首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
机载激光雷达的作物叶面积指数定量反演   总被引:4,自引:2,他引:2  
为了进一步挖掘激光雷达在植被垂直结构探测上的潜力,通过引入Kuusk的多层均匀冠层方向反射模型的单次散射部分,基于激光雷达发射和回波波形的高斯特征,模拟作物激光雷达回波,建立了作物叶面积体密度和叶面积指数的反演方法。模型输入参数的敏感性分析显示:G函数对反演结果的影响比土壤和叶片反射率大。最后利用“黑河综合遥感联合试验”的数据对反演方法进行了验证:反演的作物叶面积体密度与实测数据基本一致,叶面积指数反演的相对误差为12.5%。结果表明该方法可以有效反演作物叶面积体密度和叶面积指数,为作物结构参数反演提供了新的途径。  相似文献   

2.
利用高光谱指数进行冬小麦条锈病严重度的反演研究   总被引:8,自引:3,他引:5  
通过选取不同条锈病抗性品种(高抗、高感、中间)进行田间不同梯度(对照、轻度、中度、重度)的接种试验,在接种后每隔7 d左右,同步测定了不同品种、不同处理的冠层光谱、单叶光谱和对应目标的病情指数以及叶面积指数、叶倾角等生物物理参数和叶绿素、SPAD数值等生物化学参数。通过对获取的光谱数据和生物物理参数和生物化学参数进行统计分析。研究结果表明,小麦被条锈病感染以后,叶片叶绿素含量急剧下降,通过研究叶片绿度值(SPAFD)值与叶绿素含量之间的关系,建立了叶片叶绿素含量和叶片SPAD数值之间的线性关系方程。通过在借鉴前人研究结果的基础上,通过筛选光谱指数,在冠层水平上构建作物冠层结构不敏感色素反演指数(CCII=TCARI/OSAVI)来反演全生育期不同处理的SPAD数值,此反演结果受品种类型、冠层结构和土壤背景的影响较小,线性方程的决定系数达到极显著的水平。在单叶水平选取归一化的光化学指数(NPRI)来反演单叶的病情指数(DI),线性方程的决定系数达到极显著的水平。所以该文通过选取适当的高光谱指数进行冬小麦条锈病严重度的反演的理论和方法是可行的。且反演结果受不同品种、不同叶面积指数和土壤背景等的影响均较小。  相似文献   

3.
用多角度光谱信息反演冬小麦叶绿素含量垂直分布   总被引:7,自引:5,他引:7  
由于作物叶片具有一定的叶位空间垂直结构(倒一叶、倒二叶、倒三叶、倒四叶、倒五叶等),且存在不同叶位叶绿素等生化组分垂直分布的特性,该研究提出利用遥感数据反演作物养分垂直分布,尤其是作物中、下层信息的方法。运用多角度光谱信息,通过不同角度条件下,反映的作物上层、中层、下层信息的差异等通过构建基于不同观测天顶角条件下的冠层叶绿素反演指数的组合值,形成上层叶绿素反演光谱指数、中层叶绿素反演光谱指数和下层叶绿素反演光谱指数来反演作物叶绿素的垂直分布,达到了极显著的水平。表明运用基于多角度光谱信息的光谱指数组合能够较好的反演作物叶绿素含量的垂直分布。对于生产上迫切需要对作物中、下层叶片氮素或叶绿素状况的监测来指导适时和适量施肥,保证获得既定的作物产量和品质目标,提高肥料利用率有重要意义。  相似文献   

