首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ordinary chernozem artificially contaminated with Zn and Pb salts and reclaimed by the addition of chalk and glauconite under pot experimental conditions has been analyzed. The fractional and group composition of the metal compounds in the soil extracts have been determined according to an original combined fractionation procedure. Coefficients characterizing the changes in the environmental status of the metals under the reclamation conditions have been proposed for describing the formation tendencies of the metal composition in the soils. These are the mobility coefficients (MCs) of the heavy metals (HMs) in the soils and the stability coefficients (SCs) of the soils for the HMs. They are calculated from the analysis of the fractional and group composition of the metal compounds. The MC characterizes the environmental vulnerability of soils to the impact of HMs; the SC characterizes the environmental sustainability of soils concerning the contamination with HMs. The obtained experimental data characterize the behavior features of Zn and Pb in the studied soils. An increase in the environmental hazard has been revealed at the contamination of soils with HMs, as well as its decrease at the application of the tested ameliorants. The participation of both strongly and loosely fixed HM fractions in the development of the HM mobility in the soils and the sustainability of the soils to their impact has been shown.  相似文献   

2.
Qualitative and quantitative studies of the kinetics and dynamics of technogenic migration of heavy metals (HMs) have been performed in laboratory experiments. It is shown that the redistribution of HMs applied into soils in neutral form has an impulsive pattern. Soil texture does not have a decisive influence on the migration capacity of metals. An important feature of the technogenic migration of HMs is the effect of the polymetallic contamination, upon which the migration capacity of a set of heavy metals is higher than that of separate metal compounds. An index characterizing the ratio of absolute values of migration rates of ionic forms of metals estimated from electrical conductivity values to the rate of infiltration of the soil solution (vm/vf) is suggested to estimate the kinetics of HM migration in soils.  相似文献   

3.
ABSTRACT

Today, soil metal pollution has become a significant environmental issue of great public concern. This is because soil is both a major sink for heavy metal(loid)s (HMs) released into the environment, by both pedogenic and anthropogenic activities; and also a major source of food chain contamination mainly through plant uptake and animal transfer. In addition, HM contamination of soil leads to negative impacts on soil characteristics and function by disturbing both soil biological and physiochemical properties (e.g. extreme soil pH, poor soil structure and soil fertility and lack of soil microbial activity). This eventually leads to decreased crop production. Various soil remediation techniques have been successfully employed to reduce the risks associated with HMs efflux into soil. Among these, the use of low-cost and environmentally safe inorganic and organic amendments for the in-situ immobilization of HMs has become increasingly popular. Immobilization agents have successfully reduced the availability of metal ions through a variety of adsorption, complexation, precipitation, and redox reactions. Soil amendments can also be a source of nutrients and thus can also act as a soil conditioner, improving the soil’s physiochemical properties and fertility, resulting in enhanced plant establishment in metal contaminated soils. This article critically reviews the use of immobilizing agents in HM contaminated agricultural and mining soils paying particular attention to metal immobilization chemistry and the effects of soil amendments on common soil quality parameters.  相似文献   

4.
Heavy metals (HMs) and antibiotic resistance have become serious environmental problems affecting soil and human health. Soil microorganisms play key roles in pollutant degradation and biogeochemical cycling processes; however, the interactions among HMs, soil microbial communities, and antibiotic resistance genes (ARGs) in agricultural soils remain unclear. Using quantitative real-time polymerase chain reaction and NovaSeq sequencing, we evaluated heavy metal contents, abundances of ARGs, soil bacterial community structure and functions, and their correlations in paddy soils at 43 sampling sites along the middle and lower reaches of the Yangtze River, central and eastern China. Our results showed the co-occurrence of HMs, ARGs, and HM resistance genes across all paddy soils. Additionally, significant positive associations were detected between HMs and resistance genes. Cadmium, czcA, and int1 were positively correlated with bacterial community diversity. The Mantel test showed that bacterial community composition and functions were significantly associated with HMs and resistance genes, such as Cd, Cr, Zn, copA, czcA, int1, and sul1. Moreover, HMs and ARGs were the major factors shaping soil bacterial communities; thus, HMs triggered proliferation of HM and antibiotic resistances by influencing the mobile genetic element (int1) and soil microbial communities. Our study revealed that HMs potentially drive the co-selection of ARGs by shifting soil bacterial community structure and functions, thereby increasing the potential risks to human health as well as ecological environment in the paddy soils along the middle and lower reaches of the Yangtze River.  相似文献   

