, the precise effect depending on the pH and concentration of humic substance. At pH 4.0, HA concentrations of 25 pg cm?3 and 10 μg cm?3 inhibited the Vmax by 38.5% and 20% respectively. HA and FA had similar effects on the Km but in this case the lowering of the affinity of the enzyme for its substrate was not concentration dependent in the range 0–25 μg cm?3 of humic substance. Typically, the affinity was decreased from a KM of 50 mM in the control to 67 mM in the presence of HA and FA. The effects were not due primarily to the ash or N contents of the humic substances because de-ashed humic acid and synthetic model humic (made from catechol, guaiacol, pyrogallol, resorcinol and protocatechuic acid) and fulvic acid (made from polymaleic acid), containing virtually no ash or N, were equally as effective. The effect was not related to the phenolic monomers which, before polymerization, had no effect on urease activity.  相似文献   

12.
Acetic acid esterase (EC 3.1.1.6) cleaves the acetyl groups substituted at O-2/O-3 of the xylan backbone of arabinoxylans and is known to modulate their functional properties. To date, this enzyme from cereals has not received much attention. In the present study, acetic acid esterase from 72 h ragi malt was isolated and purified to apparent homogeneity by a four-step purification, i.e., ammonium sulfate precipitation, DEAE-cellulose, Sephacryl S-200, and phenyl-Sepharose column chromatography, with a recovery of 0.36% and a fold purification of 34. The products liberated from alpha-NA and PNPA by the action of purified ragi acetic acid esterase were authenticated by ESI-MS and 1H NMR. The pH and temperature optima of the enzyme were found to be 7.5 and 45 degrees C, respectively. The enzyme is stable in the pH range of 6.0-9.0 and temperature range of 30-40 degrees C. The activation energy of the enzymatic reaction was found to be 7.29 kJ mol-1. The apparent Km and Vmax of the purified acetic acid esterase for alpha-NA were 0.04 microM and 0.175 microM min-1 mL-1, respectively. The molecular weight of the native enzyme was found to be 79.4 kDa by GPC whereas the denatured enzyme was found to be 19.7 kDa on SDS, indicating it to be a tetramer. EDTA, citric acid, and metal ions such as Fe+3 and Cu+2 increased the activity while Ni+2, Ca+2, Co+2, Ba+2, Mg+2, Mn+2, Zn+2, and Al+3 reduced the activity. Group-specific reagents such as eserine and PCMB at 25 mM concentration completely inhibited the enzyme while iodoacetamide did not have any effect. Eserine was found to be a competitive inhibitor.  相似文献   

13.
This study investigated the antioxidant content and activity of phenolic acids, anthocyanins, α-tocopherol and γ-oryzanol in pigmented rice (black and red rice) brans. After methanolic extraction, the DPPH free radical scavenging activity and antioxidant activity were measured. The pigmented rice bran extract had a greater reducing power than a normal rice bran extract from a long grain white rice. All bran extracts were highly effective in inhibiting linoleic acid peroxidation (60-85%). High-performance liquid chromatography (HPLC) analysis of antioxidants in rice bran found that γ-oryzanol (39-63%) and phenolic acids (33-43%) were the major antioxidants in all bran samples, and black rice bran also contained anthocyanins 18-26%. HPLC analysis of anthocyanins showed that pigmented bran was rich in cyanidin-3-glucoside (58-95%). Ferulic acid was the dominant phenolic acid in the rice bran samples. Black rice bran contained gallic, hydroxybenzoic, and protocatechuic acids in higher contents than red rice bran and normal rice bran. Furthermore, the addition of 5% black rice bran to wheat flour used for making bread produced a marked increase in the free radical scavenging and antioxidant activity compared to a control bread.  相似文献   