4.
利用无人机多光谱估算小麦叶面积指数和叶绿素含量   总被引:6,自引:4,他引:2  
利用无人机遥感的方式进行农作物长势监测是目前精准农业、智慧农业发展的重要方向,为了探究无人机多光谱反演小麦叶面积指数(Leaf Area Index,LAI)和叶绿素含量的模型估算潜力,该研究在3个飞行高度(30、60、120 m)采集多光谱影像,通过使用全波段差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)、归一化光谱指数(Normalized Spectral Index,NDSI)和经验植被指数与地面实测数据进行相关性分析,获得不同高度下的光谱指数与LAI和叶绿素含量的关系模型及其决定系数,以决定系数为依据分别构建多元逐步回归、偏最小二乘回归和人工神经网络模型,分析不同飞行高度无人机多光谱反演小麦冠层LAI和叶绿素含量SPAD(Soil and Plant Analyzer Development)值的精度。结果表明:1)30 m高度下,绿-红比值光谱指数与小麦LAI的相关性最高,相关系数为0.84;60 m高度下,红-蓝比值光谱指数与小麦叶绿素含量的相关性最高,相关系数为0.68;2)在60 m高度下,经验植被指数与小麦LAI和叶绿素含量的相关性较好,最大相关系数分别为0.77和0.50;3)利用偏最小二乘回归反演小麦LAI的精度最高,决定系数为0.732,均方根误差为0.055;利用人工神经网络模型反演小麦叶绿素含量的精度最高,决定系数为0.804,均方根误差0.135。该研究成果可为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机多光谱波段实现作物长势参数快速估测提供应用参考。  相似文献   

5.
高光谱数据估测稻麦叶面积指数和叶绿素密度   总被引:14,自引:6,他引:8  
该研究利用高光谱遥感技术分析水稻和小麦两种作物不同生育期的冠层光谱及其叶面积指数和叶绿素密度的变化,比较高光谱植被指数与两种作物的叶面积指数和叶绿素密度之间的关系,最后确定估算两种作物的叶面积指数和叶绿素密度最佳植被指数。结果表明:水稻和小麦两作物的叶面积指数和叶绿素密度在整个生育期内的变化规律基本一致,即先升高后下降的趋势,但两作物叶绿素密度与叶面积指数最大值出现的时期不同;稻麦两作物在整个生育期内的光谱反射率曲线,在可见光区域(400~700 nm)变化无明显规律,在近红外区域(700~1 000 nm),生育前期反射率由低到高,到生育后期则由高到低,其中最大值分别出现在抽穗期和灌浆期左右;通过14种植被指数与两作物的叶面积指数和叶绿素密度相关性比较分析得知,二次修正土壤调节植被指数(MSAVI2)与水稻农学参数相关性最好,相关系数r>0.91,而小麦在800 nm处的光谱反射率(R800)与其农学参数相关性最好,相关系数r>0.92;并利用线性回归的方法,建立了估算两作物叶面积指数和叶绿素密度的模型,决定系数R2>0.85。这样为不同环境条件下(水作和旱作)农作物的动态监测和科学管理及决策提供了技术支持。  相似文献   

6.
红边位置改进算法的冬小麦叶绿素含量反演   总被引:3,自引:3,他引:0  
植被反射光谱的红边位置对叶绿素含量高度敏感,利用遥感数据建立基于红边位置的作物叶绿素含量反演模型,可实现大范围作物及时的长势监测。该研究以冬小麦为研究对象,在学习6种经典红边位置求解算法的基础上,提出牛顿-切比雪夫插值法和牛顿八点插值法2种改进红边位置求解算法。根据不同算法的红边位置分布特征综合分析了改进算法的优缺点,并在此基础上建立基于红边位置的冬小麦叶绿素含量反演模型。结果表明,与传统算法相比,2种改进算法均显著改善了双峰现象和红边位移,且基于新算法的模型预测值与叶绿素含量实测值的决定系数>0.619,较最大一阶导数法提高了5.024%~10.480%,具有更高的精度。同时,在2种改进算法中,牛顿八点插值法具有更高的稳定性与实用性。研究结果为植被理化参数反演与农业生产应用提供理论与技术支撑。  相似文献   

