首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovarian function in 91 dairy cows with cystic ovarian disease was assessed by rectal palpation and by plasma hormone analysis before and after treatment. Plasma analysis showed that 84% of the cysts were correctly classified clinically and only these cows are considered further. Luteinised cysts occurred in 59 cows whereas only 18 had non-luteinised cysts. The mean plasma concentrations of luteinising hormone (LH), follicular stimulating hormone (FSH), progesterone, oestradiol and testosterone were not significantly different when compared with values at relevant stages of the oestrous cycle in normal cows. Success of treatment with progesterone, a synthetic prostaglandin, human gonadotrophin (HCG), or gonadotrophin releasing hormone (GnRH) was not dependent upon prior hormone concentrations, except for the prostaglandin which required active luteal tissue. LH and FSH concentrations in cows with luteinised cysts were not significantly different before and after successful treatment with GnRH or progesterone. Normal luteal function was not always established after treatment of non-luteinised cysts with GnRH.  相似文献   

2.
Chemical castration, that is the reduction of circulating testosterone concentrations to castrate levels by administration of a GnRH-agonist implant, is a popular alternative to surgical castration in male dogs. Detailed information concerning the pituitary-testicular axis following administration of a GnRH-agonist implant is still scarce. Therefore, GnRH-stimulation tests were performed in male dogs, prior to and after surgical and chemical castration. This approach also allowed us to determine plasma concentrations of testosterone and oestradiol in intact male dogs for future reference and to directly compare the effects of surgical and chemical castration on the pituitary-testicular axis. In intact male dogs (n = 42) of different breeds GnRH administration induced increased plasma LH, FSH, oestradiol and testosterone concentrations. After surgical castration basal and GnRH-induced plasma FSH and LH concentrations increased pronouncedly. Additionally, basal and GnRH-induced plasma oestradiol and testosterone concentrations decreased after surgical castration. After chemical castration, with a slow-release implant containing the GnRH-agonist deslorelin, plasma LH and FSH concentrations were lower than prior to castration and lower compared with the same interval after surgical castration. Consequently, plasma oestradiol and testosterone concentrations were lowered to values similar to those after surgical castration. GnRH administration to the chemically castrated male dogs induced a significant increase in the plasma concentrations of LH, but not of FSH. In conclusion, after administration of the deslorelin implant, the plasma concentrations of oestradiol and testosterone did not differ significantly from the surgically castrated animals. After GnRH-stimulation, none of the dogs went to pre-treatment testosterone levels. However, at the moment of assessment at 4,4 months (mean 133 days ± SEM 4 days), the pituitary gonadotrophs were responsive to GnRH in implanted dogs. The increase of LH, but not of FSH, following GnRH administration indicates a differential regulation of the release of these gonadotrophins, which needs to be considered when GnRH-stimulation tests are performed in implanted dogs.  相似文献   

3.
The dynamics of prolactin (PRL) and luteinizing hormone (LH) secretion in the anoestrous bitch is poorly known. Therefore, the objective of this study was to characterize the 24 h profiles of serum PRL and LH in crossbred anoestrous bitches and to assess whether a relationship exists between the secretory patterns of these two hormones. Serum PRL and LH concentrations were measured in 10 healthy anoestrous crossbred bitches at 145 min intervals for 24 h. During the experiment the animals received continuous artificial illumination and remained undisturbed except at the time of blood sampling. Serum PRL was measured by a homologous enzyme‐linked immunosorbent assay, whereas LH and progesterone (P4) were determined by radioimmunoassay. The anoestrous state of the bitches was assessed by vaginal cytology, vaginoscopy and physical examination. Two groups of animals were identified according to their PRL levels: a high PRL group (n=3, mean ± SEM 12.3 ± 2.7 ng/ml) and a low PRL group (n=7, mean ± SEM: 2.5 ± 0.9 ng/ml). In the low PRL group, the PRL profiles were flat and did not show any significant circadian pattern. Nevertheless, occasional single‐point peaks were detected in some of the bitches. In the high PRL group the individual PRL profiles were variable. To detect the presence of a circadian change of PRL concentrations, two different sets of time windows (TW) of sampling were studied. The first set was: day [TW1A, samples 1–5 (0900–1840 h)] and night [TW1B, samples 6–10 (2105–0645 h)]. The second set was chosen after visual inspection of the average PRL profiles for both (high and low) groups: [TW2A, samples 3–7 (1350–2330 h) and TW2B, samples 1–2 and 8–10 (0155–1125 h)]. PRL concentrations were not significantly different between day and night. In the high PRL group, but not in the low PRL group, average serum PRL was significantly (p < 0.01) higher in TW2A than TW2B. In both groups serum LH levels were more homogeneous than PRL levels. Neither TW showed circadian changes in LH patterns of secretion (TW1A versus TW1B, p < 0.69; TW2A versus TW2B, p < 0.88). On the other hand, bitches in the high PRL group showed significantly (p < 0.01) lower serum LH levels than those in the low PRL group of animals. Serum PRL concentrations presented a significant inverse correlation with LH concentrations (r=?0.21, p < 0.03) and a significant positive correlation with P4 concentrations across the study (0.92, p < 0.01). It is concluded that in anoestrous crossbred bitches serum PRL is highly variable and inversely related to LH. No circadian rhythm of PRL secretion appears to exist in most anoestrous bitches.  相似文献   