14.
The bioactive anthocyanins present in tart cherries, Prunus cerasus L. (Rosaceae) cv. Balaton, are cyanidin 3-glucosylrutinoside (1), cyanidin 3-rutinoside (2), and cyanidin 3-glucoside (3). Cyanidin (4) is the major anthocyanidin in tart cherries. In our continued evaluation of the in vivo and in vitro efficacy of these anthocyanins to prevent inflammation and colon cancer, we have added these compounds to McCoy's 5A medium in an effort to identify their degradation products during in vitro cell culture studies. This resulted in the isolation and characterization of protocatechuic acid (5), the predominant degradation product. In addition, 2,4-dihydroxybenzoic acid (6) and 2,4,6-trihydroxybenzoic acid (7) were identified as degradation products. However, these degradation products were not quantified. Compounds 5-7 were also identified as degradation products when anthocyanins were subjected to varying pH and thermal conditions. In cyclooxygenase (COX)-I and -II enzyme inhibitory assays, compounds 5-7 did not show significant activities when compared to the NSAIDs Naproxen, Celebrex, and Vioxx, or Ibuprofen, at 50 microM concentrations. However, at a test concentration of 50 microM, the antioxidant activity of protocatechuic acid (5) was comparable to those of the commercial antioxidants tert-butylhydroquinone (TBHQ), butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA), and superior to that of vitamin E at 10 microM concentrations.  相似文献   

15.
Abstract

The applicability of 0.01 M CaCl2 solution as a single extraction agent for soils as a basis for fertilizer recommendation was tested on a variety of soils both from the Netherlands and from some tropical countries. Air‐dry soil samples were subjected to extraction with 0.01 M CaCl2 and to several conventional extraction procedures, and the results were compared. In the soil suspensions pH was measured, whereas in the extracts Na, K, Mg, P, different extractable N‐forms and Zn were measured. The values found in CaCl2 extracts are discussed in relation to results of other extraction procedures and as to their potential value in soil quality assessment. It is concluded that a single extraction procedure with 0.01 M CaCl2 can be applied for fertilizer recommendation purposes. The possibility of determining different extractable N‐forms (NH4, NO3, soluble organic N) significantly enhances the value of the method in predicting the N‐fertilizer needs. Furthermore it was found that the concentration of Zn in 0.01 M CaCl2 extracts was a good indicator of phytotoxicity in a polluted area. Additional advantages of this extraction are low costs, simplicity and repro‐ducibility.  相似文献   

16.
Two arable soils and one pasture soil had previously been air-dried for 6 d and stored at room temperature. The enzyme activities remaining after this treatment were constant. The soils were then extracted with 140 mM sodium pyrophosphate at pH 7.1. Amino acid N and total organic C content of soils and soil extracts, together with humic and fulvic acids content of soil extracts were determined. Total organic C was determined in soil residues obtained after extraction. Chemical characterization of the organic matter of soils, soil extracts and soil residues was carried out by pyrolysis–gas chromatography (Py–GC). Protease activity was determined in soil extracts and soil residues by using three different substrates: N-benzoyl- -argininamide (BAA), specific for trypsin; N-benzyloxycarbonyl- -phenylalanyl -leucine (ZPL), specific for carboxypeptidases, and casein, essentially non-specific. Comparative studies between specific activities referred to organic C in soils, soil extracts and soil residues and their corresponding pyrogram composition, and also between total extracted or residual activity and the humine or unhumified organic matter content of the corresponding soil, allowed us to establish hypotheses about the type of organic matter the enzymes are associated with. From 12% to 21% of the soil organic C (33% to 39% of which were humic acids) and from 3% and 18% of amino acid N were extracted from soil using pyrophosphate. Py–GC analyses showed that pyrophosphate was effective in extracting condensed humic substances and glycoproteins and that the organic matter present in soil extracts was especially rich in intact or partially-decomposed fresh residues of carbohydrate origin and also in certain humus-associated proteins. Extracted BAA-hydrolysing activity accounted for 11% to 36% of the soil activity, depending on soil type. Extracted ZPL- and casein-hydrolysing activities were, with one exception, remarkably high, accounting for about 100% or even more of the soil activity, depending on soil type. According to the results BAA-hydrolysing proteases are probably mostly associated with highly condensed humus, ZPL-hydrolysing proteases with less condensed humic substances and casein-hydrolysing proteases with fresh organic matter.  相似文献   

17.
《Soil biology & biochemistry》2012,44(12):2417-2422
Low molecular mass organic acids (LMMOAs) and hydroxamate siderophores (HS) are molecules secreted by microbes and have previously been found in soil solution and in cultures. Mycorrhizal fungi are suggested to be involved in the nutrient uptake processes of trees and weathering of minerals. In this study soil samples taken from the O and E horizons of a podzol were extracted with 10 mM potassium phosphate buffer at pH 7.2. Variable parameters included addition of methanol to the extraction buffer and the use of ultrasonication or rotary shaking during extraction. LMMOAs and HS content of the soil extracts were determined. Analysis of soil extracts were carried out by liquid chromatography mass spectrometry (LC–MS) and the extraction results compared to results for soil solution samples obtained by centrifugation of the soils sampled. The extraction yields were significantly increased by addition of methanol to the extraction buffer, especially for the O horizon samples. Rotary shaking of the samples for 90 min gave slightly higher yields than ultrasonication for 15 min but the reduction in extraction time makes ultrasonication an attractive option. Of the HSs determined, ferricrocin was found in all samples. Optimal extraction conditions showed citric acid and isocitric acid to be the most abundant organic acids in the O and E horizons, respectively.  相似文献   

