首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system, ANOPOR, has been developed which uses the Quantimet 720 image analyser to recognize and measure the different types of pores in impregnated soil blocks. The system is concerned with three types of pores: channels, planar voids (cracks and fissures) and vughs but is not suitable for highly interconnected pore patterns. Each of the three types has a different origin and function and presents a different two-dimensional (2-D) shape when sectioned. A learning set consisting of these three pore classes was used to teach the system how to recognize statistically soil pores in images using measurements made by Quantimet. To describe the pore outlines in 2-D, shape factors giving the best class separation of the learning set in the pattern space were derived. Bayes equation was used to give the probability of a pore belonging to a particular class by comparing its position in the pattern space with the learning set. Class boundaries were determined which ANOPOR uses to allocate each pore in any image to the most likely class. The system measures the proportion of the pore space attributable to each class and the perimeter and intercept density for each. The system is used to measure the pore patterns in three soil horizons.  相似文献   

2.
The packing of elementary particles in soil largely determines the properties that depend on the textural soil pore space, but is studied little. The relations between packing and size and nature of soil particles were studied using fractions of clay, silt and sand, mixed when wet and then dried. Ternary mixtures (clay:silt:sand) were compared with binary mixtures (clay:silt, clay:sand). The pore space of the mixtures was studied using mercury porosimetry and scanning electron microscopy. In all the mixtures the textural pore space was divided into two compartments: (1) lacunar pores due to the presence of skeleton particles and to the shrinkage of the clay phase between these particles, and (2) the clay–fabric pores due to the packing of the clay. In the ternary mixtures, lacunar pores could be divided into two classes: (1) those due to sand particles within the clay–slit phase considered as a single phase, and (2) those due to silt particles within this same phase. For certain mixtures, lacunar pores, referred to as hidden lacunar pores, were not interconnected but were occluded. This occurred both for hidden pores caused by the presence of sand and occluded by the clay–slit phase, and for hidden pores caused by the presence of silt and occluded by the clay phase. The relations between these types of textural pores and the proportions of different size fractions in the mixtures provide guidelines for making optimum use of the particle-size characteristics of the soil to determine its properties.  相似文献   

3.
张靖  陈琳  周虎  马东豪  黄平 《土壤》2023,55(1):21-29
土壤孔隙结构是土壤孔隙的形态大小、数量搭配和空间分布状况的综合反映,其结构的复杂性和异质性决定着土壤水分迁移、气体扩散和生物活动等过程。近年来数字图像技术的发展虽然实现了土壤孔隙结构的直接可视化和定量化,但孔隙提取的精度仍然受采样方法、设备分辨率和分割技术的限制。本文基于现有土壤孔隙研究方法的发展历程,以图像获取、图像分割和量化分析为主线,综述了当前常用土壤孔隙研究方法(间接法和直接法)的基本原理、主要步骤和优缺点,剖析了从图像中提取孔隙结构的分割技术,概括了孔隙结构的常用量化指标,最后针对现有研究方法存在的问题和不足,对未来研究方法的发展方向进行了展望。  相似文献   

4.
李保国  周虎  王钢  刘刚  高伟达  朱堃  陈冲 《土壤学报》2023,60(5):1221-1230
土壤是地球表面由固、液、气三相组成的疏松多孔介质体,土壤物理、化学和生物学等过程主要发生在液相和气相填充的土壤孔隙中及其与固相的交界面。随着无损探测土壤孔隙结构、土壤生物化学原位分析和计算机模拟等技术的快速发展和计算能力的提升,从土壤孔隙的形态、结构和功能的角度,原位、直观、精确地研究土壤中动态发生的各种过程成为可能,推动了对真实土壤中各种微观过程与机制的研究。基于前期的研究进展,本文提出,研究透明土壤体的物理学—土壤孔隙学(Soilporelogy)的时代已经启航。土壤孔隙学主要针对土壤孔隙空间,研究其动态变化与土壤物理、土壤化学和土壤生物(生态)互作过程及其效应。以土壤孔隙学为主线,本文首先介绍了获取土壤孔隙方法的进步,进而论述了基于土壤孔隙的流体运动、生物化学过程、根系和生物活动以及土壤微观生态学等的试验和模拟研究。最后,本文对土壤孔隙学的研究方法和理论发展方向进行了展望,相信基于土壤孔隙的研究会推动土壤学研究新的发展。  相似文献   

