首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 703 毫秒
1.
大豆二粒荚长、宽相关QTL间上位效应和QE互作效应分析   总被引:1,自引:0,他引:1  
【目的】定位大豆二粒荚长、宽QTL,并分析QTL间的上位效应和与环境(QTL-by-environment, QE)的互作效应。【方法】利用Charleston×东农594重组自交系及其F2:14-F2:18代的重组自交系的147个株系为试验材料,164个SSR引物经亲本筛选后用于群体扩增构建的SSR遗传图谱,利用混合区间作图法,对2006-2010年连续5年一个地点的大豆二粒荚长、宽进行QTL定位,并作加性效应、加性×加性上位互作效应及环境互作效应分析。【结果】检测到8对有加性效应的二粒荚长QTL,加性效应的总贡献率27.2%,与环境互作总贡献率达到10.19%;6对有加性效应的二粒荚宽QTL,加性效应的总贡献率16.27%,与环境互作总贡献率达到12.18%。9对影响二粒荚长的加性×加性上位互作效应的QTL,可解释该性状总变异的9.02%;8对影响二粒荚宽的加性×加性上位互作效应的QTL,可解释该性状总变异的8.81%。【结论】上位效应和环境效应在二粒荚长、宽性状的遗传中起了重要作用,因此,在分子标记辅助育种中应该考虑对效应起主要作用的QTL和上位性QTL,又要考虑微效多基因的聚合。  相似文献   

2.
大豆粒形性状与百粒重的QTL定位   总被引:1,自引:1,他引:0  
文章选用东农46和L-100杂交构建的F2:10、F2:11代大豆重组自交系群体127个家系为作图群体,通过全基因组重测序技术,开发bin标记,构建高密度遗传连锁图谱,结合两年四点的大豆粒形性状和百粒重表型数据,利用IciMapping 4.0软件的完备区间作图法作加性QTLs和QTLs间上位性互作检测。结果表明,经粒形性状和百粒重主效QTLs检测,获得81个与大豆粒长、粒宽、粒厚、粒体积和百粒重相关QTLs,分布于18条染色体,贡献率1.66%~30.70%,其中贡献率最高位点分别为qSL-4-2(23.85%)、qSW-1-1(15.40%)、qST-1-2(17.66%)、qSV-15-1(30.70%)和q100-SW-19-1(15.43%);经相关性状加性×加性上位性互作检测,获得43对大豆粒形性状和百粒重加性×加性上位互作效应QTLs,贡献率1.41%~23.19%。  相似文献   

3.
水稻(Oryza sativa L.)分蘖数和株高的遗传分析   总被引:6,自引:0,他引:6       下载免费PDF全文
水稻分蘖数和株高是两个重要的农艺性状.为剖解它们的遗传结构,本研究用一套来源于籼粳组合IR64×Azucena的DH群体对这两个性状进行了QTL定位分析.表型数据来源于两个生长季节,采用基于混合线性模型的方法分析.结果表明,分蘖数主要由普通遗传因素和互作遗传因素控制(呈现61.7%的普通遗传率和17.2%的互作遗传率),共有19个QTLs与分蘖数有关,其中9个和6对QTLs分别具有单位点的遗传效应和2位点的互作效应,QTL1-8和QTL 1-12的上位性效应由于在春季的贡献率达21.6%,因而认为是一对主效.株高主要由普通遗传因素控制,普通遗传率为92.6%,共受到15个QTLs的影响,其中8个QTLs具有加性效应,1个QTL具有加性与环境的互作效应,4对上位性QTLs具有加性与加性互作效应.QTL 1-15被认为是主效QTL,而其余的是微效QTLs.两个性状表型之间存在显著的负向部分相关,然而,性状相关的遗传基础仍需做进一步的探讨.  相似文献   