4.
The pulsatile IV administration of gonadotropin-releasing hormone (GnRH) was evaluated as a method to induce fertile estrus in 8 anestrous Beagle bitches. Bitches received 1.25 micrograms of GnRH every 90 minutes for 11 to 13 days. Gonadotropin-releasing hormone was delivered by use of an automatic pump. Reproductive history was known for all bitches, 4 of which, on the basis of 3 or 4 preceding cycles, had an interestrous interval of 219 +/- 14 days (mean +/- SEM). Estrus induction was attempted during early anestrus in 6 bitches (ie, 148 +/- 10 days since the preceding estrus) and late anestrus in 1 bitch (ie, 260 days since the preceding estrus); another bitch had not had an estrous cycle for nearly 2 years before GnRH administration. Signs of estrus were seen within 16 days after the start of GnRH administration in the bitches with regular estrous cycles (group 1, n = 7), and within 23 days in the bitch (group 2) with prolonged anestrus. All bitches were bred, and 7 of 8 (87.5%) became pregnant, with a mean litter size of 4.5 +/- 0.75. A normal hormonal response pattern was observed in group-1 bitches--a peak increase in plasma estrogen concentration of 22.3 +/- 2 pg/ml immediately before the onset of estrus. Peak plasma progesterone concentration (17.3 +/- 3 ng/ml) was observed 1 to 14 days after the onset of diestrus in the group-1 bitches that ovulated, and adequate plasma progesterone concentration was maintained throughout gestation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) conjugated to bovine serum albumin (BSA) to study the involvement of GnRH in luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion following ovariectomy (OVX) and after administration of testosterone propionate (TP). Five mares immunized against BSA served as controls. Immunizations were started on November 1, and OVX was performed in June (d 1). All mares were treated with TP from d 50 to 59 after OVX. On the day of OVX, concentrations of LH were lower (P less than .05) in GnRH-immunized mares than in BSA-immunized mares and were generally nondetectable; FSH concentrations were reduced (P less than .05) by 50% in GnRH-immunized mares relative to BSA-immunized mares. In contrast to BSA-immunized mares, plasma concentrations of LH or FSH did not increase after OVX in GnRH-immunized mares. The LH response to GnRH analog (less than .1% cross-reactive with GnRH antibodies) on d 50 was reduced (P less than .05) by 97% in GnRH-immunized mares relative to BSA-immunized mares, whereas the FSH response was similar for both groups. Treatment with TP for 10 d reduced (P less than .01) the LH response and increased (P less than .01) the FSH response to GnRH analog in BSA-immunized mares, but it had no effect (P greater than .1) on the response of either gonadotropin in GnRH-immunized mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Simultaneous or sequential injection of 250 ng gonadotrophin releasing hormone (GnRH) and 25 micrograms oestradiol benzoate, with luteinizing hormone (LH) measurements at 0, +20 min (after GnRH) and +16 h (after oestradiol), enabled investigation of the positive feedback effects on the hypothalamus and pituitary. Control ewes had pretreatment LH values of 3.1 +/- 1.2 ng/ml with an increment of 3.2 +/- 2.3 ng/ml 20 min after GnRH. Subfertile ewes, in spite of elevated pretreatment LH concentrations (15.8 +/- 9.5 ng/ml) in eight out of 10 ewes, had increments of 1.4-84 ng/ml after GnRH. Control ewes had LH increments of 3-75 ng/ml 16 h after oestradiol. Subfertile ewes with pretreatment LH concentrations less than 15 ng/ml also responded to oestradiol whereas those with initial LH concentrations 16-40 ng/ml had no further LH increment. Subsequent administration of 1000 iu pregnant mares' serum gonadotrophin (PMSG), with measurement of LH and oestradiol at 0, +24, +30, +48, +54, and +72 h, allowed assessment of ovarian response and hypothalamus-pituitary function. Five control ewes were sampled up to 30 h post-PMSG and only 1 had oestradiol concentrations greater than 10 pg/ml. Sampling up to 72 h in another five control ewes resulted in oestradiol concentrations greater than 10 pg/ml. Increments in LH concentration greater than 3 ng/ml were recorded in control and subfertile ewes with oestradiol concentrations greater than 10 pg/ml. The use of these endocrine challenge tests enabled positive diagnosis of abnormality on 8 out of 10 occasions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Gonadotrophin-releasing hormone (GnRH) (a single intravenous injection with 0.042 mg busereline acetate) was administered to control stallions (n=5), aged stallions (n=5) and stallions with lack of libido (n=5). Jugular blood samples were taken at -10, 0, 10, 20, 40 and 80 minutes after treatment and measured for luteinizing hormone (LH) and testosterone concentrations. A single intravenous injection of hCG (3000 IE) was given 1 day later. Venous blood samples were taken at -60, 0, 15, 30, 60, 120, and 240 minutes after treatment and measured for the testosterone concentration. The experiment was performed in the breeding season. There was a wide variation between stallions in basal concentrations of LH and testosterone. The treatment groups all showed a significant increase in LH and testosterone concentrations after treatment with GnRH. There was a significant difference (P<0.05) between the control, the lack of libido stallions and the aged stallions in the production of LH before and after stimulation with GnRH. The aged stallions had higher basal LH concentrations. GnRH induced a rise in plasma LH in all groups, but the greatest response was observed in aged stallions. No response to GnRH was seen with respect to plasma testosterone. There was an increase in plasma testosterone following hCG; however, this increase was very small in aged stallions. After stimulation with hCG the control and lack of libido stallions had a significant increase (P<0.05) in testosterone production. In conclusion, stimulation with either GnRH or hCG can be a valuable method to test whether the function of the stallion's reproductive endocrine system is optimal.  相似文献   

