首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用2003~2012年湖北省天门市耕地面积、农作物产量、农田投入等统计数据,对农田生态系统碳吸收、碳排放和碳足迹进行了定量测度分析。结果表明,10a来,农作物碳吸收量、碳吸收强度呈现出随着年份的递进而逐年增加的态势,分别由2003年的787.90×10~3t C、7.24tC/hm~2增加到2012年的1 144.01×10~3t C和10.35tC/hm~2;农田投入碳排放量及碳排放强度则呈先升后降再上升的变化趋势,变化范围分别为(89.04~106.12)×10~3t C/a和0.82~0.98tC/(hm~2·a),化肥为主要碳排放源;农田生态系统为碳汇,其碳足迹呈现出随着年份的递进而逐年减少的态势,由2003年的48.81×10~3hm~2减少至2012年的37.70×10~3hm~2,占同期耕地面积比重的34.12%~44.85%,明显小于区域生态承载力。  相似文献   

2.
采用土地利用变化模型和土地利用碳排放估算模型,对绵阳市1998、2002、2009~2015年土地利用变化及其碳排放效应进行研究。结果表明:(1)绵阳市林地面积最大,且林地总面积呈增加趋势,2015年在1998年的基础上增加了16915.06hm~2,草地和水域面积减少,草地变化速率达37.89%,转出比例最高,建设用地和耕地面积增加,耕地变化速率达-46.93%,转入比例最高,土地利用程度综合指数在230~241之间波动,并呈上升趋势,土地利用程度处于中等偏上水平并在不断提高;(2)建设用地是最大的碳源,占总碳源的89%以上,于2011年达到2.85×10~6t后开始下降,林地是最大的碳汇,占总碳汇的99%以上,于2009年达到7.23×10~5t后开始下降;(3)绵阳市净碳排放量的变化分为三个阶段:1998~2002年,碳排放量年平均增加1.4203×10~4t,表现为总体上升阶段,2002~2011年,碳汇和碳源先后达到峰值,净碳排放量呈现出波动上升趋势,并在2011年达到2.35×10~6t的最大值,2011~2015年,绵阳市净碳排放量开始下降;(4)绵阳市应继续实行人工造林防止林地面积流失;发挥其科技城的优势,实行产业结构升级,优化能源结构;从低碳发展出发引导土地可持续利用。  相似文献   

3.
【目的】研究安徽森林植被碳储量的分布特征,为森林碳汇功能的评价提供依据。【方法】以安徽省第8次(2014年)森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种含碳率,估算安徽森林植被的碳储量和碳密度,并分析了不同森林类型及不同林级、林种和起源的乔木林碳储量分布特征。【结果】安徽不同森林类型的总碳储量为8.51×10~7 t,平均碳密度为20.55 t/hm~2,其中竹林的碳密度最高,为37.33 t/hm~2。乔木林和竹林的碳储量分别为6.42×10~7和1.45×10~7 t,各占总碳储量的75.47%和17.02%;不同龄级乔木林中,中龄林碳储量最大,达2 490.92×10~4 t,约占乔木林总碳储量的40%;过熟林碳储量最小,为256.24×10~4 t,仅占乔木林总碳储量的3.99%,且表现出林龄越大碳密度越高的趋势。用材林和防护林的碳储量分别为3 798.04×10~4和2 205.68×10~4 t,共占乔木林碳储量的93.48%;各林种碳密度大小为特用林防护林用材林经济林薪炭林。天然林的面积(153.86×10~4 hm~2)略低于人工林(154.81×10~4 hm~2),但由于天然林的碳密度高于人工林,使得天然林的碳储量(3 476.50×10~4 t))反而高于人工林(2 946.29×10~4 t)。【结论】安徽省森林植被具有明显的碳汇能力,但其碳密度较低,应对现有森林进行科学抚育和管理,以提高森林的碳汇能力。  相似文献   