4.
【目的】定位大豆粒形性状的主效QTL、环境互作和QTL间上位性。【方法】以栽培大豆晋豆23为母本,半野生大豆灰布支黑豆(ZDD2315)为父本所衍生的447个RIL构建的SSR遗传图谱及混合线性模型分析方法,对3年大豆粒形性状进行主效QTL、环境互作和QTL间上位性检测。【结果】共检测到7个与粒长、粒宽、粒厚以及长宽比、长厚比和宽厚比相关的QTL,分别位于D2、C2、J_2和O连锁群上,其中粒长、长厚比和宽厚比均表现为遗传正效应,说明增加其等位基因来源于母本晋豆23。同时,检测到3对影响粒宽和宽厚比的加性×加性上位性互作效应及其与环境互作的QTL。【结论】主效QTL对粒形性状遗传产生的影响最大,上位性次之,环境互作最小,说明加性效应、加性×加性上位性互作是大豆粒形性状的重要遗传基础。  相似文献   

5.
本研究利用Charleston×东农594得到的147个F2:14-F2:19重组自交系群体,对11个环境条件下大豆荚数性状相关QTL的加性、上位性及其与环境互作效应进行了分析.在6年11个不同遗传背景条件下的多环境联合分析中定位了11个QTL具有加性效应,其加性(A)贡献率和AE互作贡献率都是微效的.联合分析同时定位到20对QTL具有上位效应,并发现上位QTL的2种作用模式,一种是同一连锁群上2个QTL间的上位性互作,另一种是不同连锁群上2个QTL间的上位性互作.鉴定出9个具有加性效应的QTL能在多个环境条件下被检测到,17对具有上位性效应的QTL能在多个环境条件下被检测到,部分QTL的上位性效应解释的表型变异大于5%.这些在不同环境或不同遗传背景下检测到的QTL,可作为大豆荚数相关性状改良的候选标记,用于分子标记辅助选择或图位克隆.  相似文献   

6.
杂交旱稻保持系沪旱1B柱头外露率的QTL定位   总被引:1,自引:0,他引:1  
本研究利用沪旱1B/Ⅱ-32B杂交的F2群体,对水稻的柱头外露率性状进行了QTL分析,研究其遗传机制,以改良沪旱1B的柱头外露率.试验共检测到10个与柱头外露率有关的QTLs,分布在4条染色体上,加性效应起主要作用.检测到3个影响单边柱头外露率(PSES)的QTLs,分别位于3号、7号和9号染色体上,联合贡献率为21.44%;检测到2个影响双边柱头外露率(PDES)的QTLs,位于3号和9号染色体上,联合贡献率为15.98%;检测到5个影响总柱头外露率(PES)的QTLs,位于3,4,7,9号染色体上,其中3号染色体上有2个QTLs位点,总柱头外露率QTLs的单独贡献率在6.86%~9.73%之间,联合贡献率为39.42%.QTL上位性分析,检测到7对显著互作位点,解释了表型变异的67.39%,检测到的上位性效应主要以加性/加性互作效应为主,部分主效QTLs参与了互作.这些QTLs分子标记为改良沪旱1B的柱头外露率性状进行分子标记辅助选择提供参考.  相似文献   

7.
不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析   总被引:5,自引:2,他引:3  
【目的】主根长和侧根数是重要的根系性状。通过不同氮磷钾处理,发掘大豆苗期主根长和侧根数的基因资源、了解其遗传机制,定位其主效QTL,分析QTL间的上位性和环境互作效应,对生产提供理论指导。【方法】用以栽培大豆晋豆23为母本、山西农家品种灰布支黑豆(ZDD02315)为父本所衍生的447个RIL作为供试群体,取亲本及447个家系各30粒种子,用灭菌纸包裹后,2015年和2016年分别放置于CK(模拟种植不施肥)、NPK(模拟大田正常配施氮磷钾肥)和1.5NPK(模拟高肥田块)3种生长环境下进行水培试验,每组试验设置3次重复,环境温度20—28℃,幼苗长到V2期,对幼苗期相关根部性状数据进行测量。分别采用Win QTLCart 2.5和QTLNETwork 2.1 2种遗传模型检测QTL,分析QTL间的上位性和环境互作效应。【结果】基于复合区间作图(CIM)共检测到24个影响主根长和侧根数的QTL,分布于第2、3、5、6、7、8、9、10、11、12、13、14、16、17共14条染色体中,单个QTL的贡献率介于8.52%—43.62%,QTL主要表现为加性效应。基于混合线性模型(MCIM)检测到影响主根长和侧根数的QTL各1个,2个QTL均表现出加性效应和环境互作效应。另有2对主根长和2对侧根数均检测出加性×加性上位性互作QTL,主根长和侧根数各有1对表现出主效QTL与非主效QTL加性×加性上位性互作,各有1对表现出非主效QTL与非主效QTL加性×加性上位性互作,2对主根长互作QTL分别解释了1.53%和1.95%的表型变异率,2对侧根数互作QTL分别解释了2.47%和1.13%的表型变异率。2个QTL能在2种分析方法中同时检测到,9个QTL能在3种环境下同时检测到。第6染色体在2015年NPK、1.5NPK和2016年1.5NPK 3个环境下均检测到主根长QTL,第5染色体在2015年NPK和1.5NPK、2016年CK 3个环境下、第17染色体在2015年CK和NPK、2016年NPK 3个环境下均检测到侧根数QTL。【结论】苗期大豆主根长和侧根数对氮磷钾的吸收影响较少,生产中尽可能减少氮磷钾使用量。不同浓度氮磷钾处理苗期主根长和侧根数参数间既有共同的控制基因,也有各自独特的控制基因,多数QTL不能在多个环境下重复检测到,控制其表达的遗传机制较为复杂。加性效应、加性与环境互作和加性×加性上位性互作效应在主根长和侧根数的形成和遗传中发挥着重要作用。主根长和侧根数各有1个QTL能在2种分析方法中同时检测到,Satt442-Satt296和Satt521-GMABABR是共位标记区间。  相似文献   