5.
Background, Aim and Scope   Humic acids (HAs) are the most important humified component of dissolved organic carbon (DOC) present in sewage water used for irrigation. It is well known that HAs affect the toxicity and availability of heavy metals (HMs) in soil-plant systems, and may increase the human exposure to HMs in contaminated soil through plant uptake. This study was conducted to assess the effects of HAs on HM availability, plant growth and HM uptake. Materials and Methods: With wheat (Triticum aestivum) as a test plant, a greenhouse pot experiment was conducted to investigate the effects of HAs in irrigation water on the phytoavailability of cadmium (Cd) and lead (Pb) in soil. Cd and Pb were added to the soil at concentrations of 1.5 and 150 mg/kg, respectively. Wheat seedlings grown in Cd and Pb-contaminated soil were watered with 4 levels of HA solution (0, 140, 280 and 560 mg/kg of HAs, respectively). Results: In control and Pb treatments, both plant biomass and plant HM concentrations increased with increasing concentrations of HAs in the solution. Plant biomass was markedly decreased when metal concentrations in plants increased, particularly in Cd and Cd/Pb treatments. In the soil, extractable metals, and water soluble organic carbon (WSOC) and its fractions significantly increased with increasing HA concentrations. Discussion: The results suggested that the application of HAs in barren soils may improve plant nutrition by mobilizing soil nutrients and providing plants with carbon sources. On the other hand, HAs present in sewage water may increase both the availability and transfer of HMs in the soil-plant continuum and subsequently increase human exposure to HMs in polluted soil. Conclusions. Conclusions: HA solution as irrigation water significantly increased HM availability to plants cultivated in the HM-amended soil and may increase the environmental risk of sewage irrigation. Recommendations and Perspectives: These results suggested that, when assessing the effect of sewage irrigation on soil quality, HAs contained in sewage water should be taken into consideration.  相似文献   

6.
We assessed the effects of chronic heavy metal (HM) contamination on soil microbial communities in a newly established forest ecosystem. We hypothesized that HM would affect community function and alter the microbial community structure over time and that the effects are more pronounced in combination with acid rain (AR). These hypotheses were tested in a model forest ecosystem consisting of several tree species (Norway spruce, birch, willow, and poplar) maintained in open top chambers. HMs were added to the topsoil as filter dust from a secondary metal smelter and two types of irrigation water acidity (ambient rain vs. acidified rain) were applied during four vegetation periods. HM contamination strongly impacted the microbial biomass (measured with both fumigation-extraction and quantitative lipid biomarker analyses) and community function (measured as basal respiration and soil hydrolase activities) of the soil microbial communities. The most drastic effect was found in the combined treatment of HM and AR, although soil pH and bioavailable HM contents were comparable to those of treatments with HM alone. Analyses of phospholipid fatty acids (PLFAs) and terminal restriction fragment length polymorphisms (T-RFLPs) of PCR-amplified 16S ribosomal DNA showed that HM treatment affected the structure of bacterial communities during the 4-year experimental period. Very likely, this is due to the still large bioavailable HM contents in the HM contaminated topsoils at the end of the experiment.  相似文献   

7.
Purpose

To identify the sources and levels of contamination with anthropogenically derived heavy metals (HMs) for appropriate pollution control. We quantified anthropogenic influences with respect to HM pollution in soil, based on multiple pollution indices and cluster analysis derived from the results of an annual nationwide survey conducted in Korea.

Methods

Contamination levels of HMs in soils were quantitatively evaluated using multiple pollution indices: contamination factor (CF), geo-accumulation index (Igeo), Nemerow’s integrated pollution index (NIPI), and pollution load index (PLI). Hierarchical cluster analysis was conducted to elucidate the correlations between HMs and contamination sources. A total of 2214 HM concentration data including six contamination sources were used to evaluate the pollution state of anthropogenic effects of HMs.