5.
利用计算机断层扫描技术研究土壤改良措施下土壤孔隙   总被引:12,自引:5,他引:7  
为探明不同土壤结构改良措施(秸秆覆盖、免耕、有机肥、保水剂)对土壤孔隙特征及分布的影响,采用计算机断层(computed tomography,CT)扫描法定量分析了土壤孔隙的数目、孔隙度及孔隙在土壤剖面上的分布特征。结果表明:不同措施均提高了土壤总孔隙数、大孔隙数及0.13~1.0 mm孔隙数,且其孔隙度也相应提高。同时孔隙成圆率也得到了改善。各处理中以有机肥和免耕处理效果较佳,其次为保水剂和秸秆覆盖,对照最低。此外,不同措施显著提高了土壤的田间持水量和>0.25 mm 水稳性团聚体含量,降低了土壤容重,且各处理中,仍以有机肥和免耕处理效果最佳,其田间持水量分别较对照提高了15.9%和16.4%,而土壤容重较对照降低了6.8%和8.8%。相关分析表明:田间持水量、容重和>0.25 mm水稳性团聚体含量与土壤总孔隙度和大孔隙度呈显著或极显著正相关;而土壤容重对于总孔隙度和大孔隙度及孔隙成圆率呈显著负相关。  相似文献   

6.
用显微CT研究不同植被恢复模式的土壤团聚体微结构特征   总被引:7,自引:4,他引:3  
为了更好了解不同植被恢复模式对土壤团聚体微结构的影响,该研究采用显微CT技术扫描3~5 mm土壤团聚体,获取了3.25μm分辨率的二维图像,并应用数字图像处理软件对团聚体孔隙结构进行三维重建,定量研究了黄土丘陵区不同植被恢复模式下(自然草地、人工灌木和坡耕地)土壤团聚体微结构特征。结果表明,两种植被恢复模式均显著提高了土壤有机碳含量和团聚体水稳性(P0.05),降低了土壤容重。与坡耕地处理相比,自然草地土壤团聚体总孔隙度、大孔隙度(100μm)、瘦长型孔隙度分别增加了20%、23%和24%,而分形维数和连通性指数欧拉特征值分别降低了2%和75%,且各指标二者间差异均显著(P0.05)。人工灌木土壤团聚体的上述各项孔隙参数均优于自然草地(较坡耕地分别增加了70%、88%和43%以及降低了4%和92%),且除欧拉特征值外,差异均显著(P0.05)。分形维数和连通性对土壤结构变化的响应相当敏感,可作为该地区植被恢复过程中土壤质量评价的指标,研究结果可为黄土高原土壤质量评价提供科学参考。  相似文献   

7.
We compared the pore morphology of an arid lands vesicular soil horizon in a disturbed and undisturbed state. This surface vesicular horizon is characterized by non-connected pores that hinder soil water infiltration and thus plays a central role in arid ecosystem hydrodynamics. Disturbance is hypothesized to result in a change in pore morphology that could alter water movement through the horizon and potentially affect ecosystem function. To test this hypothesis, we examined the pore morphology of the vesicular horizon as expressed in area, perimeter, length and width; comparisons were also made for particle size, pH, calcium carbonate equivalent (CCE), electrical conductivity (EC) and the abundance and types of pores in undisturbed soils and adjacent disturbed soils within a year of disturbance. The results indicate no significant differences between treatments in chemistry, particle size or pore morphological measures within a year following disturbance. Vesicles, vughs and interstitial pores were found in vesicular horizons in both treatments and no significant differences in these parameters were found between treatments. Vesicular horizon development may be related to the geological age of the surface materials. Certain old land surfaces are perhaps more susceptible to the formation of vesicular horizons regardless of disturbance. The results suggest that soil functions dependent upon vesicular porosity, for example hydraulic conductivity, may return to a pre-disturbance condition within one year of disturbance, a finding of importance to the management of arid lands.  相似文献   