8.
发掘响应接种根瘤菌的大豆产量相关性状遗传位点和基因,对于大豆固氮能力改良的分子育种至关重要。本研究通过在低氮条件下对大豆重组自交系群体和自然群体分别接种根瘤菌,进而发掘了株高、主茎节数、分枝数、单株荚数、单株粒数、单株粒重和百粒重等产量相关性状QTL位点和候选基因。通过关联分析共获得分布于10条染色体上的59个产量相关性状显著性SNP,有8个SNP与单株荚数、单株粒重和百粒重等重要产量性状显著关联。在RIL群体中,共定位到23个产量相关性状加性QTL和13对上位性QTL,其中加性QTL分布于8条染色体,表型贡献率为5.90%~32.87%。在这些QTL中,控制单株荚数和百粒重的QTL各有2个、控制单株粒数和单株粒重的QTL各有3个,对表型的贡献率为5.95%~24.60%。进一步分析发现,在自然群体和RIL群体中的产量相关性状一致性QTL主要位于6号与19号染色体上,有23个可能的候选基因位于这些一致性QTL附近的基因组区域。  相似文献   

9.
【目的】进一步发掘与大豆产量性状紧密连锁且稳定存在的标记位点,为分子标记辅助选择培育高产大豆新品种奠定理论基础.【方法】利用QTL IciMapping v2.2完备区间作图法连续2年对F2及其衍生群体中4个主要产量相关性状进行QTL定位及效应分析.【结果和结论】以LOD=2.5为阈值,在大豆单株粒数、单株粒质量、百粒质量和单株荚数4个主要产量性状上共检测到19个具有明显加性效应的QTLs,其中主效QTLs 15个,即单株粒数QTLs 3个,单株荚数QTLs 2个,单株粒质量QTLs 10个,分布于4(C2)、12(G)、6(A1)和17(M)4个连锁群上;定位到了3个在2年间稳定存在的QTLs,即单株粒数QTL qNSPP-12-1、单株粒质量QTLs qSWPP-12-1和qSWPP-12-2;研究初步确定了1个新的大豆单株粒质量QTL qSWPP-12-5.研究中检测到的稳定存在和主效QTLs对今后大豆遗传育种研究将具有重要的指导意义.  相似文献   