Results

The CFs for Zn and Cu revealed a broad enrichment of these HMs in all pollution sources. Scrap recycling sites (SRS) had the highest likelihood of pollutant distribution in soil surfaces. NIPI and PLI varied with the extent of anthropogenic activities or land use, especially in SRS, waste disposal sites (WDS), transport maintenance sites (TMS), and industrial sites (INS), and anthropogenic sources were divided into three discrete clusters: INS-TMS-LDS (land development sites), SRS-WDS, and vicinities of industrial sites (VIS).

Conclusion

Our results confirmed that soil pollution indices combined with cluster analysis were useful to identify sources of anthropogenic HMs in urban soil, as well as to assess the levels of HM contamination.

  相似文献   

8.
Natural and technogenic compounds of heavy metals in soils   总被引:1,自引:0,他引:1  
The existing geological classification of heavy metals (HMs) is not suitable for their characterization in soils. The carriers of HMs in soils differ from those in the lithosphere. These are clay minerals; iron oxides, whose composition varies between the background and urban soils; various manganese oxides; and different groups of organic substances. The mineral composition of HM carriers can vary significantly. The main iron oxides are ferrihydrite, goethite, feroxyhyte, and lepidocrocite in the background soils and technogenic magnetite in the urban soils. The different structures of manganese oxides determine their affinity for specific HMs. Metallic iron and green rust are very efficient in artificial geochemical barriers, although they act as strong reducers there. HM compounds strongly vary in soils because of the unstable conditions.  相似文献   

9.
Biochar (BC), known as the new black gold, is a stable, novel carbonaceous by-product that is synthesized through pyrolysis of biological materials in the absence of O2. Recently, an emerging interest in the application of BC as a robust soil amendment has given rise to a broad research area in science and technology. It is considered a promising remediation option for heavy metal (HM)-contaminated soils to reduce HM bioavailability to plants. Remediation efficacy of BC depends on the porosity, composition, pyrolysis temperature, feedstock, and residence time of pyrolysis. This review article aimed to present an overview of BC use in the immobilization of HMs, i.e., Cd, As, Pb, Zn, Ni, Cu, Mn, Cr, and Sb, in contaminated soils. The remaining uncertain factors, including the specific soil HM immobilization mechanisms, long-term beneficial effects, and potential environmental risks associated with BC application are analyzed. Future research must be conducted to ensure that the management of environmental pollution is in accord with ecological sustainability and adaptation of the black gold biotechnology on a commercial basis for immobilization of HMs in contaminated soils.  相似文献   

10.
The results of long-term studies of the contents of bulk forms of metals (Cu, Zn, Fe, Ni, Pb, Mn, Co, and Cd) and their mobile compounds in soils of background and human-disturbed areas within the Krasnoural’sk–Sibai–Gai copper–zinc and Baimak–Buribai mixed copper mineralization zones in the Bashkir Transural region are discussed. It is shown that soils of the region are characterized by abnormally high natural total contents of heavy metals (HMs) typomorphic for ore mineralization: Cu, Zn, and Fe for the Sibai province and Cu, Zn, and Ni for the Baimak province. In the case of a shallow depth of the ores, the concentrations of HMs in the soils are close to or higher than the tentative permissible concentration values. The concentrations of mobile HM compounds in soils of background areas and their percentage in the total HM content strongly vary from year to year in dependence on weather conditions, position in the soil catenas, species composition of vegetation, and distance from the source of technogenic contamination. The high natural variability in the content of mobile HM compounds in soils complicates the reliable determination of the regional geochemical background and necessitates annual estimation of background parameters for the purposes of the ecological monitoring of soils. The bulk content of Cu and Zn content in soils near mining enterprises exceeds the regional geochemical background values by 2–12 times and the tentative permissible concentrations of these metals by 2–4 times. Anthropogenic contamination results in a sharp rise in the content of mobile HM compounds in soils. Their highest concentrations exceed the maximum permissible concentrations by 26 times for Cu, 18 times for Zn, and 2 times for Pb. Soil contamination in the impact zone of mining enterprises is extremely dangerous or dangerous. However, because of the high temporal variability in the migration and accumulation of HMs in the soils, the recent decline in the ore mining activities, and the construction of purification facilities, no definite temporal trends in the contents of HMs in the soils have been found in the studied region for the period from 1998 to 2015.  相似文献   