8.
基于全卷积网络的土壤断层扫描图像中孔隙分割   总被引:5,自引:5,他引:0  
针对土壤断层扫描图像中存在部分容积效应及因孔隙成分复杂、结构不规则等引起的分割精度低的问题,该文提出一种全卷积网络(fully convolutional network,FCN)土壤孔隙分割方法,为土壤科学研究提供技术支持。该文以黑土土壤断层扫描图像为研究对象,通过卷积和池化运算输出不同尺度的孔隙特征图;将孔隙的深层特征和浅层特征相融合,采用上采样算子对融合特征进行插值操作,从而输出孔隙的二值图。与大津法、分水岭法、区域生长法和模糊C均值聚类法(Fuzzy C-means,FCM)4种常用孔隙分割方法的对比结果表明,FCN法在低,中,高3种孔隙密度的土壤图像中优于其他4种方法。FCN法的平均分割正确率为98.1%,比4种常用方法分别高25.6%,48.3%,55.7%和9.5%;FCN法的平均过分割率和欠分割率分别为2.2%和1.3%,仅为次优方法(FCM法)的33.8%和23.6%。通过融合土壤孔隙结构的多重特征,FCN法能够实现土壤孔隙整体和局部信息的精准判断,为土壤学的研究提供了一种更加智能化的技术手段。  相似文献   

9.
The geometry of pore space in soil is considered to be the key in understanding transport of water, gas and solute. However, a quantitative and explicit characterization, by means of a physical interpretation, is difficult because of the geometric complexity of soil structure. Pores larger than 40 μm within two soil horizons have been analysed morphologically on 3-dimensional digital representations of the pore space obtained by serial sections through impregnated specimens. The Euler-Poincaré characteristic has been determined as an index of connectivity in three dimensions. The pore connectivity is quantified as a function of the minimum pore diameter considered leading to a connectivity function of the pore space. Different pore size classes were distinguished using 3-dimensional erosion and dilation. The connectivity function turned out to differentiate between two soil materials. The pore space in an upper Ah horizon is intensely connected through pores between 40 and 100 μm, in contrast to the pore space in the AhBv beneath it. The morphological pore-size distributions were compared to the pore-size distribution obtained by water retention measurements. The discrepancy between these different methods corresponds to the expectation due to pore connectivity.  相似文献   

10.
Compaction can seriously degrade soil in modern agriculture. Soil that has been temporarily removed and stored is particularly sensitive to compaction when restored, although little is known about the structural changes in such soils under mechanical loads. We investigated the structural changes in a restored soil that had been gently cultivated for several years and then was trafficked by a heavy combine harvester, analysing the macro‐pore structure by quantitative morphometry of three‐dimensional microcomputed tomography images. Increased trafficking caused decreases in both the porosity and connectivity of the macro‐pores. The fraction of spherical pores (and thus the convexity of the pore space) and the mean pore separation were increased. Trafficking had no clear effect on the orientation of pores. While the mean pore diameter tended to decrease, biopores were more stable than interaggregate pores originating from the packing of soil aggregates. This is relevant for the development of structural stability in restored soils, as the macro‐pores consist mainly of interaggregate pores initially, whereas biopores develop and increase in proportion only gradually over time. Quantitative morphometry provides valuable morphological indices for the objective assessment of the macro‐pore structure and changes induced by compaction.  相似文献   

11.
The anisotropy of the soil pores in texturally differentiated soils is an important soil-genetic index. The morphological study of thin soil sections with vertical and horizontal orientation showed that the pore space of a texturally differentiated light gray forest soil at the aggregate level of organization has isotropic, anisotropic, and partially anisotropic structures in the different horizons. In the horizons with a platy structure, the anisotropy of the pore space is largely determined by the anisometry of the structural units. In the horizons with a massive structure not separated into aggregates, the anisotropic indices can be related to the structural features of the recent and relic biogenic pores. To reveal the total anisotropy of the soil pore space, the most informative and genetically determined indices should be studied: the shape, area, and orientation of the pores. In the soil studied, the variation of the pore sizes in the vertical thin sections was higher than in the horizontal thin sections, which agreed with the concept of the anisotropy of the entire soil profile. The fixed vertical and horizontal orientation of the soil thin sections allowed the obtained results to be integrated into the full-profile anisotropy of the soil properties. The vertical thin sections were found to be of greater information value for the profile-genetic analysis of the structure and variability of the soil pore space than their horizontal analogues.  相似文献   

12.
Bioluminescence-marked cells of Pseudomonas fluorescens were inoculated into soil by introduction into pores of two different size classes (< 6 and 30–60 m neck diameter). Partial chloroform fumigation resulted in a differential killing of cells depending on the placement of the inoculum within the soil pore network and on the period of fumigation. Reduced survival was associated with increasing periods (30–120 min) of fumigation, and with inoculum placement into larger rather than smaller pores. Comparison of the effects of partial fumigation on cells introduced into four soils of contrasting pore-size distribution highlighted the need to calibrate the method on the basis of air/water-filled pore space and chloroform diffusion dynamics for different soil types. It is proposed that partial fumigation facilitates spatial characterisation of the distribution of bacterial cells introduced into soils.  相似文献   

