首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“坐球高度”是评价花椰菜品种是否适合机械化采收的重要农艺性状之一。为了解析花椰菜“坐球高度”性状的遗传规律,使用早熟、紧实型花椰菜F7代自交系ZAASC4101与芥蓝F6代自交系ZAASJ1401为亲本构建了包括P1、P2、F1、F2、B1、B2的6个联合世代群体,利用主茎高度(六世代群体)和叶痕间距(F2群体)两个指标来锚定“坐球高度”性状。研究结果表明,F2群体中主茎高度与叶痕间距数值呈极显著相关(相关系数为0.652),并且这两个指标均为连续性的近似正态分布,符合数量遗传的特征;主茎高度的六世代群体遗传分析和叶痕间距的F2群体遗传分析结果均表明,花椰菜“坐球高度”性状的最适遗传模型为:两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,表明该性状主要受两对主基因+多个微效基因的控制,并且遗传率达到97.84%。因此,可以利用连锁分...  相似文献   

2.
为了探究矮牵牛花朵大小的遗传规律,以大花型和小花型矮牵牛高代自交系为亲本构建四世代遗传群体(P1、P2、F1、F2),对花朵大小遗传特征进行主基因+多基因混合遗传模型分析,并将F1植株与中花型矮牵牛W115株系进行杂交,验证遗传规律。同时以F2群体为材料,对花径、萼片长、叶片长等23个表型性状进行测定,并研究其相关性。结果表明,矮牵牛大花对小花性状符合2MG-A模型,即由2对加性主基因控制,主基因遗传率为95.38%;大、小花杂交F1与中花W115进一步杂交,后代出现大花与中花性状分离(1∶1),且中花植株的叶片和苞片叶绿素含量显著高于大花植株(P<0.01)。大花×小花F2群体的表型性状变异丰富,变异系数在7.67%~59.93%,平均22.38%。相关性分析结果表明,花部性状、叶部性状以及两者之间均存在一定的相关性,其中花径与其他器官大小均呈显著正相关,与部分植株性状呈显著负相关。  相似文献   

3.
曾莉  刘颖圣  徐小万 《农学学报》2023,13(11):55-59
为研究赏食兼用型辣椒花瓣和果实紫色性状遗传机制,以白辣观赏椒F7和紫辣观赏椒F8作亲本,构建6个世代群体(P1、P2、F1、F2、BC1、BC2),采用目测法分析6个世代群体的花色、青熟期果色性状,研究辣椒花瓣和果实紫色性状遗传规律。结果显示,F1代辣椒花瓣和青熟期果实均表现为紫色,说明辣椒花瓣和青熟期果实的紫色对白色均为显性,F2代分离群体紫色和白色都符合孟德尔3:1的分离比例,表明辣椒花瓣和青熟期果实紫色花瓣性状各受1对显性基因控制,BC1代分离群体紫色和白色都符合1:1的分离比例;BC2代辣椒花色和果色均表现为紫色,但有颜色深浅的区别,表明控制辣椒花瓣和青熟期果实紫色的基因具有累加效应。  相似文献   