7.
WOFOST模型同化时序HJ CCD数据反演叶面积指数   总被引:2,自引:1,他引:1  
为增强作物叶面积指数遥感反演的机理性并提高反演精度,在深入分析作物长势模型WOFOST机理的基础上,采用最小二乘法作为同化算法,以生长季内获取的时序HJCCD遥感数据作为外部数据源,反演冬小麦叶面积指数进行长势监测和估产应用。以河北省玉田县为试验区,以三要素法和实测LAI作为基准,模型模拟产量和LAI作为反演精度的度量指标,成熟期LAI估算误差由模型同化前的14.95%降至同化后的9.97%,产量误差由同化前的18.17%降为同化后的15.89%。叶面积指数的同化结果与实测数据具有较好的拟合度,表明该方法的具有一定可行性,为作物生长模型区域化应用提供了参考。  相似文献   

8.
无人机影像反演玉米冠层LAI和叶绿素含量的参数确定   总被引:6,自引:4,他引:2  
小型低空无人机(unmanned aerial vehicle, UAV)机动灵活、操作简便,可以按需获取高空间分辨率影像,是育种玉米长势监测的一种重要技术手段。针对UAV影像反演玉米冠层叶面积指数(LAI, Leaf Area Index)和叶绿素含量的参数确定问题,该研究以DJI S1000+无人机为平台,搭载法国Parrot Sequoia相机,获取海南三亚市崖城玉米育种基地的多光谱影像。基于预处理后的UAV影像,采用重采样的方式获得不同分辨率下(0.1~1 m)的不同植被指数,所构建的植被指数包括归一化植被指数(normalized difference vegetation index,NDVI)、叶绿素指数(grassland chlorophyll index,GCI)、比值植被指数(ratio vegetation index,RVI)、归一化红边红指数(normalized difference rededge-red index,NDIrer)、归一化红边绿指数(normalized difference rededge-green index,NDIreg)和重归一化植被指数(renormalized difference vegetation index,RDVI),通过将不同分辨率下的不同植被指数与地面实测数据进行回归分析,以获得各分辨率下植被指数与冠层LAI和叶绿素含量的关系模型及其决定系数,以决定系数的大小为依据来确定玉米冠层LAI和叶绿素含量反演的最优空间分辨率和最优植被指数。通过试验发现,在分辨率为0.6 m时,NDVI与地面实测LAI之间的决定系数R2为0.80,决定系数达到了最大,利用该分辨率下的NDVI反演得到的LAI验证精度R2达到了0.73;在分辨率为0.1 m时,NDIreg与地面实测叶绿素含量之间的决定系数R2为0.70,决定系数达到了最大,利用该分辨率下的NDIreg反演得到的叶绿素含量验证精度R2达到了0.63。因此得出结论:1)植被指数的选择:① 对于玉米冠层LAI的反演来说,不包含绿波段的植被指数的LAI反演精度较高,这说明绿波段对LAI的变化不敏感;② 对于玉米冠层叶绿素含量反演来说,包含红边波段的植被指数的反演精度较高,因此影像的红边波段对叶绿素含量的变化非常敏感。2)UAV影像空间分辨率的选择:反演LAI的最优分辨率是0.6 m,此时NDVI与实测LAI的决定系数达到最大;反演冠层叶绿素含量的最优分辨率是0.1~0.3 m范围内,此时NDIreg与实测叶绿素含量的决定系数达到最大。该研究可为UAV反演玉米表型参数时的分辨率和植被指数选择提供参考。  相似文献   

9.
分析了夏玉米各组分含量、红边参数以及两者间的相关性。结果表明,可利用FD-Max反演叶面积指数,利用Depth672反演茎秆全N含量,利用Lwidth反演叶片全N含量、叶片和茎秆的含水量以及可溶性糖含量。构建了以红边参数为自变量的各组分的反演模型,对反演模型预测性分析表明,利用上述红边参数预测农学组分是可行的。  相似文献   