8.
As dogs experience oestrus only once or twice a year, it is necessary to establish an effective method of oestrous induction for efficient breeding. In the present study, we evaluated inhibin antiserum (IAS) on oestrous induction in anoestrous females. Bitches were administered 0.5 ml/kg IAS or a mixture of 50 IU/kg equine chorionic gonadotropin (eCG) and 0.5 ml/kg IAS and 500 IU human chorionic gonadotropin (hCG) administered 7 days after the mixture injection. As a control, bitches received 50 IU/kg eCG, with 500 IU hCG administered 7 days after eCG injection. Blood-tinged vaginal discharge, vulvar swelling, plasma progesterone concentrations and ovarian follicular development were assessed from day 0 to day 14. IAS alone injection did not induce oestrus in bitches at the anoestrous stage. Conversely, vulvar swelling, blood-tinged vaginal discharge and an estimated luteinizing hormone (LH) surge appeared on days 3–7, days 3–6 and days 7–9 after the IAS+eCG mixture injection, respectively, in all five bitches at the anoestrous stage. The average number of developing and ovulated follicles in bitches administered IAS+eCG was 8.8 and 9.6 respectively. A single eCG injection followed by hCG induced oestrous signs, with an average of 8.3 developing follicles and 4.5 ovulated follicles. This study revealed that IAS alone did not induce oestrus, but when IAS was used in combination with eCG, it induced oestrus and promoted a considerable number of ovulations in anoestrous dogs.  相似文献   