11.
不同高粱种质对污染土壤中重金属吸收的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用重金属含量较高的污水污染土壤,以未污染土壤作对照,种植8个甜高粱品种、2个饲用高粱品种和1个粒用高粱品种,检测8种重金属在高粱植物体内不同器官的含量,以研究不同高粱种质对重金属的吸收特性。结果表明:甜高粱对汞(Hg)、镉(Cd)、锰(Mn)和锌(Zn)的吸收在两种土壤间差异显著,对钴(Co)、铬(Cr)、铅(Pb)和铜(Cu)的吸收差异不显著。Mn在甜高粱体内含量表现为未污染土壤高于污染土壤;而Zn含量在不同器官之间存在差异,未污染土壤叶中含量远高于穗,穗中含量远高于茎和根。不同重金属在甜高粱体内的储存部位不同,污染土壤上Hg、Cd、Co、Cr和Zn在根中积累量较高,Cu、Mn和Pb在穗中的积累量较高。甜高粱、饲用高粱和粒用高粱对重金属的吸收、运输及储存在品种之间差异较大,同一品种对不同重金属的吸收也存在差异。饲用高粱表现为叶部对Cr和Zn的储存量较高,而粒用高粱‘晋中0823’则显示了茎对多种重金属的储存能力。高粱根对土壤中重金属的富集系数较高,为0.02(Pb)~0.23(Cd),转移系数变幅为0.21(Co)~3.42(Pb)。对同一种重金属的吸收量品种间差异较大,甜高粱‘西蒙’根对Co、Cr、Cu、Mn、Pb和Zn具有高富集系数,粒用高粱‘晋中0823’茎对Hg、Cd、Mn、Pb和Zn富集系数较高。高粱对重金属的吸收能力与转移能力不同步,甜高粱‘绿能1号’具有对多种重金属的高转移能力,粒用高粱‘晋中0823’只对Zn有较高的转移能力。因此本文认为甜高粱对不同重金属的吸收和转移有选择性。对Zn吸收并转移到地上部后,首先储存在叶和穗中,当吸收量足够大时,茎和根也成为储存器官;对Mn的吸收与其他重金属的吸收存在竞争作用,Hg吸收后很少向地上部转移;而对Cu、Mn和Pb吸收后在穗部的储存量较大。饲用高粱与甜高粱相比对重金属的吸收未显示明显的不同,甜高粱‘西蒙’根对多种重金属具有强储存能力,而粒用高粱‘晋中0823’的茎秆显示了比甜高粱更强的储存能力,甜高粱‘绿能1号’对多种重金属的转移能力较强。所以,选择富集和转移能力均强的高粱品种能更有效地吸收土壤中的重金属,达到修复污染土壤的目的。  相似文献   

12.
The accumulation of heavy metals (HMs) in soils is the most often cited potential risk of compost application. As the ecological effects of metals are related to mobile fractions rather than to total concentrations in the soil, we measured the total (aqua regia–extractable) HM concentrations, the readily available water‐soluble and the potentially bioavailable LiCl‐extractable fraction of soil HMs in a field experiment after 10 y with total applications of 95, 175, and 255 t ha–1 biowaste compost (fresh matter). Total soil concentrations of Cd, Cr, Cu, Ni, and Pb in the compost treatments were not significantly higher than in the unfertilized control. Total Zn concentrations increased in the treatment with the highest application rate, as expected from the calculation of the Zn load in the composts. In the mobile fractions, as measured in soil saturation extract and LiCl extract, Cd and Pb were not detectable. Concentrations of Cr, Ni, and Zn were in the range published for unpolluted soils in other studies and did not show any differences according to treatment. Easily exchangeable Cu (in LiCl extract) was increased with compost fertilization, most probably due to complexation with low‐molecular organic complexants. Except for Cd and Zn, the results of the mobile HM fractions in the soil were in good agreement with plant HM concentrations. In conclusion, fertilization with high‐quality biowaste compost at such rates and after 10 y of application gives no cause for concern with regard to both total HM concentrations and available HM fractions.  相似文献   