4.
贵州喀斯特农田生态系统碳足迹时空差异研究   总被引:1,自引:0,他引:1  
【目的】探明贵州省碳排放、碳吸收与碳足迹现状,可以为贵州省农田生态系统减源增汇以及农业的可持续发展提供参考。【方法】依据2007—2016年贵州省和贵阳、遵义、六盘水三市农业投入、农作物产量、耕地面积等数据,对贵州省不同尺度农田生态系统碳排放、碳吸收和碳足迹进行估算,分析变化规律并探讨其影响因素。【结果】①2007—2016年贵州省及贵阳、遵义、六盘水三市农田生态系统的碳排放量均呈逐年增长趋势,其中化肥施用产生的碳排放量所占比例最大,分别为68%、73%、81%、72%;2016年贵州省化肥单位面积碳排放达到298.23 kg/hm~2。②碳吸收量表现为"上升下降式"波动变化,总体呈增长趋势,其中,水稻碳吸收量所占比例最高,平均为50.9%,但呈减少趋势,蔬菜增幅较大,达到47%。③贵州省农田生态系统存在较大碳生态盈余,农田生态系统碳足迹呈现不断增加趋势。【结论】尽管农业碳吸收量远大于碳排放量,但化肥与农膜所占碳排放比例较大,应是未来农业减源的重点。  相似文献   

5.
山西农田生态系统碳源/汇时空差异分析   总被引:4,自引:0,他引:4  
【目的】分析山西省农业碳循环过程,为该省的农作物布局,以及利用农业结构调整固碳减排提供科学依据。【方法】运用山西省11个地区2000-2006年作物产量、种植面积、农业投入等统计数据,对山西省各地区农田生态系统部分碳源/汇进行了分析。【结果】(1)山西省农田生态系统碳吸收总量从2000年以来呈现波动增加趋势,碳吸收总量从2000年的2 010万t增加到2003年的2 330万t,上升近11%,但从20世纪初期以后开始呈现下降趋势,从2003年的2 330万t下降到2006年的2 230万t;2006年运城和临汾主要以小麦碳吸收为主,其余各市都以玉米碳吸收为主,其中玉米的碳吸收量和单位面积碳吸收量呈增长趋势,稻谷、高粱的碳吸收量和单位面积碳吸收量呈明显下降趋势。(2)山西省农田生态系统碳排放总量从2000年以来呈逐渐增加趋势,增长了8.8%;估算的3种主要碳排放途径中,肥料生产导致的间接碳排放所占比例较大,增速较快,增长近13%,农业机械生产和灌溉过程碳排放变化不大;2006年山西晋城和运城的碳排放量最高,都达到了碳排放总量的22%,单位面积碳排放量也呈逐年增加趋势。(3)山西省农田主要碳吸收量大于主要途径碳排放量。【结论】山西省农田作物具有较大的碳吸收功能,其中小麦和玉米的农田碳吸收功能较强,但其碳排放的增速也很明显,说明山西省农业投入的增加和机械化程度的提高,削弱了农田生态系统的碳汇功能。  相似文献   

6.
【目的】土地利用/覆盖变化(LUCC)是影响区域生态系统服务价值的重要因素,结合可持续发展框架分析土地利用演变对生态系统服务价值(ESV)的影响,有助于对区域生态文明建设提供科学参考。【方法】利用北京市2010和2020年的土地利用现状图,通过Markov-CLUE-S耦合模型模拟出2030年3种发展情景下的土地利用格局,结合可持续发展目标15(SDG 15)指标讨论土地利用变化对ESV总量的影响。【结果】(1)2010-2020年北京市土地利用变化总体呈耕地、草地和水域面积缩减,林地和建筑用地扩张的格局。2020-2030年,自然发展情景(NIS)下各地类变化趋势较2010-2020年幅度有所减缓;生态保护情景(EPS)下林地和水域面积较2020年涨幅分别为4.96%和14.26%;耕地保护情景(CPS)下耕地缩减和城市扩张情况得到有效遏制;(2)2010年、2020年和2030年(NIS、EPS、CPS)的ESV总量分别为418.4×108、409.9×108、403.6×108、432.4×108  相似文献   