9.
Contents The aim of this study was to investigate the effect of sexual activity on concentrations of reproductive hormones in plasma of stallions. In the first experiment, two groups of stallions were monitored for secretion of luteinizing hormone (LH), testosterone and oestradiol from the beginning until shortly after the end of the breeding season. One group of animals were reserve stallions not used for breeding (group 1, n = 10), the other group consisted of active breeding sires (group 2, n = 8). Blood samples were withdrawn from March to August at 14-day intervals. In sexually nonactive stallions (group 1), seasonal variations in LH, testosterone and oestradiol occurred and concentrations of these hormones reached a maximum in May (p < 0.05). In the breeding stallions (group 2), no significant changes in the concentrations of these hormones were found between March and August. Concentrations of LH and testosterone were significantly lower in breeding stallions than in reserve stallions at most blood sampling times (p < 0.05). In the reserve stallions, oestradiol concentrations were significantly higher than in the breeding stallions in April and in June (p < 0.05). In a second experiment, the effect of regular sexual activity (semen collection three times per week) on the concentration of LH, testosterone and oestradiol was tested in a group of breeding stallions after a period of sexual rest for several weeks. Blood samples were taken once daily starting the day before the first semen collection was performed. Testosterone concentration significantly decreased in the first days after semen collection started (p < 0.05), while LH secretion was only transiently decreased and no effects on oestradiol concentration were found. In both experiments, semen parameters were within the normal range of fertile stallions. No correlations between the sexual drive of the stallions and concentration of reproductive hormones occurred. It can be concluded that in the stallion the secretion of reproductive hormones is influenced by sexual activity. Regular semen collection seems to inhibit testosterone release by unknown mechanisms while the effects on LH and oestradiol secretion are less pronounced.  相似文献   

10.
Effects of testosterone propionate (TP) treatment on plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) before and after an injection of gonadotropin releasing hormone (GnRH) were studied using ovariectomized cows and pony mares. An initial injection of GnRH (1 microgram/kg of body weight) was followed by either TP treatment or control injections for 10 (cows) or 11 (ponies) d. A second GnRH injection was administered 1 d after the last TP or oil injection. Concentrations of LH and FSH were determined in samples of plasma taken before and after each GnRH injection. Control injections did not alter the response to GnRH (area under curve) nor the pre-GnRH concentrations of LH and FSH in ovariectomized cows or ponies. Testosterone treatment increased (P less than .01) the FSH release in response to GnRH in ovariectomized mares by 4.9-fold; there was no effect in cows, even though average daily testosterone concentrations were 59% higher than in pony mares. Testosterone treatment reduced the LH release in response to GnRH by 26% in ovariectomized mares (P less than .05) and by 17% in ovariectomized cows (P approximately equal to .051). These results are consistent with a model that involves ovarian androgens in the regulation of FSH secretion in the estrous cycle of the mare, but do not support such a model in the cow.  相似文献   