13.
Heavy metals (HMs) in domestic sewage sludge, applied to land, contaminate soils. Phytoremediation is the use of plants to clean‐up toxic HMs from soil. Chelating agents are added to soil to solubilize the metals for enhanced uptake. Yet no studies report the displacement of HMs in soil with sludge following solubilization with chelates. The objective of this work was to determine the uptake or leaching of HMs due to a chelate added to a soil from a sludge farm that had received sludge for 25 y. The soil was placed in long columns (105 cm long; ?? 39 cm) in a greenhouse. Columns either had a plant (hybrid poplar; Populus deltoides Marsh. × P. nigra L.) or no plant. After the poplar seedlings had grown for 144 d, the tetrasodium salt of the chelating agent EDTA was irrigated onto the surface of the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic HMs (Cd, Ni, Pb) and four essential HMs (Cu, Fe, Mn, Zn). At harvest, extractable and total concentrations of each HM in the soil with EDTA were similar to those in soil without EDTA. The chelate did not affect the concentrations of HMs in the roots or leaves. With or without plants, EDTA mobilized all seven HMs and increased their concentrations in drainage water. Lower concentrations of Cd, Cu, Fe, Ni, and Zn in leachate from columns with EDTA and plants compared to columns with EDTA and no plants showed that poplars can reduce groundwater contamination by intercepting these HMs in the soil. But the poplar plants did not reduce Pb and Mn in the leachate from columns with EDTA. Concentrations of Cd and Pb in the leachate mobilized by EDTA remained above drinking‐water standards with or without plants. The results showed that a chelate (EDTA) should not be added to a soil at a sludge farm to enhance phytoremediation. The chelate mobilized HMs that leached to drainage water and contaminated it.  相似文献   

14.
The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain a reliable estimate of the phytoextraction duration. To simulate the decrease in the HM content in soil and to assess the resulting decrease in the uptake of HMs by plants, contaminated soil was mixed with uncontaminated, but otherwise similar soil. Uptake of Cd, Pb, and Zn by the indicator plant Lupinus hartwegii and the Zn hyperaccumulator Thlaspi caerulescens (La Calamine ecotype) was a log-linear function of the in-situ measured HM soil solution concentrations. Over a wide range in dissolved Cd and Zn concentrations, uptake of these HMs by T. caerulescens was (much) greater than by L. hartwegii. Experimentally derived regression models describing the relationships between soil, soil solution, and plant were implemented in a HM mass balance model used to obtain estimates of the phytoextraction duration. For our target soils, estimates of the Cd phytoextraction duration using L. hartwegii or T. caerulescens increased significantly by more than 100 or 50 years when experimental soil—soil solution—plant relationships were used instead of the assumption of constant plant uptake of Cd. The two approaches gave similar results for phytoextraction of Zn by T. caerulescens.  相似文献   

15.

Purpose

Heavy metal accumulation produces significant physiological and biochemical responses in vascular plants. Plants growing on abandoned mine sites are of particular interest, since they are genetically tolerant to high metal concentrations. In this work, we examined the effect of heavy metals (HMs) on the morphology of T. officinale growing in pots with mine soils, with the following objectives: (1) to determine the evolution of HM concentration in leaves and roots over 3 years of cultivation; (2) to highlight possible damage at anatomical and cytological level.

Materials and methods

Wild specimens of Taraxacum officinale Web., with their soil clod, were gathered from three sites with different contamination levels by heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) in the abandoned Imperina Valley mine (Northeast Italy). A control plant was also gathered from a non-contaminated site nearby. Plants were cultivated in pots at the botanical garden of the University of Florence (HBF), and appeared macroscopically not affected by toxic signals (reduced growth, leaf necrosis) possibly induced by soil HM concentration. Leaves and roots taken at the same growing season were observed by light microscopy and transmission electron microscopy.