10.
岷江上游典型流域叶面积指数的遥感模型及反演   总被引:2,自引:0,他引:2  
叶面积指数是植被定量遥感的重要参数,区域的时序列叶面积指数揭示了区域生态的演化过程,反演方法上主要是通过植被指数建立相关模型实现的,对于不同地区或不同气候带而言,模型的通用性以及各种植被指数在模型中的灵敏度都需做进一步探讨。以岷江上游典型流域毛儿盖地区为研究区,综合利用Aster和ETM遥感数据、地面实测数据和常规观测数据等资料,研究了植被指数与叶面积指数之间的相关性,以遥感图像中单个像元作为测算单位,对岷江上游毛儿盖地区叶面积指数进行了反演。利用研究区实测数据、生态环境本底遥感调查数据和水文气象数据,对上述模型反演结果进行验证和精度分析。结果表明,归一化植被指数NDVI在反演叶面积指数模型中具有较高的灵敏度,能较真实地反映研究区叶面积指数实际状况。  相似文献   

11.
为了进一步挖掘无人机载激光雷达(Light Detection and Ranging,LiDAR)在农作物长势监测方面的潜力,探究机载LiDAR与多光谱遥感数据融合反演冬小麦叶面积指数(Leaf Area Index,LAI)的效果,以无人机载LiDAR和可见光-近红外多光谱为研究手段,获取试验区冬小麦孕穗期的无人机...  相似文献   

12.
为了提高无人机遥感对冬小麦叶面积指数(leaf area index,LAI)反演模型的精度与泛化能力,该研究利用无人机搭载多光谱相机获取不同氮素处理和不同复种方式的冬小麦生长实测数据,结合PROSAIL辐射传输模型生成包含机理信息的模拟数据,基于不同组合方式建立了5种LAI反演混合数据集,结合多种机器学习方法,以期构建经验与机理相结合的LAI高精度反演模型。由于LAI反演受NIR波段反射率影响大,该研究筛选7种与NIR波段相关的植被指数提取冬小麦光谱特征,构建与混合数据集LAI的相关系数矩阵,进一步探究不同光谱特征对冬小麦LAI的影响程度。在此基础上,采用具有代表性和普适性的4种机器学习方法,即贝叶斯岭回归模型、线性回归模型、弹性网络模型和支持向量回归模型,构建不同冬小麦LAI反演模型,用以评估基于半经验半机理数据反演冬小麦LAI的可行性,进一步探索其对不同氮素水平和复种方式的冬小麦长势评估能力。结果表明:1)筛选的与NIR波段相关的植被指数与冬小麦LAI之间存在较强的相关性,其中归一化差异植被指数、增强植被指数、归一化差异红边指数、比值植被指数、红边叶绿素植被指数、土壤调节植被指数与LAI呈正相关,结构不敏感色素植被指数与LAI呈负相关;2)辐射传输模型中体现了冬小麦LAI影响太阳光线传播的机理,结果表明,与实测数据混合建立的模型,具有较强的鲁棒性和泛化能力。相比于其他3种模型,支持向量回归模型在各种数据组合下均取得了较好的LAI预测性能,在C1、C2、C3、C4这4种训练-测试组合的训练集中R2依次为0.86、0.87、0.88、0.91,RMSE依次为0.47、0.45、0.45、0.41;在测试集的R2依次为0.85、0.19、0.89、0.87,RMSE依次为0.45、1.31、0.49、0.50;3)使用支持向量机生成试验区LAI反演图,对4种氮素水平和2种复种方式的冬小麦长势评估,结果表明,适当的施加氮素处理能提高冬小麦LAI值,麦-豆复种方式下的冬小麦LAI值普遍高于麦-玉复种的LAI值。该研究为冬小麦LAI的反演提供了一种有效的方法,并为高效评估冬小麦长势研究提供了参考。  相似文献   