7.
【目的】根据宜宾市农业生产实际,对近15年来(2001-2015年)农业碳排放量进行估算,并分析其时空格局和驱动力,为该市农业发展提供理论依据。【方法】利用IPCC清单估算法选取相应的碳源因子、碳转化系数进行农业碳排放估算和强度等级划分,结合ArcGIS方法探讨其时空演变规律,并运用主成分分析法探寻影响碳排放的主要驱动力。【结果】①近15年来宜宾市农业碳排放量与碳排放强度均呈上升趋势。碳排放量由485.10×10~(4 ) t增长到566.82×10~(4 ) t,增长率为16.85%;碳排放强度由9.96 t/hm~2增加到11.23 t/hm~2,增长率为12.75%。②该市农业碳排放量的构成以水稻种植(29.65%)、猪养殖(25.74%)和化肥施用(19.63%)为主。③该市10区县中除江安县外,其余区县碳排放量都呈现波动上升趋势;碳排放强度由高到低排序为:江安县翠屏区长宁县宜宾县兴文县南溪区高县筠连县珙县屏山县。④主成分分析结果表明,农用物资(农膜、农药、化肥)和农用能源(农用柴油、农用电)是影响碳排放的主要驱动因子,农业类型(猪、牛养殖、水稻种植)是次要因子。【结论】近15年来宜宾市农业碳排放量和强度呈增加趋势,空间分区上等级变化不大,农用物资和农用能源因素是碳排放的主要影响因子。  相似文献   

8.
甘肃省土地利用碳排放变化及影响因素分解   总被引:1,自引:0,他引:1  
[目的]研究土地利用中各类型土地的碳排放量及各土地利用碳排放的影响因素。[方法]以甘肃省为例,在分析1995—2012年土地利用结构变化的基础上,估算了各种土地利用类型的碳排放量,并运用LMDI模型对其影响因素进行了分析。[结果]土地利用结构变化总体表现为建设用地面积持续增加,农用地面积减少;建设用地内部结构变化中居民点及工矿用地面积增加最多,交通用地变化幅度显著;土地利用碳排放量总体呈上升趋势,由1995年的1 882.07×104t增加到2012年的7 503.23×104t,年均增加341.48×104t;土地利用碳排放强度最大的是居民点及工矿用地,交通用地碳排放强度呈缓慢上升态势,但到2012年有所下降;土地利用变化、经济发展水平提高、人口规模增加促进了土地利用的碳排放,能源效率提高和能源结构优化抑制了土地利用的碳排放。[结论]对甘肃省土地利用碳排放总量的变化趋势影响最大的是居民点及工矿用地,能源效率提高和能源结构优化是今后甘肃省碳减排的重要途径之一。  相似文献   

9.
【目的】探究流域尺度土地利用变化对碳储量影响。【方法】利用InVEST模型,根据2000和2010年贵州省乌江流域土地利用数据,分析了2000-2010年乌江流域碳储量时空变化特征。【结果】结果表明:1水田和旱地大幅减少,常绿阔叶林、落叶阔叶林、草地、建设用地大幅增加,水田转化为建设用地以及旱地转化为常绿阔叶林、落叶阔叶林、草地和建设用地突出;2整个流域碳储量由2000年的1 302.72×10~6t增加到2010年的1 356.31×10~6 t,增加了4.11%。10年间,常绿阔叶林、落叶阔叶林、灌木林和旱地的碳储量所占比例一直较大。常绿阔叶林、落叶阔叶林、灌木林和草地碳储量增加,针阔混交林、水田、旱地和未利用地的碳储量降低。流域碳储量空间结构呈北部、东南部较高,中南部、东北部较低的特点。南部和中部碳储量降低,其他地区碳储量增加。【结论】退耕还林工程及快速城镇化是影响该流域碳储量变化的主要因素。  相似文献   