4.
水稻黄绿叶突变体ygl13的鉴定及候选基因分析   总被引:2,自引:0,他引:2  
【目的】对水稻黄绿叶突变体ygl13 (yellow-green leaf 13 )进行表型鉴定和候选基因检测,以便了解水稻叶色形成和调控的分子机制。【方法】经甲基磺酸乙酯(EMS)诱变籼稻恢复系缙恢10号(Jinhui 10),从中筛选出1份遗传稳定的黄绿叶突变体命名为ygl13,对突变体的表型进行系统观察,调查其成熟期的主要农艺性状,分别测定野生型和突变体苗期和孕穗期的叶片光合色素含量,同时利用透射电镜观察野生型和突变体ygl13的叶肉细胞及叶绿体结构。将表型正常的不育系西农1A与突变体ygl13杂交,根据F1和F2群体的性状表现与分离情况,分析该突变性状的遗传行为,并以F2作为基因定位群体,对突变体ygl13进行候选基因遴选和突变位点测序验证。【结果】突变体ygl13的植株叶片在整个生育期均呈现黄绿色,与野生型缙恢10号相比,突变体ygl13苗期和孕穗期叶片叶绿素a、叶绿素b和类胡萝卜素含量均极显著降低。透射电镜观察结果显示,与野生型相比,突变体ygl13叶绿体结构异常,基质片层减少退化,类囊体片层减少,不规则的散乱分布。农艺性状调查结果表明,突变体ygl13穗总粒数增加了26.06%,株高和结实率分别降低了12.33%和18.82%,但穗长、有效穗、穗实粒数和千粒重无显著差异。F2群体正常叶色的植株数与黄绿叶植株数分离比经χ2测验符合3﹕1分离比例(χ2=2.35<χ20.05=3.84),表明ygl13的黄绿叶性状由1对隐性核基因控制。YGL13被定位于第8染色体短臂InDel标记ID43和ID69之间,遗传距离分别为4.0和0.5 cM,区间物理距离约为318 kb,共有52个基因。经测序比对分析发现,ygl13突变体在OsSIG1编码区的第1 005个碱基G突变为碱基A(位于第三外显子),造成编码色氨酸(Trp或W)的密码子突变为终止密码子,导致蛋白翻译提前终止,则该基因编码520个氨基酸的蛋白质突变为334个氨基酸的截短蛋白。qRT-PCR结果表明,突变体ygl13部分光合色素代谢途径和光系统相关基因表达紊乱。【结论】水稻突变体ygl13的黄绿叶性状由1对隐性核基因控制,该基因与已报道的水稻质体σ因子OsSIG1为等位基因。  相似文献   

5.
本研究旨在开发与中国南瓜(Cucurbita moschata Duch.)叶黄素含量的数量性状基因座(Quantitative trait locus, QTL)紧密连锁且实用性强的分子标记,以加速南瓜的育种进程。前期在F2代群体中定位到与叶黄素含量紧密连锁的主效QTL位点qlut11-a,在其两侧翼分子标记R1_38695和R2_55819之间开发了8对InDel分子标记。通过对F2代群体及部分高代(F8代)重组自交系株系进行基因型和叶黄素表型分析,明确了InDel分子标记G005310和G005670可有效筛选高叶黄素含量和低叶黄素含量材料,并在近等基因系构建中证实了其能用于创制高叶黄素含量的南瓜种质,BC5F1果实中的最高叶黄素含量约是低叶黄素含量亲本果实含量的2.8倍,且占高叶黄素含量亲本果实的96%。本研究结果为加速南瓜高叶黄素含量种质育种进程提供了更实用的分子标记。  相似文献   