10.
水稻产量性状的QTL定位与上位性分析   总被引:26,自引:1,他引:26  
 应用 16 8个DNA标记 ,对水稻中 15 6 (高产 )×谷梅 2号 (低产 )的重组自交系 (RIL)群体进行基因型检测 ,构建了全长为 14 4 7.9cM、覆盖水稻基因组 12条染色体的连锁图。于 2 0 0 1年分单季和连作晚季两季 ,在杭州中国水稻研究所试验场以完全随机区组设计 ,种植该群体的 30 4个株系及双亲 ,考查穗长、单株有效穗数、每穗颖花数、每穗实粒数、结实率及千粒重等 6个产量构成性状。采用QTLMapper1.0 1统计软件进行QTL定位、上位性分析及其与环境 (季别 )的互作效应分析 ,共检测到产量构成性状的 30个加性主效应QTL ,分别位于除第 5、9染色体以外的 10条染色体上 ,另有 2个QTL与环境之间存在显著互作 ;还检测到 31对影响产量构成性状的加性×加性上位性互作效应QTL。在所有的上位性互作效应中 ,多数加性×加性上位性互作效应的贡献率及效应均较小 ,没有检测到上位性互作效应与环境的显著互作  相似文献   

11.
大豆籽粒富含蛋白与脂肪,是人类植物蛋白与食用油重要来源;然而,蛋白、脂肪含量属多基因控制数量性状,尽管已有相关QTLs报道,但多是针对单个QTL进行分析,而很少有关于上位性QTLs的报道。鉴于此,利用大豆RIL群体,在4种环境条件下评价其籽粒蛋白与脂肪含量,结合SNP基因型进行上位性QTLs分析发现,定位到48对控制籽粒蛋白、55对控制籽粒脂肪含量上位性QTLs,涉及大豆所有染色体;进一步分析发现,有19对上位性QTLs同时与籽粒蛋白和脂肪含量相关,具体包括12对定位区间完全相同的QTLs、2对定位区间含共同标记的QTLs以及5对定位区间距离不超过5 c M的QTLs;同时发现,19对上位性QTLs分布在除11号染色体以外的19条染色体,其中以13号染色体分布数量最多,其次为1号染色体。上述结果不仅增添了控制大豆蛋白与脂肪含量上位性QTLs,而且为揭示二者之间的负相关关系提供了QTL间/基因间互作方面的分子证据。  相似文献   

12.
To investigate genetic factors affecting wheat flour color traits, a linkage map was constructed using a recombinant inbred line (RIL) population derived from Jing 771×Pm 97034. Main, epistatic and QTL×environment (QE) interaction effects of quantitative trait loci (QTLs) controlling wheat flour color were studied by the mixed linear modeling of data collected from wheat RIL plants under three different environmental conditions. 13 QTLs with additive effects and 55 pairs of QTLs with epistatic effects were detected for wheat flour color traits. The additive-additive interactions (AA) involved all of the wheat chromosomes except 3D. Epistasis aocounted for more of the observed phenotypie variation than did the main effect QTLs (M-QTLs). Our results suggested that dual-locus interactions are widespread in the wheat genome and play a critical role in determining wheat flour color characteristics. In this study, 3 QTLs were identified to have QE interaction effects, one of them showing significant QE interaction in E2 environment.  相似文献   