11.
Eight mature light-breed stallions with normal testes size, sperm output and semen quality were used to evaluate response to 3 GnRH challenge regimens in the summer in southeast Texas. Gonadotropin releasing hormone (50 μg) was administered intravenously once to each of eight stallions after three days of sexual rest (50 μg GnRH-1X). The same stallions were administered either 5μg GnRH intravenously once hourly for three injections (5 μg GnRH-3X) and 15μg GnRH intravenously once (15μg GnRH-1X) one and two weeks later. Blood samples were collected prior to and at intervals after GnRH administration. Plasma was immediately separated from blood samples and was frozen until assayed for LH, FSH, estradiol and testosterone concentrations. Percentage changes in hormone concentrations from pre-treatment values (baseline) were analyzed by paired studient'st-test to detect significant rises in hormone concentrations. Group mean percentage changes in hormone concentrations were analyzed by analysis of variance to compare responses among treatments. A computerized peak-detection algorithm (PC Pulsar) was used to detect peaks in LH and testosterone concentrations following 5 μg GnRH-3X and 15 μg GnRH-1X treatment.No differences (P>0.10) were detected in percentage change from baseline concentration for LH, FSH, or testosterone at one or two hours after administration of any of the three regimens of GnRH. When more frequent sampling intervals were analyzed for 5 μg GnRH-3X or 15 μg GnRH-1X treatments, no differences were detected in percentage change from baseline concentration for any hormone at 15, 30 or 60 minutes. Thereafter, percentage changes in concentrations of LH and FSH remained increased for 5μg GnRH-3X compared to 15 μg GnRH-1X treated stallions (P<0.05). Percentage changes in concentrations of testosterone were increased for 5μg GnRH-3X compared to 15 μg GnRH-1X treated stallions from 180–300 min (P<0.05), while no differences (P>0.10) were detected between 5 μg GnRH-3X and 15 μg GnRH-1X treated stallions for changes in concentrations of estradiol throughout the experiment.For 15 μg GnRH-1X treated stallions, maximum concentrations of LH in PC Pulsar-detected peaks occurred most commonly at 15 to 30 minutes (7/8 treatment periods) after GnRH injection. Maximum concentrations of testosterone in PC Pulsar-detected peaks occurred most commonly at 60–120 min (7/8 treatment periods) after GnRH injection.A protocol of blood sampling prior to, and 15, 30, 60 and 120 minutes after, intravenous administration of small doses of GnRH would be practical for challenge testing of stallions during the breeding season. In order to reduce cost of hormone assays, we suggest assay of the pre-challenge blood sample (baseline) could include LH, FSH, testosterone and estradiol concentrations (to assess overall hypothalamic-pituitary-testicularfunction), while only LH and testosterone concentrations need be determined after GnRH administration (to assess pituitary and testicular responsiveness). Assay for LH could be done on only the 15 and 30 minute post-GnRH samples, and assay for testosterone could be done on only the 60 and 120 minute post-GnRH samples. Failure to achieve approximately a 50% increase in LH concentration by 30 minutes after GnRH administration, and/or failure to achieve approximately a 100% increase in testosterone concentration by two hours after GnRH administration, could be further pursued either by treatment with increasing dosages of GnRH, or repeated administration of GnRH at hourly intervals, as has been suggested by other workers.  相似文献   

12.
The effect of the centrally acting α-adrenoceptor agonist, clonidine, on plasma LH and FSH was studied in oestradiol-primed and unprimed ewes and in oestrous ewes. In unprimed anoestrous ewes, clonidine stimulated LH and FSH release after a lag period of 18 h, and noradrenaline intracarotid injection or i.v. infusions immediately stimulated LH release. In oestradiol-infused anoestrous ewes, clonidine produced either a delay or inhibition of the gonadotrophin surge and noradrenaline i.v. infusion advanced the LH surge. In oestrous ewes treated with clonidine, there was marked delay in the LH surge, but the magnitude of the LH and FSH surges were unaffected. Intravenous administration of α-adrenoceptor blockers, phentolamine and phenoxybenzamine, blocked the oestradiol-induced gondotrophin surge in anoestrous ewes. The effect of phenoxybenzamine on gonadotrophin surge was dose dependent in oestrous ewes. Small doses (4 mg/kg i.v.) of phenoxybenzamine delayed the synchronous LH and FSH surges. There was complete blockade of the LH surge and partial blockade of FSH surges in ewes given phenoxybenzamine (8 mg/kg i.v.) before the expected synchronous gonadotrophin surges. After this experiment, the initial rise of plasma progesterone concentrations did not occur until day 6 of oestrous cycle. Administration of phenoxybenzamine before the expected second FSH surge had no effect on the second FSH surge. Gonadotrophin release induced by gonadotrophin-releasing hormone was attenuated by phenoxybenzamine, but not by clonidine. The results suggest that the LH surge is under α-adrenergic control and the first FSH surge is under partial α-adrenergic control, but the second FSH surge is not under α-adrenergic control. The results also suggest oestradiol modulation of α-adrenergic receptor action.  相似文献   