6.
【目的】对西瓜白色和柠檬黄色果肉的色素成分、色素含量、遗传规律进行研究,通过BSA-seq进行基因定位,并预测与柠檬黄色果肉相关的候选基因,为深入研究西瓜柠檬黄色果肉的遗传与分子机制奠定理论基础。【方法】本研究选用‘冰糖脆’(Ⅰ P1,白色果肉)和‘喜华’(Ⅰ P2,柠檬黄色果肉),‘萨省奶油瓜’(Ⅱ P1,白色果肉)和‘新金兰选’(Ⅱ P2,柠檬黄色果肉)4份纯合自交系材料为亲本分别配置杂交组合,构建了两个六世代群体。利用高效液相色谱法(HPLC)对4个亲本材料4个不同发育时期的类胡萝卜素组分和含量进行测定。利用集群分离分析法(bulked segreant analysis,BSA)实现对两个BSA-seq群体(BSA-seq Ⅰ和BSA-seq Ⅱ)的初定位,然后根据西瓜参考基因组‘97103’V2注释信息挖掘候选基因,并通过实时荧光定量PCR(qRT-PCR)对候选基因进行验证。【结果】在西瓜果实发育过程中,紫黄质和叶黄素在双亲中差异性积累,其中紫黄质具有更高的含量,且在柠檬黄色果肉中的含量显著高于白色果肉。成熟期西瓜白色果肉中紫黄质含量为(10.96±4)μg·g-1DW,柠檬黄果肉中紫黄质含量为(22.84±2)μg·g-1 DW;成熟期西瓜白色果肉中叶黄素含量为(2.23 ±1)μg·g -1 DW,柠檬黄果肉中叶黄素含量为(3.97±1)μg·g-1 DW。在构建的两组六世代分离群体中,Ⅰ F1、Ⅱ F1、Ⅰ BC1P1、Ⅱ BC1P1群体西瓜果肉颜色均为非柠檬黄色,F2群体中西瓜果肉非柠檬黄色与柠檬黄色的分离比符合3∶1的孟德尔分离比例,Ⅰ BC1P2、Ⅱ BC1P2回交群体果肉非柠檬黄色和柠檬黄色分离比符合1∶1,表明西瓜果肉柠檬黄色对白色为隐性性状。通过对BSA-seq Ⅰ和BSA-seq Ⅱ数据进行SNP和InDel关联分析,将控制西瓜果肉柠檬黄色的主效位点定位在6号染色体24.00—24.61 Mb的区域内,该区域内共有70个基因。结合西瓜参考基因组注释信息及qRT-PCR表达量分析,最终得到5个与西瓜果肉柠檬黄色有关的基因,其中Cla97C06G121680、Cla97C06G121700Cla97C06G121890均与叶绿体的形成和叶绿体结构大小有关,这3个基因通过干预有色体的形成影响西瓜果肉颜色;Cla97C06G121910是一种响应乙烯合成的AP2转录因子,与果实成熟密切相关,通过影响果实成熟造成果肉中类胡萝卜素的积累;Cla97C06G122090具有跨膜转运作用,在类胡萝卜素的跨膜运输中起作用。【结论】西瓜白色和柠檬黄色果肉中主要色素为紫黄质和叶黄素,且柠檬黄色果肉中的色素积累量显著高于白色果肉。西瓜果肉柠檬黄色对白色为隐性性状。BSA-seq分析将调控西瓜果肉柠檬黄色形成的一个主效位点定位于6号染色体24.00—24.61 Mb区间内,推测Cla97C06G121680、Cla97C06G121700、Cla97C06G121890、Cla97C06G122090、Cla97C06G121910是与西瓜果肉柠檬黄色形成相关的候选基因。  相似文献   

7.
【目的】 通过对一个热带高抗玉米南方锈病材料S313与4个高感玉米南方锈病材料组配的8个F2群体进行两年三季的遗传分析,在表型鉴定的基础上,利用其中1个F2群体进行局部遗传图谱构建及抗性基因定位,并利用大群体及新开发的分子标记对抗性主效QTL进行精细定位,为进一步克隆该基因奠定基础。【方法】 连续三季对8个F2分离群体,分3个时期进行病原菌接种,玉米生长后期按1—9级标准等级记载各单株的抗南方锈病级数,进行抗性表型鉴定,最终确定抗、感分离比例。利用56K芯片筛选出2个亲本间多态标记,选择其中均匀分布的192个标记对S313×PHW52的F2群体中各30个高抗、高感子代进行KASP分型。利用第10染色体短臂上19个SNP标记对整个F2群体进行分型,构建局部遗传图谱;将遗传图谱与田间抗性表型鉴定结果相结合进行抗性QTL定位。开发初定位区间内10个SNP标记对次级群体进行标记分型,根据交换单株数量大小进一步缩小定位区间。根据玉米B73 Ref Gen_V4参考基因组信息,列出对应定位区间内的所有基因,利用基因的功能注释信息,确定可能与玉米抗南方锈病相关的候选基因。【结果】 8个F2群体田间抗、感分离比均符合3﹕1的分离比例,说明热带自交系S313对玉米南方锈病的抗性是由1个效应比较大的主效QTL控制。利用56K芯片筛选出2个亲本间的多态标记16 426个。利用192个标记对各30个抗、感子代进行连锁分析,获得了1个抗性连锁标记Affx-90241059。利用19个SNP标记构建了总遗传距离为31.8 cM,标记间平均距离1.77 cM的局部遗传图谱。利用复合区间作图法把该主效QTL定位在标记Affx-91298359与标记Affx-91182449之间,区间大小约2 M。进一步利用F2大群体及10个SNP标记把该区间缩小到474 K的范围内。玉米参考基因组B73的对应区间内共有63个基因,其中3个基因LOC103640657LOC100191493LOC103640673编码的蛋白质与植物抗病性有关,因此把这3个基因列为热带玉米种质S313高抗玉米南方锈病的抗性候选基因。【结论】 S313对玉米南方锈病的抗性是由1个主效QTL控制,并且S313的主效基因定位在第10染色体短臂约0.47 M的范围内。在该范围内有3个玉米南方锈病抗性候选基因。  相似文献   