10.
喀斯特山区生态环境脆弱,系统研究喀斯特山区土地利用变化特征及其引起的碳排放强度变化特点,可为喀斯特地区政府建立低碳土地利用模式和制定差异化的碳减排政策提供科学依据。本文以典型的喀斯特山区黔南州为研究对象,以2009—2019年土地利用数据为基础,采取直接碳排放系数法和间接碳排放系数法测算不同地类的碳排放系数及碳排放量,运用空间自相关性分析碳排放强度的空间变化。结果表明:林地为黔南州主要地类,10年间,林地面积增加最多,面积增幅为25.24%,其占国土面积的比例从2009年的56.60%提升到2019年的70.89%;园地面积增速最快,增长2.24倍;建设用地面积增长迅猛,10年间面积增长89.53%;草地面积减少最多,减幅达87.72%;耕地面积减少亦较大,减幅为26.47%。10年间黔南州土地利用变化剧烈,地类发生转移变化的面积占国土面积的比例达33.63%,草地、耕地、未利用地是主要转移地类,耕地、林地转移到建设用地和转移到园地面积均较大。10年间碳排放量净增加235.93万t,建设用地碳排放系数从2009年的3.254 3 kg/(m2·a)增加到2019年...  相似文献   

11.
广东省森林碳储量与动态变化   总被引:5,自引:0,他引:5  
以广东省1979—2012年森林资源连续清查数据为基础,结合广东省当地分树种生物量扩展因子方程,对广东省近30 a的森林碳储量和碳密度进行估算。结果表明:广东省森林碳储量从1979年的2.766 47×10~7t增加到2012年的1.673 778×10~8t,年均增加4.366×10~6t,年变化率5.45%;平均碳密度从7.57 t/hm~2增加到23.01 t/hm~2。乔木林对森林碳储量的贡献占据主导地位,其中阔叶林贡献比较突出,且增长较快;在林龄结构上,幼龄林和中龄林面积和碳储量都占有较大比例。  相似文献   

12.
基于灰色理论模型的山东省土地利用碳排放研究   总被引:1,自引:0,他引:1  
土地利用碳排放研究对合理配置土地资源、提高土地利用效率、实现节能减排具有重要意义。本文通过IPCC(Intergovernmental Panel on Climate Change)碳排放计算方法对山东省2009~2016年的土地利用碳排放进行测度,运用灰色关联分析方法论证耕地、园地、林地、居民点及工矿用地、交通运输用地、水利设施用地与碳排放的关联程度,并运用GM(1,1)灰色预测模型对山东省2017~2025年碳排放进行预测。结果表明,研究期2009~2016年碳排放总量、人均碳排放量、地均碳排放量呈上升趋势,碳排放强度呈下降趋势;六种地类与碳排放存在线性相关关系,对碳排放影响的主次程度分别为交通用地、居民点及工矿用地、水利设施用地、耕地、林地、园地;经预测到2019年,将实现单位GDP二氧化碳排放比2005年降低55%;到2025年,山东省碳排放总量约上升至59722万t,人均碳排放约5.684 t/人,地均碳排放量40.585 t/hm~2,碳排放强度约下降至0.376 t/万元。  相似文献   

13.
根据主要农作物产量、耕地面积及农业投入等数据对辽宁省2003—2010年耕地的碳源和碳汇进行了核算,运用土地利用现状分类和辽宁省统计年鉴中的行业能源消费量等数据,建立了行业能源消费和土地利用类型的对应关系,进而核算了2003—2010年辽宁省商服用地、住宅用地等土地利用类型的碳源量,同时根据辽宁省2003—2010年土地利用面积核算了林地和草地的碳汇量。通过核算得出的数据分析发现:辽宁省碳源总量从2003年的9 276.91万t增长到2010年的11 471.15万t,增长幅度达23.75%,呈大幅增长的趋势,其中工矿仓储用地的碳源量占总碳源量的比重最高,2010年比重达77.59%,其次分别是耕地、住宅用地、商服用地、交通运输用地。辽宁省地均碳排放量由2003年的6.25 t/hm2增长到2010年的7.73 t/hm2。辽宁省2003—2010年碳吸收量呈小幅变化,从2003年的3 294.38万t减少到2010年的3 288.69万t。  相似文献   