13.
水稻耐盐性和耐碱性相关性状的QTL定位及环境互作分析   总被引:1,自引:0,他引:1  
【目的】探索水稻在盐和碱胁迫下产量相关性状的变化规律,寻找耐盐碱主效QTL,并分析QTL加性、上位性与环境互作效应。揭示单株有效穗数、结实率、千粒重和单株穗重在盐、碱胁迫下的遗传机制,为水稻耐盐碱性分子标记辅助育种提供理论依据。【方法】以东农425和长白10号杂交得到的重组自交系为材料,构建包含120个SSR标记的遗传连锁图。以浓度6 ds·m-1的Na Cl水溶液,pH9.0的Na2CO3水溶液进行全生育期处理,正常水灌溉为对照。对2014年和2015年盐、碱胁迫和自然条件下水稻的单株有效穗数、结实率、千粒重和单株穗重分别采用2种作图方法同时定位研究,即完备区间作图法进行加性QTL定位和混合线性模型的复合区间作图法进行加性、上位性QTL与环境互作联合分析。【结果】2014年和2015年碱胁迫条件下与盐胁迫条件下各性状表型值相比,耐碱相关性状降低较明显,表明水稻对碱胁迫更为敏感,碱胁迫更大程度地限制了高产和稳产。并且2年的碱胁迫条件下各性状与盐胁迫条件下各性状均未表现出显著相关性。水稻在耐盐性和耐碱性上可能存在遗传机制上的差异。运用ICIM共检测到61个水稻耐盐碱相关性状加性效应QTL,分布在第1、2、3、4、5、6、7、8、10、11和12染色体上。运用MCIM在6个环境下进行加性及环境互作效应的联合定位分析,共检测到17个加性QTL存在环境互作效应,分布在第1、3、5、7、8、9、11和12染色体上。其中,运用ICIM同时在自然条件和盐胁迫条件下2年重复检测到q PN1-1,仅在碱胁迫下2年重复检测到q PN11-2,同时在盐胁迫和碱胁迫条件下2年重复检测到q PN3-3,在盐胁迫与自然条件比值下2年重复检测到q RPN1-1,仅在自然条件下2年重复检测到q GW7和同时在盐、碱胁迫和自然条件下2年重复检测到q PW11均被MCIM检测到。q PW11是1个新的耐盐碱QTL,其贡献率为7.94%—20.13%。运用MCIM对水稻耐盐碱相关性状在6个环境下进行上位性与环境互作效应分析,共检测到13对上位性QTL与环境发生互作效应。检测到2对有关单株有效穗数的上位性QTL与环境互作,检测到2对胁迫与自然条件比值下单株有效穗数的上位性QTL与环境互作;检测到2对有关结实率的上位性QTL与环境互作,检测到2对胁迫与自然条件比值下结实率的上位性QTL与环境互作;检测到1对有关千粒重的上位性QTL与环境互作,检测到1对胁迫与自然条件比值下千粒重的上位性QTL与环境互作;检测到3对有关单株穗重的上位性QTL与环境互作。【结论】盐胁迫和碱胁迫都能影响水稻的产量相关性状,但二者是性质有所差别的2种胁迫,碱胁迫破坏更强,降低产量更明显。  相似文献   

14.
【目的】异黄酮是大豆等豆类植物中富含的一类次生代谢产物,对食品和保健产业有重要作用。大豆籽粒可分离出12种异黄酮组分,可归为三大类:大豆苷类异黄酮、染料木苷类异黄酮和黄豆苷类异黄酮。通过鉴定大豆籽粒异黄酮总含量及3个组分含量性状的加性及上位性QTL,进而全面解析其复杂的遗传构成。【方法】利用先进2号和赶泰2-2双亲衍生的大豆重组自交系群体NJRSXG,在5个环境下测定4个异黄酮含量性状:异黄酮总含量(total isoflavone content,SIFC)、大豆苷类异黄酮总含量(total daidzin group content,TDC)、染料木苷类异黄酮总含量(total genistin group content,TGC)和黄豆苷类异黄酮总含量(total glycitin group content,TGLC)。选用混合模型复合区间作图法(mixed-model-based composite interval mapping,MCIM)和限制性两阶段多位点全基因组关联分析方法(restricted two-stage multi-locus genome-wide association analysis,RTM-GWAS)进行异黄酮含量QTL检测。【结果】2个亲本在4个异黄酮含量性状上均存在较大差异,重组自交系群体异黄酮含量在高值、低值2个方向上均出现超亲分离,低值方向分离趋势强于高值方向。利用连锁定位MCIM方法共检测到4个异黄酮含量性状的19个加性QTL和16对上位性QTL,分布于15条染色体上。第14染色体重要标记区间GNE186b—Sat020内检测到3个新加性QTL:qSifc-14-1qTdc-14-2qTgc-14-1,且表型变异解释率最高。利用关联定位RTM-GWAS方法分别检测到4个异黄酮含量性状的51、66、42和36个关联标记位点,表型变异解释率为39.7%—52.5%,检测到的位点中覆盖了MCIM方法检测的19个加性QTL中的11个以及11个上位性QTL。候选基因分析分别在加性QTL区域和上位性QTL区域检测到93和100个候选基因,富集分析显示在第14染色体重要标记区间GNE186b—Satt020内,Glyma14g33227Glyma14g33244Glyma14g33715的功能与异黄酮代谢有关。【结论】连锁定位和关联定位2种方法结合能相对全面地检测异黄酮含量QTL。与连锁定位方法MCIM相比,关联定位方法RTM-GWAS检测的QTL更多,总遗传贡献率更高,但尚不能检测上位性QTL,2种方法定位结果可相互验证补充,大豆籽粒异黄酮含量由大量QTL/基因控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号