8.
玉米穗位高是与产量密切相关的重要农艺性状。本研究应用植物数量性状“主基因+多基因混合遗传模型”方法,对矮穗位自交系ds1与三个穗位高不同的自交系(As、Bs、Cs)配置的3个杂交组合的6个世代(P1、P2、F1、F2、BC1、BC2)进行了穗位高的遗传分析。结果表明,ds1的穗位高的遗传受1对加性主基因+加性-显性多基因共同控制。各组合的主基因表现相似,而多基因表现差异较大,环境对穗位高的影响较大。  相似文献   

9.
叶片数是烟草产量的重要构成因素,对提高烟农种烟收入和保证卷烟原料的供应有重要意义。低温易引起烤烟早花,导致叶片数减少,而韭菜坪2号可在高海拔地区种植,且叶片数不受影响。为揭示韭菜坪2号烤烟叶片数的遗传规律,本研究以叶片数较少的优质烤烟NC82和叶片数较多的烤烟品种韭菜坪2号为亲本,构建六世代(P1、P2、F1、F2、BC1和BC2)遗传群体,采用“主基因+多基因”混合遗传模型对韭菜坪2号的叶片数进行遗传分析。结果表明,最优模型为2MG-ADI,即受2对加性-显性-上位性主基因控制,2对主基因中加性效应起主导作用,且存在互效作用;主基因在F2、BC1、BC2世代的遗传率分别为62.72%、6.87%、45.51%,遗传率不高,可能受环境或其他因素的影响较大。本研究结果为韭菜坪2号叶片数基因的遗传和利用提供参考依据。  相似文献   

10.
单果重是西瓜[Citrullus lanatus (Thunb.) Mansf.]重要农艺性状之一,对西瓜产量提升起决定性作用。试验以大果型西瓜品种Medium为父本,小果型西瓜品种COS为母本,构建F1及F2群体,利用植物数量性状主基因+多基因混合遗传模型多世代联合分析法,分析2019~2020两年Medium、COS、F1及F2群体单果重遗传情况。结果表明,栽培西瓜单果重符合A-1(1MG-AD)模型,即单果重由主基因+加性-显性多基因控制,F2群体主基因遗传率为64.4953%,显性效应为0.3802,加性效应为负向。试验结果为西瓜单果重主效基因定位及单果重性状改良提供理论参考。  相似文献   

11.
【目的】通过构建高密度SNP遗传图谱,开展棉花多群体产量相关性状的QTL定位,获得稳定性好、精确度高的QTL,为产量性状调控基因的挖掘和有效分子标记的开发提供依据。【方法】以高稳产冀丰1271为母本、优质自交系冀丰173为父本,构建包含200个单株的F2群体,利用测序基因分型(genotyping by sequencing,GBS)技术开发群体的SNP标记并构建高密度遗传图谱,对F2、F2:3、F2:4群体的衣分、子指和单铃重进行QTL定位,注释主效和稳定QTL位点内的基因并分析基因在不同组织的表达模式,筛选候选基因。【结果】通过简化基因组测序,共获得383.07 Gb数据,包括母本冀丰1271的26.93 Gb、父本冀丰173的27.30 Gb和F2群体的328.84 Gb,Q30值分别为90.55%、89.95%和95.77%。在F2群体中开发了1 305 642个SNP标记,其中,用于构建遗传图谱的aa?bb型SNP为410 726个。构建了一张包...  相似文献   