18.
Low molecular mass organic acids (LMMOAs) and hydroxamate siderophores (HS) are molecules secreted by microbes and have previously been found in soil solution and in cultures. Mycorrhizal fungi are suggested to be involved in the nutrient uptake processes of trees and weathering of minerals. In this study soil samples taken from the O and E horizons of a podzol were extracted with 10 mM potassium phosphate buffer at pH 7.2. Variable parameters included addition of methanol to the extraction buffer and the use of ultrasonication or rotary shaking during extraction. LMMOAs and HS content of the soil extracts were determined. Analysis of soil extracts were carried out by liquid chromatography mass spectrometry (LC–MS) and the extraction results compared to results for soil solution samples obtained by centrifugation of the soils sampled. The extraction yields were significantly increased by addition of methanol to the extraction buffer, especially for the O horizon samples. Rotary shaking of the samples for 90 min gave slightly higher yields than ultrasonication for 15 min but the reduction in extraction time makes ultrasonication an attractive option. Of the HSs determined, ferricrocin was found in all samples. Optimal extraction conditions showed citric acid and isocitric acid to be the most abundant organic acids in the O and E horizons, respectively.  相似文献   

19.
Partial purification of latent persimmon fruit polyphenol oxidase   总被引:1,自引:0,他引:1  
Persimmon fruit polyphenol oxidase (PPO) was partially purified using a combination of phase partitioning with Triton X-114 and ammonium sulfate fractionation between 50 and 75%. The enzyme, which showed both monophenolase and diphenolase activities, was partially purified in a latent form and could be optimally activated by the presence of 1 mM sodium dodecyl sulfate (SDS) with an optimum pH of 5.5. In the absence of SDS, the enzyme showed maximum activity at acid pH. SDS-PAGE showed the presence of a single band when L-DOPA was used as substrate. The apparent kinetic parameters of the latent enzyme were determined at pH 5.5, the V(m) value being 15 times higher in the presence of SDS than in its absence, whereas the K(M) was the same in both cases, with a value of 0.68 mM. The effect of several inhibitors was studied, tropolone being the most active with a K(i) value of 0.45 microM. In addition, the effect of cyclodextrins (CDs) was studied, and the complexation constant (K(c)) between 4-tert-butylcatechol (TBC) and CDs was calculated using an enzymatic method. The value obtained for K(c) was 15580 M(-1).  相似文献   

20.
宽体金线蛭(Whitmania pigra)具有抗凝溶栓的药理作用,但其药效受提取工艺的影响。为全面评价并筛选出合适的提取工艺,本试验采用脱脂、水提、酸提和酶解等不同工艺制备了14种提取物,并对提取物的抗凝活性、纤溶活性与体外溶栓活性进行分析。结果表明,脱脂胃蛋白酶酶解提取物的抗凝血酶活性显著高于其他提取物,且具有较强的纤溶活性和体外溶栓活性;仿生酶解提取物具有较强的抗凝血酶活性和体外溶栓活性;脱脂仿生酶解提取物具有较强的纤溶活性和体外溶栓活性;脱脂加热的水提提取物具有较强的纤溶活性和体外溶栓活性。脱脂胃蛋白酶酶解提取物中,分子量小于3 kDa的多肽具有较强的抗凝血酶活性和纤溶活性。此外,三个水提提取物、仿生酶解物、脱脂仿生酶解物和粗酶酶解提取物对纤维蛋白原的α肽链均具有溶解作用。综上所述,宽体金线蛭提取物均具有抗凝溶栓的药理作用,酶解提取物优于水提提取物和酸提提取物,脱脂处理有利于活性物质的提取,其中胃蛋白酶酶解提取物效果最佳,并且脱脂胃蛋白酶酶解物的小分子多肽成分具有最佳的抗凝血酶活性和纤溶活性。本试验结果为进一步开发利用宽体金线蛭的药理作用提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号