13.
针对红树林叶面积指数(Leaf Area Index,LAI)实地测量难度大、无法快速大范围LAI估算的问题。该研究以广西北部湾红树林为研究对象,以无人机(Unmanned Aerial Vehicle,UAV)和哨兵二号(Sentinel-2A,S2)多光谱影像为数据源,整合原始光谱波段、植被指数和组合植被指数构建高维数据集,并进行数据降维和特征优选。定量评估6种机器学习算法(XGBoost、前馈反向传播神经网络(Back Propagation,BP)、支持向量机(SVM)、岭回归(Ridge)、Lasso和弹性网络(ElasticNet))对不同红树林树种LAI的估算能力;探究UAV和Sentinel-2A影像对红树林树种LAI估算的精度差异。研究结果表明:1)基于XGBoost算法构建的模型实现了红树林LAI高精度估算,R2均高于0.70,RMSE均低于0.349;2)在UAV和Sentinel-2A影像下,XGBoost模型对不同红树林树种LAI的估算精度(R2)比其他5种模型分别提高了0.105~0.365和0.283~0.540,RMSE降低了0.100~0.392和0.102~0.518;3)UAV影像数据与XGBoost算法构建的模型对海榄雌LAI的估算精度优于其他组合(R2=0.821、RMSE=0.288),Sentinel-2A影像数据与XGBoost算法构建的模型对秋茄和桐花树LAI的估算精度优于其他组合(R2=0.940~0.979、RMSE=0.142~0.104),不同红树林树种LAI的估算精度依次为桐花树>秋茄>海榄雌;4)SNAP-SL2P算法整体性低估红树林LAI值,UAV影像红树林树种LAI的平均估算精度(R2=0.677~0.713)均优于Sentinel-2A影像,实现了不同红树林树种LAI的高精度估算。  相似文献   

14.
基于无人机数码影像的冬小麦叶面积指数探测研究   总被引:18,自引:1,他引:17  
叶面积指数(LAI)是评价作物长势的重要农学参数之一,利用遥感技术准确估测作物叶面积指数(LAI)对精准农业意义重大。目前,数码相机与无人机系统组成的高性价比遥感监测系统在农业研究中已取得一些成果,但利用无人机数码影像开展作物LAI估测研究还少有尝试。为论证利用无人机数码影像估测冬小麦LAI的可行性,本文以获取到的3个关键生育期(孕穗期、开花期和灌浆期)冬小麦无人机数码影像为数据源,利用数字图像转换原理构建出10种数字图像特征参数,并系统地分析了3个生育期内两个冬小麦品种在4种氮水平下的LAI与数字图像特征参数之间的关联性。结果表明,在LAI随生育期发生变化的同时,10种数字图像特征参数中R/(R+G+B)和本文提出的基于无人机数码影像红、绿、蓝通道DN值以及可见光大气阻抗植被指数(VARI)计算原理构建的数字图像特征参数UAV-based VARIRGB也有规律性变化,说明冬小麦的施氮差异不仅对LAI有影响,也对某些数字图像特征参数有一定影响;在不同条件(品种、氮营养水平以及生育期)下的数字图像特征参数与LAI的相关性分析中,R/(R+G+B)和UAV-based VARIRGB与LAI显著相关。进而,研究评价了R/(R+G+B)和UAV-based VARIRGB构建的LAI估测模型,最终确定UAV-based VARIRGB为估测冬小麦LAI的最佳参数指标。结果表明UAV-based VARIRGB指数模型估测的LAI与实测LAI拟合性较好(R2=0.71,RMSE=0.8,P0.01)。本研究证明将无人机数码影像应用于冬小麦LAI探测是可行的,这也为高性价比无人机遥感系统的精准农业应用增添了新成果和经验。  相似文献   

15.
冬小麦叶面积指数高光谱遥感反演方法对比   总被引:26,自引:13,他引:13  
冬小麦叶面积指数(LAI,leafarea index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