12.
为了明确抗根肿病大白菜材料CCR12049中的抗病基因,进一步开发分子标记。以高抗根肿病的高代自交系大白菜CCR12049、高感根肿病的高代自交系大白菜CM12081、CCR12049和CM12081杂交得到的F1及F1自交构建的F2分离群体为试材,通过人工接种鉴定、聚丙烯酰胺凝胶电泳和序列比对。结果显示,该抗病材料中的根肿病抗性由显性单基因控制;36对引物在2个亲本和F1中初步筛选出4对有多态性的引物,在F2中进一步验证,发现只有1对(cr-26)在F2中的扩增结果与表型鉴定一致;2个亲本及F1的PCR产物测序比对发现,在95~111 bp这个位置,抗病亲本和F1的序列完全相同,但是感病材料在这个位置出现了17个碱基(TCTCTATCTCTTACGCA)的缺失。可以推断抗病材料可能是由于这17个碱基的插入从而表现出抗病性,该标记可以将抗感材料区分开,该标记可以作为一个初步筛选白菜抗根肿病的SSR分子标记来利用。  相似文献   

13.
【目的】近几年随着观光农业的兴起,花色的选育和改良已成为甘蓝型油菜种质资源鉴定和材料创制的重要研究方向。以甘蓝型油菜黄白花分离F2群体为研究对象,通过二代测序技术,对白花性状基因候选区间定位,开发与白花性状连锁的分子标记,为定位白花候选基因和选育白花新材料提供新思路。【方法】以甘蓝型油菜DH纯系黄花Y05和甘蓝型油菜纯系白花W01杂交,观察F1和F2群体的花色分离,分析白花性状遗传模式。在F2群体中选取30株纯白花和30株纯黄花构建DNA叶片子代池和RNA花瓣子代池,对亲本和DNA叶片子代池进行30×重测序,对RNA花瓣子代池进行5×测序。以法国甘蓝型油菜Darmor-bzh、中双11、Darmor、Tapidor为参考序列,重测序QTL-seq分析流程计算2个DNA子代池的SNP-index和delta(SNP-index)。利用R包画出SNP-index和delta(SNP-index)滑窗分析图,鉴定候选区间。转录组MMAPPR分析流程以法国甘蓝型油菜Darmor-bzh为参考序列,计算SNP频率,ED 4(Loess fit)检测峰值和鉴定候选区间。利用MISA进行重复序列鉴定,使用Prime3在候选区间进行SSR引物设计,在F2群体中采用聚丙烯酰胺凝胶电泳方法对SSR引物进行筛选。【结果】甘蓝型油菜黄花与白花杂交F2群体中,白花和黄花性状分离比符合3﹕1,暗示白花性状受1对显性主效基因控制。全基因组重测序区间定位结果显示,白花性状基因候选区间在Darmor-bzh C03染色体52—55 Mb。同时以甘蓝型油菜中双11、Darmor、Tapidor分别为参考序列,均鉴定出白花基因候选区间在C03染色体上的一致性和稳定性。转录组测序定位白花性状基因位于Darmor-bzh C03染色体54—55 Mb。转录组测序和重测序定位染色体结果高度一致。在此区间内MISA和Primer3结合设计SSR引物,聚丙烯酰胺凝胶电泳筛选到6个与白花性状紧密连锁共分离的SSR标记。6个SSR标记区间范围在760 kb(52.81—53.57 Mb)。此候选区间与甘蓝、白菜共线性分析,对应白菜A02染色体56.76—57.40 Mb区间,对应甘蓝C03染色体10.99—11.28 Mb区间。【结论】甘蓝型油菜白花性状由1对显性主效基因控制。白花性状基因候选区间在法国甘蓝型油菜Darmor-bzh C03染色体52—55 Mb区间内。此区间760 kb范围内筛选出6个与白花性状基因紧密连锁共分离的SSR标记。  相似文献   