14.
以江苏省为案例,应用江苏省1995—2009年化肥用量、农药消耗量、灌溉面积、农机燃料用量、农膜用量、耕地面积、农作物产量等数据,测算了区域农田生态系统碳吸收、碳排放及碳足迹的变化动态,以及在各地市的空间分布特征。结果表明:近15a来,江苏省农作物碳吸收总量和碳吸收强度呈"V"字形变化,变化范围分别为2933.6×104~3896.9×104t·a-1和6.04~7.71t·hm-2·a-1。农业投入碳排放呈逐渐上升趋势,由727.2×104t·a-1增长至882.7×104t·a-1,同时碳排放强度从1.43t·hm-2·a-1上升到1.88t·hm-2·a-1,增长了31.5%,化肥排放始终占据主导地位。农田生态系统碳足迹呈现波动增长,变化在13.68×105~17.56×105hm·2a-1之间,占同期耕地面积的比重达到27.0%~36.1%,碳生态盈余呈明显减少趋势,变化在36.99×105~32.22×105hm2·a-1之间。各地市之间碳足迹存在明显差异,空间分布格局为由北向南递减。  相似文献   

15.
福建省农田生态系统碳源/汇时空变化及其影响因素分析   总被引:1,自引:0,他引:1  
准确估算农田生态系统的碳排放和碳吸收对制定合理的农业减排措施具有重要意义.基于1991-2010年福建省农作物产量、耕地面积、农业投入等农业活动水平数据,对福建省农田生态系统的碳源汇进行估算,并分析碳源汇的时空变化特征及其影响因素.结果表明,1991-2010年福建省农田生态系统碳吸收总量总体呈下降趋势,从1991年的1161.14×104t减少到2010年的672.13×10^4t,减幅为42.11%,年平均递减5.89%;碳排放总量呈增加的趋势,从1991年的114.05×10^4t增加到2010年的195.10×10^4t,增幅达71.07%,年均递增2.87%;碳汇量总体呈降低趋势,从1991年的1047.09×10^4t降低到2010 年的477.03×10^4t,减幅为54.44%,年均递减8.36%;福建省农田生态系统单位耕地面积碳吸收呈下降的趋势,而单位耕地面积碳排放基本保持不变.2010年南平市的碳吸收量和碳汇量最大,漳州市的碳排放量最大,而厦门市的碳吸收量、碳排放量和碳汇量均最小.碳源汇影响因素相关性分析表明,碳吸收与水稻、小麦、甘蔗产量呈极显著正相关;碳排放与钾肥、复合肥、农药、农机动力、柴油使用均有极显著的正相关性.研究结果能够为福建省低碳农业发展提供科学参考.  相似文献   

16.
基于Markov模型的土地利用类型面积变化的研究   总被引:1,自引:1,他引:0  
根据2005~2010年成都市温江区土地利用现状图,基于ArcGis平台,应用马尔科夫模型预测了该区2015、2020和2025年的土地利用变化情况。结果表明:未来十几年耕地面积将不断减少,城乡建设用地面积将不断增加;与2010年相比,2025年的耕地面积将减少38.12%,城乡建设用地面积将增加53.23%。  相似文献   

17.
陕西省土地利用碳排放与碳足迹研究   总被引:1,自引:0,他引:1  
本文根据土地利用数据及能源消耗数据测算了2009—2017年陕西省各个土地利用类型的碳排放、碳足迹,并在此基础上利用SPSS通过时间序列分析法预测了2020年全省及省内11个地市主要土地利用类型的碳排放、碳足迹。通过对比分析不同区域、不同时间、不同土地利用方式下的碳排放情况与碳足迹变化特征,得出以下结论:2009年以来,陕西省的碳排放与碳足迹逐年增长,建设用地面积扩张是造成这一现象的主要原因;省内碳排放与碳足迹存在明显的分布差异,关中地区碳排放量最高,陕北地区次之,陕南地区最低;碳吸收以陕南地区最高,陕北地区次之,关中地区最低;而碳排放强度逐年减小,已经提前实现了省内单位GDP碳排放比2005年下降40%~45%的目标;每万人产生的碳排放量逐年增长,仍需进一步调控优化,可以通过促进能源结构多元化、推进产业结构升级、助力土地利用高效化等方式有效控制碳排放,减少碳足迹。  相似文献   