13.
Quantification of pore structure and gas diffusion as a function of scale   总被引:1,自引:0,他引:1  
The quantification of the spatial heterogeneity of soil structure is one of the main difficulties to overcome for an adequate understanding of soil processes. There are different competing concepts for the type of heterogeneity, including macroscopic homogeneity, discrete hierarchy or fractal. With respect to these different concepts we investigate the structure of the pore space in one single sample (4 × 103 mm3) by analysing basic geometric quantities of the pores > 0.3 mm within gradually increasing subsamples. To demonstrate the relation between geometrical and functional properties we simulate gas diffusion within the three‐dimensional pore space of the different subsamples. An efficient tool to determine the geometric quantities is presented. As a result, no representative elementary volume (REV) is found in terms of pore‐volume density which increases with sample size. The same is true for the simulated gas diffusion coefficient. This effect is explained by two different types of pores, i.e. big root channels and smaller pores, having different levels of organization. We discuss the different concepts of structural organization which may be appropriate models for the structure investigated. We argue that the discrete hierarchical approach is the most profitable in practice.  相似文献   

14.
Structural deformation of artificial macropores under varying load and soil moisture In the present study, the stability and deformation behavior of artificial macropores under varying load and soil moisture levels was investigated by means of X‐ray computed tomography (CT). The results should be a reference for similar studies on soil samples from field trials. The soil tested was a well structured humic silt loam with a bulk density of 1 g cm—3. Round‐shaped pores of vertical and 45 degree angle orientation were drilled into the samples with a plastic needle (∅︁ 5 mm). These samples were compacted in an uniaxial compression device at four different moisture levels and four pressure stages each. Stepwise CT imaging and its 3‐dimensional reconstruction enabled us to study systematically the mode and intensity of pore deformation. As a result four different deformation stages could be identified in dependence from load, soil moisture, and pore orientation. The deformation stage ”︁stable” was characterized by mostly unaffected pore dimensions and shapes. Increasing load and/or moisture content led to prominent bottle necks within the pores which was named ”︁structure deformation”. Due to the shape and size of these bottle necks it seems to be most likely that still intact aggregates were moved into the inner pore space, reducing the mean cross sectional areas. The deformation stage ”︁total deformation” appeared with further increase of load and/or moisture. The aggregated structure disappeared while the inner roughness of the pores became smoother again. This represents a viscoplastic deformation. Cross sectional areas, pore lengths, and volumes significantly decreased. The stage ”︁extinction” was finally reached at water contents around the liquid limit, where the pore structure was completely lost, at least on CT resolution level. The deformation stages could be attributed to load stages depending from pore orientation. Unexpectedly, all pores kept their originally round shape over all stages until extinction.  相似文献   

15.
《Geoderma》2001,99(3-4):261-276
A one-cycle field wetting and drying experiment was conducted in order to observe pore space developed in a cultivated Rendzina soil due to surface cracking and to soil aggregate formation at 3-cm depth. Image analysis of 2D representations of pore size distribution and fractal analysis of the spatial distribution of the pores indicates that pore space due to surface cracking does not develop in the same manner as does that formed in the aggregation processes. Both pore-size distribution and fractal dimension vary in different ways at the soil–air interface and at 3-cm depth as drying progresses. Surface cracking occurs as a two-step process where total crack length increases until a maximum and then the cracks widen. Fractal dimensions appear to change as pore space develops. Pores developed when aggregates form show a more continuous process of development of pore sizes with a constant fractal dimension as porosity increases.  相似文献   

16.
The structural voids in vertisols contain easily available water for plants and their volume can be calculated from the shrinkage curve. Access by plants to that water depends also on the geometric arrangement of the pores so that the water can flow through them. We have devised a method for studying the structural porosity by casting the pores in resin. The intraprism pore space of wet soil clods is impregnated with a UV fluorescent polyester resin under vacuum. When this has set we use the swelling properties of the clay to separate the clay matrix from the resin. A cast so obtained is the real three-dimensional solid reproduction of the structural porosity. This representation of the pore system is easier to study than results from computerized reconstitution of the three-dimensional space from two-dimensional images of soil in thin sections. Channels, packing pores and planar voids can be observed directly in three dimensions as the method saves the integrity and continuity of pores as small as 10 μm in diameter. The geometry of the cast shapes agrees with the interpretation of shrinkage and moisture characteristic curves. The method offers direct qualitative observation of pore organization and volume measurements of the intraprism structural porosity in vertisols.  相似文献   