14.
一个水稻卷叶基因的遗传分析和精细定位   总被引:1,自引:1,他引:1  
【目的】水稻叶片是光合作用的重要场所,也是理想株型的重要构成因素,通过对卷叶相关基因进行遗传分析和精细定位,为水稻卷叶基因分子标记辅助育种提供紧密连锁标记。【方法】从60Co-γ射线辐射诱变籼稻品种9311(wild-type,WT)所得突变体库中获得了一份卷叶突变体材料,暂时命名为rl16(t)rolled leaf 16)。首先,对突变体rl16(t)进行连续多代套袋自交,确定突变表型的稳定性。在抽穗期,随机选取rl16(t)和WT各10株,分别测量剑叶卷曲度以及主要农艺性状。同时取rl16(t)和WT新鲜叶片的相同部位用FAA固定,乙醇系列脱水,石蜡包埋,用石蜡切片机切10 μm薄片置于载玻片上,番红染色后置于显微镜下,拍照观察叶片泡状细胞显微结构,对泡状细胞个数和面积进行统计和测量。在分蘖期各取10株rl16(t)和WT剑叶,测定叶绿素含量。以rl16(t)为母本与WT杂交,观察F1 和F2植株的叶片表型,进行χ2测验,分析突变体的遗传行为。将卷叶突变体rl16(t)与粳稻品种滇粳优杂交F2分离群体作为定位群体,同时利用SSR标记结合新发展的InDel分子标记用于定位目的基因。利用基因表达定量对定位区间内的3个已知结构域基因和已克隆的水稻卷叶相关基因进行定量表达分析。【结果】与WT相比,rl16(t)叶片出现显著内卷,株高降低,穗长变短,结实率降低等表型变化。rl16(t)自苗期(3叶1心)整株就出现叶片纵向内卷成近似筒状的表型。随着发育进程,植株叶片始终呈现卷曲表型,而WT叶片在发育进程中则始终呈平展状。剑叶石蜡切片观察发现,rl16(t)泡状细胞数量和面积与WT相比均减少。WT的泡状细胞数量为(385.1±43.6)个/mm2,rl16(t)泡状细胞数量为(1059.5±254.4)个/mm2rl16(t)除泡状细胞发生变化外,叶片其他细胞结构与WT相比均无显著性变化。突变体rl16(t)的类胡萝卜素含量低于WT,而叶绿素a、叶绿素b、总叶绿素含量均显著高于WT。rl16(t)与WT杂交所得F1植株表现叶片平展,并且在包含423单株的F2中,分离出97株卷叶植株和326株平展叶植株,分离比符合3﹕1(χ2=0.86<χ20.05= 3.84)。将Rl16(t)初步定位于第9染色体长臂SSR标记RM23769RM23916之间,进一步扩大定位群体,最终将该卷叶基因定位在InDel标记DF70和SSR标记RM23818之间,该区段物理距离为51 kb。定位区间内有3个编码已知结构域的基因,分别是LOC_Os09g09320、LOC_Os09g09360和LOC_Os09g09370。rl16(t)与WT在基因LOC_Os09g09320与LOC_Os09g09370的表达量上无显著性差异。而rl16(t)中LOC_Os09g09360的表达量显著降低,只有WT的一半。对已克隆的8个卷叶基因进行表达定量分析,发现有7个基因(SLL1ROC5RL14SRL1ACL1NRL1NAL7)在rl16(t)中出现了不同程度的表达下调,只有OSZHD1表达上调。【结论】rl16(t)叶片发生内卷与泡状细胞数量变少,与面积变小相关。Rl16(t)是一个新的卷叶基因,LOC_Os09g09360有可能是目标基因。  相似文献   