13.
In this study, the effect of reproductive hormones and substances with hormonal activity on the oxidative burst activity of blood polymorphonuclear leucocytes (PMN) high yielding dairy cows was evaluated. Different concentrations of: progesterone, oestradiol 17β, FSH, LH, GnRH, cortisol and PGF2α were incubated in vitro for 4 h with PMN of seven high milk yielding cows, during the period of anoestrous postpartum. Controls were run in parallel in which each hormone was replaced by its solvent. After incubation with hormones the competence of PMN to generate H2O2 was monitored by flow cytometry. A down‐regulation on the oxidative burst activity of PMA‐stimulated PMN was observed when cells were incubated with progesterone. Significant (p ≤ 0.001) differences between control and progesterone incubated cells were observed from 6.56 μg/ml. The same predisposition was observed when PMNs were incubated with cortisol. Besides for all concentrations employed, a decrease in the burst activity was observed, only beyond 0.19 mg/ml, statistical differences between the results obtained by the control and the cortisol incubated cells were obtained. Concerning oestradiol 17β, an increase on H2O2‐production was observed when PMN were incubated with 15 pg/ml and 45 pg/ml of this steroid (p ≤ 0.05), followed by a depression of the cell’s activity when unphysiological concentrations were employed. Significant (p ≤ 0.05) differences between the obtained with the control and oestradiol 17β incubated cells were observed only in the highest concentration of oestradiol. No statistical differences were observed in the metabolic burst activity of PMN incubated with FSH, GnRH and LH when compared with the results obtained by the control.  相似文献   

14.
Oestrous synchronization involves synchronization of ovarian follicular turnover, new wave emergence, and finally induction of ovulation. The final step can be synchronized by the parenteral administration of either GnRH or oestradiol benzoate. This study investigated corpus luteum and follicular emergence after ovulation had been induced by the administration of either GnRH or oestradiol benzoate. The injection of oestradiol benzoate may have delayed the emergence of the first follicular wave subsequent to the induced ovulation; administration of oestradiol benzoate or GnRH lowered the progesterone rise so that the maximum dioestrous concentration of progesterone on Day 9 was lower when cows were treated during pro-oestrus compared to the spontaneously ovulating controls. One implication of findings from the present study is that induction of ovulation with either oestradiol benzoate or GnRH, administered 24 or 36 h after withdrawal of the CIDR device, respectively, may lower fertility. Future studies must identify the timing of administration relative to the time of CIDR device withdrawal and the optimum concentration of oestradiol benzoate or GnRH that would not have untoward effects on the development of the corpus lutea, particularly within the first week of dioestrus.  相似文献   

15.
The effects of GnRH stimulation on plasma testosterone and luteinizing hormone (LH) levels in Cape porcupine males were examined by analysing plasma collected before and after an intravenous injection of GnRH. In six mature males and one subadult, which were given an intravenous injection of 0,5 ml saline, levels of plasma testosterone and LH did not increase. Four weeks later an intravenous GnRH challenge (40 μ?) caused plasma testosterone to rise three-fold and LH to rise 10-15-fold within 180 min in five of the mature males. Peaks of plasma testosterone and LH occurred 90 and 120 min, respectively, after stimulation, and baseline and peak levels of both hormones were significantly related.  相似文献   

16.
Effects of pituitary stalk-transection on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) prolactin (PRL) and progesterone were investigated during the estrous cycle of ewes. Pituitary stalk (SS) or sham (SH) transection was performed on day 1 (estrus = day 0) of the estrous cycle. A Teflon or Silastic barrier was placed between the cut ends of the stalk to prevent reorganization of the portal vasculature. Immediately following surgery, pulsatile administration of gonadotropin releasing hormone (GnRH, 200 ng/hr) or .9% NaCl was initiated and continued for the duration of the experiment. Estradiol benzoate (EB, 50 μg im) was administered to all ewes on day 3. Mean concentrations of LH were greater in SS ewes than in SH ewes (P<.05). There was a trend (P=.06) for the concentration of LH to be higher in ewes with Teflon compared with Silastic barriers between the cut ends of the stalk. Infusion of GnRH elevated concentrations of LH in both SS and SH ewes (P<.05). Concentrations of progesterone were reduced (P<.01) in saline-infused SS ewes while infusion of GnRH in SS ewes maintained concentrations of progesterone similar to saline-infused SH ewes. The concentrations of FSH or PRL were unaffected by SS, type of barrier or treatment with GnRH. Administration of EB failed to induce a surge of LH except in a SH ewe infused with GnRH. Ewes were more responsive to infusion of GnRH following SS than after SH as reflected by increased plasma concentrations of LH and progesterone.  相似文献   