17.
通过测定两种土壤和一种玻璃珠的两相热导率随气压的变化,分析变压条件下气体分子碰撞平均自由程和多孔介质孔隙结构间的关系。研究计算了表征土壤平均孔隙结构的孔隙特征长度(d),同时依据静态几何学方法计算获取了颗粒平均间距(D)。结果表明,基于热传输方法获取的d值是从气体分子碰撞传热的动态观点获取的孔隙结构表征,标识着土壤颗粒间的热分离特征,是表征土壤孔隙结构的有效指标。由于土壤的d和D值相差3个数量级,但在玻璃珠上无量级差异,这说明d值可能只能表征土壤团聚体间的平均孔隙结构,不能反映团聚体内部及黏土颗粒内部的微细孔隙结构。  相似文献   

18.
土壤孔隙质量分数维D_m二元图像分析及其影响因素研究   总被引:4,自引:1,他引:4  
本文简要介绍了利用土壤切片的二元图像分析了土壤孔隙结构的质量分数维Dm 的方法 ,并研究比较了四类土壤类型的Dm 及其影响因素。结果表明Dm 可以较好地定量描述土壤孔隙的空间分布特征 ,Dm 与土壤孔隙面积、孔隙孔径分布、土壤深度以及土壤质地之间均具有一定的联系  相似文献   

19.
为了揭示生物炭改良土壤孔隙的复杂结构及其影响因素,以江苏滨海盐渍土为研究对象,采用添加生物炭改良盐渍土,设置0,2%,5%(占表层0—20 cm土重比)3个生物炭添加水平。每年10月在水稻收割后,采用塑料环刀取表层(0—20 cm)原状土,进行Micro-CT扫描获取土壤CT孔隙序列。基于多重分形去趋势波动分析理论,并结合数据重排,分析施加生物炭对CT孔隙序列多重分形特征及其来源的影响。结果表明,所有处理的CT孔隙序列的复杂度均随着年份增长;2%生物炭处理的CT孔隙序列的复杂程度较0和5%生物炭处理分别提高7.54%和5.28%;概率密度函数与长程相关性均影响CT孔隙序列的多重分形特征;孔隙和空间的长程相关性是主要影响因素;生物炭的添加促使孔隙分形特征更易受到土壤中生物微生物活动的影响。研究结果为定量化分析生物炭改良盐渍土孔隙结构提供了理论支持。  相似文献   

20.
Coupled studies of pore space and rheological behavior of undisturbed samples from soddypodzolic soils (Albic Glossic Retisols (Loamic, Aric, Cutanic)) of Moscow oblast under forest and under cropland and from typical chernozems (Haplic Chernozems (Loamic, Aric, Pachic)) of Kursk oblast under oak forest, shelterbelt, and cropland were conducted. Soil pore space was investigated using a Bruker SkyScan 1172 G (Belgium) microtomograph, and 3D models of pore space were constructed. The total pore space (in percent of the volume of analyzed samples) and the volumes of open and closed pores were determined from these models. The nondestructive tomographic method made it possible to analyze the rheological properties of soils for the same samples using the amplitude sweep method on an MCR-302 (Anton Paar, Austria) rheometer. The following parameters of the rheological behavior were determined: storage modulus in the range of linear viscoelastic behavior, the range of linear viscoelastic behavior, and the range of plastic behavior. A joint analysis of the rheological properties and morphometric characteristics of the undisturbed samples of soddy-podzolic soils and chernozems demonstrated the dependence of the rheological behavior of these soils on their physicochemical properties and pore space structure reflecting the differences in the genesis and physical and chemical properties of soil horizons. The correlation analysis attested to direct (positive) relationships between the values of the total and open tomographic porosities, the range of linear viscoelastic behavior, and the deformation upon the destruction of soil structure. Negative relationships were found between the values of open and total porosity and the structural strength of the soil monoliths. A hypothesis about an increase in the range of plastic behavior of soils and a decrease in the strength of soil structure with an increase in porosity was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号