15.
以西瓜浅绿色果皮、完全花品系ZXG1555及绿色果皮、单性花自交系Cream of Saskatchewan(简称“COS”)为亲本构建F2群体,作BSA-seq分析,结合InDel和CAPS标记作基因分型,利用两亲本及其他6份绿色果皮、单性花西瓜品系基因组重测序数据,筛选并预测候选基因。结果表明,浅绿色果皮性状和单性花性状均由单隐性基因调控,利用分子标记筛选隐性性状单株重组事件,将控制两性状的关键基因分别定位于9号染色体1.1 Mb和3号染色体0.7 Mb区间内。筛选区间内候选基因,初步推测Cla97C09G175170(Two-component response regulator-like protein APRR2)和Cla97C03G066110(1-aminocyclopropane-1-carboxylate synthase 7)分别为西瓜浅绿色果皮和单性花性状候选基因。  相似文献   

16.
本研究以4种萝卜品种为父本,以甘蓝型油菜Y5A、Y4-2A为母本,配置8组杂交组合。结果发现,Y5A/春露的杂交种子数最多,杂交种子数有31个,结角率0.15%,亲和指数0.32。通过分子标记检测方法检测F1杂交种的真实性,试验通过对甘蓝型油菜、萝卜及两者的杂交F1代种子进行萌发和试验培养,收集叶片提取基因组DNA。对亲本基因组DNA进行高通量测序,组装基因组信息并搜索全基因组中的SSR位点,并设计合成这些特异性位点相对应的引物,利用亲本和杂交种的基因组DNA进行PCR扩增,确定引物的特异性、有效性,挑选出最合适的5对引物用于杂交种的真实性鉴定。结果表明,在结角率和亲和指数均较高的Y5A/春露杂交F1代中有5粒杂交种为真杂种。  相似文献   

17.
【目的】筛选优异亲本和强优势杂交组合选育,为棉花F2生产应用提供理论依据。【方法】以8个核背景不同的陆地棉材料为亲本,采用5×3的NCⅡ遗传交配设计,在大田环境条件下,测定亲本、F1、F2和对照品种苗期株高、叶片SPAD值和光合作用参数。【结果】株高、SPAD值和净光合速率的广义遗传力和狭义遗传力较高,部分性状的F2遗传力高于F1。苗期各性状一般配合力好的亲本为P1(中901)、P2(ZB)、P6(大桃)和P7(Z98);杂交组合F1和F2在苗期性状(株高、SPAD值、净光合速率、气孔导度、胞间CO2浓度、蒸腾速率)中特殊配合力表现较好的为组合2(中901×Z98)、组合5(ZB×Z98)、组合7(SJ48×DT)。15个杂交组合的F1和F2在苗期各性状中较对照表现出不同的竞争优势,...  相似文献   