18.
在全球气候变暖的背景下,中国积极承诺并开展控制温室气体排放行动以期2030年实现碳达峰、2060年实现碳中和的目标。为厘清土地利用碳排放产生机制并合理预测碳排放,以曲周县为研究区,采用排放系数法、样地清查法、IPAT模型和最小二乘法等方法,构建碳排放核算体系以度量曲周县2009—2019年土地利用碳排放,并预测81类情景组合下2030年的碳排放情况。结果表明:1)曲周县2009—2019年土地利用碳排放总量呈先增加后减少的变化趋势。耕地、建设用地是两大碳排放源;2)预测首先按人均GDP设置,进一步根据人口、能源强度、产业结构共设置81类情景组合:当GDP处于高速发展时,曲周县未来碳排放总量模拟值区间为50万~221万t;当GDP处于惯性发展时,上升趋势组区间分别为51万~119万t,最小值为45万t,下降趋势组最小值29万t;当GDP处于低速发展时,呈下降趋势的两组最小值分别为21万和12万t,另一组在2030年预测值为35万~50万t。研究结论:土地利用变化会直接或间接影响碳排放,摸清地类碳属性可为预测碳排放及优化土地利用结构提供抓手。综上,曲周县可通过人口优化、调整能源结构、优化产...  相似文献   

19.
土地利用变化是区域碳排放变化的主要驱动力,研究土地利用变化对碳排放的影响有助于制定碳排放政策。基于土地利用现状数据和能源消耗数据,构建碳排放评价模型,测算河北省2000-2020年土地利用碳排放量,利用标准差椭圆模型探究研究区碳排放空间格局分布特征,依据碳排放经济贡献系数和碳生态承载系数提出碳平衡分区方案及优化对策。结果表明,(1)2000-2020年河北省碳排放总量整体上呈现明显的上涨趋势,从9.01×107 t上升到2.75×108 t, 2000-2010年碳排放量增长速率快速提升,2010-2020年碳排放量增长相对缓慢。(2)河北省碳排放强度呈现多圈层结构空间分布特征,主要以资源型城市为中心向外呈圈层结构扩散,石家庄和沧州核心市区次圈层结构逐渐显现。(3)河北省县域碳排放经济贡献系数空间特征呈四周低中间高,碳生态承载系数呈现西北高东南低的空间分布规律。(4)基于碳平衡分析将河北省划分为碳汇功能区、低碳保持区、经济发展区、碳汇发展区和高碳优化区,并提出了相应的发展策略。  相似文献   

20.
根据土地利用变更数据及能源消费资料,采用直接碳排放系数法,对铜陵县2000~2013年土地利用碳排放效应进行了估算,并结合TM影像,采用地统计分析,对铜陵县土地利用碳排放风险时空格局进行了分析。结果表明:1碳排放量总体上呈现增加的趋势。从2000年4.08万t增长到2013年的223.09万t,增加了219.01万t。2建设用地是主要的碳源,林地是主要的碳汇,13年间建设用地的碳排放量增长了219.17万t,对碳排放总量的贡献率高达92.26%;林地的碳吸收量维持在1.20万~1.24万t,对碳汇作用的贡献率达到60.52%。3在时空格局分布上,2000~2010年铜陵县土地利用碳排放风险指数在不断变大;碳排放风险指数与土地利用类型的空间分布有极大的相关性,从城镇向外推进的过程中呈现出由高到低的变化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号