Results and discussion

Light microscopy observations show a clear difference in the cellular organisation of non-contaminated and contaminated samples. The unpolluted samples present a well-organised palisade tissue and spongy photosynthetic parenchyma. Samples from contaminated sites, instead, present a palisade parenchyma less organised, and a reduction of leaf thickness proportional to HM concentration. The poor structural organisations, and the reduced foliar thickness of the contaminated plants, are related to soil contamination. Differences in root micromorphology concern the cortical parenchyma. Moreover, all the samples examined present mycorrhiza. Ultrastructure observations of the parenchyma cells show mitochondrial structure alteration, with lacking or reduced cristae of the internal membrane at increasing metal content. Instead, chloroplast organisation does not present significant differences, particularly in number and compartmentalization of thylakoids.

Conclusions

Although macromorphology does not present evidence of phytotoxicity, the recorded observations of the micromorphological characteristics of leaves and roots, show a suffering state of the plants, strictly related to HM content. Leaching reduced partly the HM content of the soil, therefore decreasing their phytotoxic effect. A gradual restoration of leaf organisation suggests that somewhat resilience occurred in plants. Moreover, the presence of stress-tolerant mycorrhizal fungi could contribute to reduce metal toxicity.  相似文献   

16.
Natural clay minerals can play an important role in crude remediation of wastewater polluted with the heavy metals (HMs) Cu,Zn and Ni.The presence and timing of addition of natural dissolved organic matter (DOM) have a significant effect on the HM removal by clay mineral sorbents.However,the influence of the presence of DOM on the remediation of the used clay mineral sorbents once saturated with HMs is largely unknown.To resolve this,clay mineral-rich soil column of varying composition,loaded (i) with Cu,Zn and Ni only,(ii) first with DOM followed by Cu,Zn and Ni,or (iii) with DOM,Cu,Zn and Ni simultaneously,was used in a set of desorption experiments.The soil columns were leached with 0.001 mol L-1 CaCl2 dissolved in water as control eluent and 0.001 mol L-1 CaCl2 dissolved in DOM as treatment eluent.During the preceding loading phase of the sorbent,the timing of DOM addition (sequential or concurrent with HMs) was found to have a significant influence on the subsequent removal of the HMs.In particular when the column was loaded with DOM and HMs simultaneously,largely irreversible co-precipitation took place.Our results indicate that the regeneration potential of clay mineral sorbents in wastewater treatment will be significantly reduced when the treated water is rich in DOM.In contrast,in manured agricultural fields (where HMs enter together with DOM),HM mobility will be lower than expected from interaction dynamics of HMs and clay minerals.  相似文献   

17.
The effects of modified heavy metal (HM) availability on the microbial community structure and on the microbe-mediated degradation of herbicide isoproturon (IPU) were evaluated in soil with a long-term HM contamination. The fate of 14C-ring labelled IPU was investigated for over 60 days under controlled microcosm conditions. Phosphate mineral apatite and a water solution of Pb, Zn, and Cd salts were previously homogeneously mixed into the soil material to reduce and to increase the proportion of bioavailable HM, respectively. The availability of Pb, Zn, and Cd was determined by HM fractionation and plant uptake 110 days after the addition of amendments, shortly before IPU addition. Apatite treatment reduced the availability of HM, but did not affect the microbial biomass and the microbial community structure on the genotype level (total soil DNA-RAPD). However, it changed the microbial community structure on the phenotype level, based on the composition of phospholipid fatty acids (PLFA) at the end of the degradation experiment. The degradation of IPU did not change. In contrast to apatite treatment, HM supplementation increased the bioavailability of Pb, Zn and Cd, which resulted in biomass reduction and changes of microbial community structure on the genotypic (total soil DNA-RAPD) and phenotypic (PLFA) level. Increased bioavailability of HM also significantly reduced the rate of IPU degradation and mineralisation. The total mineralisation over a period of 60 days decreased from 12 to 5% of initial 14C. Increased HM bioavailability did not influence the degradation pathways and kinetics of IPU.  相似文献   

18.
Purpose

It is very important to obtain the information on the soils capacity to immobilize HMs and distribute them among soil components. The aim of this work was to study the fractional composition of Cu compounds in Haplic chernozem under model contamination conditions using different fractionation methods.