16.
冬小麦叶面积指数(LAI, leaf area index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

17.
基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演   总被引:2,自引:5,他引:2  
为给小麦长势的遥感监测提供技术支持,该文运用随机森林回归(RF,random forest)算法建立小麦叶面积指数(LAI)遥感反演模型。首先基于2010-2013年江苏地区小麦环境减灾卫星HJ-CCD的影像数据,提取拔节、孕穗和开花3个生育期的卫星植被指数,进而根据各生育期植被指数和相应实测LAI数据,利用RF算法构建各期小麦LAI反演模型,并以人工神经网络(ANN,artificial neural network)模型为参比模型进行预测精度的比较。结果表明:RF算法模型在3个生育期的预测结果均好于同期的ANN模型。拔节、孕穗和开花3个生育期RF模型预测值与地面实测值的R2分别为0.79,0.67和0.59,对应的RMSE分别为0.57,0.90和0.78;ANN模型的R2分别为0.67,0.31和0.30,对应的RMSE分别为0.82,1.94和1.43。该研究结果为提高大田尺度下的小麦LAI遥感预测精度提供了技术和方法。  相似文献   

18.
高光谱遥感反演LAI时,由于实际样本数远小于光谱维数,易导致基于全谱段建立的模型不稳定。针对该问题,该文提出将基于原始光谱反射率与LAI相关性和基于光谱曲线特征的2种波段选择方式分别与主成分回归(PCR)或偏最小二乘回归(PLSR)结合的高光谱维数约简方法,估算冬小麦LAI。并选择归一化植被指数(NDVI)、增强型植被指数(EVI)、重归一化植被指数(RDVI)、修正土壤调节植被指数(MSAVI)和三角形植被指数(TVI)5种代表性植被指数,利用2009、2010年实测大田冬小麦冠层高光谱和LAI数据,将提出的基于维数约简的方法与基于植被指数的LAI估算方法进行了比较,独立样本集验证结果和交叉验证结果均表明,提出的基于维数约简的方法比基于植被指数方法的估算精度高,在交叉验证结果中,基于维数约简的方法R2最高达到0.818,相应RMSE为0.685。该研究可为后续基于高光谱的LAI估算提供参考。  相似文献   

19.
基于多源无人机影像特征融合的冬小麦LAI估算   总被引:3,自引:3,他引:0  
为探讨无人机多源影像特征融合估测作物叶面积指数的能力,该研究以冬小麦为研究对象,利用多旋翼无人机搭载高清数码相机和UHD185成像光谱仪获取研究区冬小麦关键生育期(扬花期、灌浆期)的可见光和高光谱影像。综合考虑可见光、高光谱影像特征与冬小麦叶面积指数的相关性及影像特征重要性进行特征筛选,然后,以可见光植被指数、纹理特征、可见光植被指数+纹理特征、高光谱波段、高光谱植被指数及高光谱波段+植被指数分别作为输入变量构建多元线性回归、支持向量回归和随机森林回归的叶面积指数估测模型(单传感器数据源);以优选的两种影像特征结合支持向量回归、随机森林回归构建叶面积指数估测模型(两种传感器数据源),比较分析单源与多源影像特征监测冬小麦叶面积指数的性能。进一步地,考虑到小区土壤空间异质性会影响冬小麦叶面积指数估测结果,该研究探讨了不同影像采样面积下基于单源遥感数据构建的小麦叶面积指数估测模型精度。研究结果表明:在扬花期和灌浆期,使用两种影像优选特征构建的随机森林回归估测模型精度最佳,验证集决定系数分别为0.733和0.929,均方根误差为0.193和0.118。可见光影像采样面积分别为30%和50%,高光谱影像采样面积为65%时,基于单源影像特征构建的随机森林回归估测模型在扬花期和灌浆期效果最好。综上,该研究结果可为无人机遥感监测作物生理参数提供有价值的依据和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号