18.
为评估连续三代减数分裂雌核发育团头鲂群体的遗传多样性和遗传纯合度,寻找区分不同团头鲂育种群体(团头鲂浦江1号选育系、连续三代减数分裂雌核发育团头鲂群体)的稳定的分子遗传标记,本研究以团头鲂(Megalobrama amblycephala)浦江1号选育系F9群体为对照组,利用39条多态性RAPD随机引物比较分析了团头鲂人工减数分裂雌核发育一代群体(G1)、二代群体(G2)和三代群体(G3)的遗传多样性和遗传结构,获得了用于鉴别不同团头鲂育种群体(F9、G1、G2、G3)的稳定的RAPD分子遗传标记,探讨了连续多代诱导减数分裂雌核发育对团头鲂基因纯化的效果。结果显示,39条RAPD随机引物在F9、G1、G2和G3群体中扩增条带总数分别为213条、202条、200条和190条,F9、G1、G2和G3群体的多态位点比例分别为36.15%、35.64%、27.00%和26.84%,F9、G1、G2和G3群体的Shannon信息指数分别为0.207 9、0.185 7、0.146 1和0.138 3。3个雌核发育群体的遗传多样性水平(多态位点比例、Shannon信息指数)均明显低于对照组F9群体,随着雌核发育世代数的增加,遗传多样性水平呈现逐代降低的趋势,即G1>G2>G3。4个群体的群体内个体间的平均遗传相似系数为0.828 5~0.906 0,3个雌核发育群体的群体内个体间平均遗传相似系数均明显高于对照组F9群体;群体内个体间的平均遗传相似系数呈现随雌核发育世代数的增加而升高的趋势,即G3>G2>G1。群体间成对FST值为0.269 2~0.419 5,经置换检验得到的FST值的P值为0.000 0~0.009 0,均达到极显著水平(P<0.01),表明4个群体间存在极显著的遗传分化。有5条随机引物在群体间产生了特异DNA片段,其中,4条随机引物(S3、S40、S58和S75)可用于区分G3群体和其他3个群体(F9、G1和G2),引物S3的鉴别可靠性最高;仅1条随机引物(S71)能用于区分G2群体和其他3个群体(F9、G1和G3)。本研究结果表明,连续多代的人工减数分裂雌核发育诱导已对团头鲂育种群体产生以下两方面的影响:一方面,遗传多样性明显降低,并呈现逐代降低的趋势;另一方面,遗传纯度明显升高,并呈现逐代升高的趋势。连续多代减数分裂雌核发育能显著加快团头鲂基因的纯合速度,雌核发育三代群体(G3)已经是一个遗传一致性较高的高纯品系。  相似文献   

19.
【目的】解析茄子青枯病抗性遗传规律,为选育抗病杂交组合、优势育种及挖掘相关抗病基因提供理论支持与技术指导。【方法】以4份茄子种质(Y23、NO21、JA02和SG19)为亲本,通过Griffing完全双列杂交方法对各组合青枯病抗性进行配合力分析;分别构建2个杂交组合SG19×Y23和B1×BC03的6世代遗传群体(P1、P2、F1、F2、BC1P1和BC1P2),采用数量性状主基因+多基因世代联合分析法,对各世代青枯病抗性进行遗传模型分析。【结果】茄子青枯病抗性一般配合力远高于特殊配合力,说明抗性以加性效应为主,其次是非加性效应,受到细胞质基因遗传的影响较小;广义遗传力为69.8%,狭义遗传力为63.3%,说明茄子青枯病抗性的遗传不仅受遗传效应的影响,同时也受环境效应影响;抗青枯病的优良杂交组合为Y23×NO21和NO21×Y23;杂交组合SG19×Y23和B1×BC03的抗性均符合MX2-ADI-ADI遗传模型...  相似文献   

20.
西瓜是一种重要的园艺作物,经济效益显著,但枯萎病的发生严重限制了西瓜的生产。为了解决这一难题,利用简单、方便、实用性强的分子标记技术辅助选育抗性强的西瓜品种对于西瓜产业的优质发展具有重要意义。以父本sugarlee、母本伊选、F1代、F2代及F3代遗传群体为材料,通过苗期接种鉴定,对父本的抗性遗传规律进行研究,发现父本sugarlee对枯萎病生理小种1的抗性遗传为单基因显性性状遗传;然后利用CAPS、InDel、SCAR、dCAPS和RAPD等多种分子标记技术,筛选了22个与西瓜枯萎病抗性基因相关的分子标记,获得了与西瓜枯萎病紧密连锁的抗性标记3个,分别为indel04、indel05、indel06,位于抗病基因的一侧,连锁距离分别为7.5、10.7、13.7 cM,将这3个分子标记对20份西瓜材料进行分子检测,结果与实验室接种鉴定的结果基本一致。结果表明,分子标记indel04、indel05、indel06可应用于西瓜材料枯萎病抗性的分子辅助选择,这对于西瓜的抗性育种具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号