Materials and methods

The fractional composition of copper compounds in Haplic Chernozem artificially contaminated with copper acetate has been studied under model experimental conditions. General regularities and differences in the distribution of Cu forms in soils at the use of sequential fractionation by the Miller method modified by Berti and Jacobs (1996) and the Tessier method (Tessier et al. 1979) are revealed.

Results and discussion

The differences are related to the metal affinity for specific carrier phases, as well as to the selectivity and extraction capacity of the reagents used in these methods. A significant increase in the most mobile exchangeable Cu fraction is observed in contaminated soils. Aluminosilicates and soil organic matter make the largest contribution to the adsorption and retention of Cu.

Conclusions

The Tessier method is more suitable for the separation of the total technogenic component from contaminated soils. The Miller method is more informative at the determination of loosely bound HM compounds because of the use of weaker extractants.

  相似文献   

19.
The mobility and migration capacity of Zn in the soil-plant system were studied in a series of pot experiments with barley as a test plant. The parameters of Zn accumulation depending on the metal concentrations in soils and soil solutions were estimated by soil and water culture methods. Experiments with barley in water culture were performed on a nutrient (soil) solution extracted from soddy-podzolic soil (Albic Retisol (Loamic, Ochric)) to which Zn2+ was added to reach working concentrations increasing from 0.07 to 430 μM. Different responses of barley plants to changes in the concentration of Zn in the studied soil were identified. Ranges of the corresponding concentrations in the soil and aboveground barley biomass were determined. Parameters of Zn accumulation by test plants were determined depending on the metal content in soddypodzolic soil and the soil solution. A new method was proposed for evaluating the buffer capacity of soils with respect to a heavy metal (Zn) using test plants (BCS(P)Zn). The method was used to evaluate the buffering capacity of loamy sandy soddy-podzolic soil. The considered methodological approach offers opportunities for using data obtained during the agroecological monitoring of agricultural lands with heavy metals (HMs), including the contents of exchangeable HMs and macroelements (C and Mg) in soils and concentrations of HMs and (Ca + Mg) in plants, in the calculation of the buffering capacity of the surveyed soils for HMs.  相似文献   

20.
Crop contamination by selected trace elements   总被引:2,自引:0,他引:2  
Goal and Background  The regulatory limit for the allowable concentration of heavy metals (HM) in agricultural soils should be based both on HM status and on soil parameters that influence HM mobility. In this paper, a soil categorization scheme is proposed which is based on the main factors that influence HM mobility in soils. The scheme also makes use of the existing regulatory limits for total concentrations of trace elements in Slovak soils but additionally takes into account the potential ability of the soils to mobilize trace elements. A map of the Slovak Republic showing the soil categorization using this scheme is presented. Methods  Besides total soil content of Cd, Pb, Cr, Hg, As, Cu, Zn, Ni, soil parameters with dominant influence on HM mobility are included in the scheme pH, organic matter content, quality of humus represented by spectral parameter Q4 6 and content of fraction f < 0.01 mm. Point rating approach was used for categorization. Database of localized soil data from 3556 locations was used for creation of map in GIS environment. Results  Based on the point scoring method described herein, soils are ranked from a (the least risk of crop contamination) to d (medium risk). Categories e and f are reserved for soils where the risk exceeds the allowable regulatory limits. For each of the six categories, the most suitable usage of agricultural land is recommended. The Slovak map presented shows that the main factor that affect the spatial distribution of each soil category is soil parent material which governs the existing total HM content and the predisposition for certain soil types to have high HM mobility. Agricultural usage of land in Slovakia is in most cases limited by exceedences of Cr and Ni, originating from widespread flysch rock parent material. Conclusions  Application to regional geochemical data shows that, for more than half of Slovak agricultural land, risk of crop contamination is low. For the rest of the area, planting should consider sensitivity of crops to HM uptake. Recommendation and Outlook  Evaluation of suitable agricultural usage based on HM contamination risk, should include not only the total HM content but also the potential for HM mobility, which can increase the risk of plant contamination. Where HM mobility data are not available, soil parameter data that influence HM mobility can be used to predict the potential HM soil contamination hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号