17.
Effects of season and photoperiod on the anterior pituitary gland and testes were studied by responses to exogenous GnRH. Stallions were assigned to one of three treatments: 1) control, exposed to natural day length; 2) S-L, 8 h of light and 16 h dark (8:16) for 20 wk beginning July 16, 1982 then 16:8 from December 2, 1982 until March 5, 1984; or 3) S-S, 8:16 from July 16, 1982 until March 5, 1984. Approximately every 8 wk, stallions were administered GnRH (2 micrograms/kg BW) and blood was sampled at 20-min intervals for 2 h before and 8 h after GnRH administration. Concentrations of LH, FSH and testosterone were determined. Baseline concentrations (mean of pre-GnRH samples) of all hormones fluctuated seasonally (P less than .05), but only LH and testosterone displayed seasonal changes (P less than .05) in maximum response to GnRH (highest concentration above baseline after GnRH). The FSH response to GnRH was not affected (P greater than .05) by season, photoperiod or the season X treatment interaction. Exposure of S-L stallions to 16:8 in December resulted in early recrudescence of baseline concentrations of LH, FSH and testosterone. Maximum concentration of testosterone in response to GnRH was stimulated by 16:8, but the increase in baseline LH concentrations in S-L stallions was not associated with an increase in maximum LH response to GnRH. Seasonal patterns of baseline concentrations of FSH and testosterone and maximum LH response to GnRH in S-S stallions were similar to those for control stallions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Twenty-eight bitches with unknown reproductive histories were injected intravenously with either human chorionic gonadotrophin (hCG) or equine chorionic gonadotrophin (eCG) (pregnant mare's serum gonadotrophin) and their oestradiol responses were measured at the time of the injection and 90 minutes later. They were at various stages of the oestrous cycle as determined by histology and a progesterone assay for luteal function. Twenty-six of them were considered to be entire because they showed either an increase in plasma oestradiol over preinjection values or steady high values. The ovaries were removed from 25 of these animals and the other probably had a remnant of ovary because it came into oestrus some weeks later. In two remaining bitches no oestradiol could be detected either before or after the injection of gonadotrophin and they were predicted to have been neutered, which was confirmed at laparotomy. In the entire bitches, the highest plasma oestradiol concentration was measured during metoestrus and the lowest during anoestrus.  相似文献   

19.
The objectives of this study were 1) to determine the effects of adding a CIDR to the Ovsynch protocol on plasma concentrations of estradiol-17β and progesterone and conception in dairy cows with cystic ovarian diseases and 2) to examine associations among the estradiol-17β and progesterone concentrations and conception. Cows were diagnosed as having cystic ovarian diseases if they were found to have a cystic follicle (diameter ≥25 mm) without a corpus luteum by two palpations per rectum with an interval for 7 to 14 days. They were treated with either the Ovsynch (GnRH on Day 0, PGF(2α) on Day 7 and GnRH on Day 9, with AI on Day 10; n=15) or Ovsynch+CIDR protocol (Ovsynch protocol plus a CIDR from Day 0 to Day 7; n=23). Plasma estradiol-17β concentrations were determined on Days 0, 7 and 9, and plasma progesterone concentrations were determined on Days 0, 7, 9 and 17. The plasma estradiol-17β and progesterone concentrations at all of the days examined and conception rates did not differ significantly between the two timed AI protocols. The progesterone concentrations on Day 17 and conception rates were lower (P<0.05) for cows with low concentrations of estradiol-17β (<2 pg/ml) on Day 9 than for cows with high concentrations of estradiol-17β (≥2 pg/ml). The present study suggests that, in dairy cows with cystic ovarian diseases, addition of a CIDR to the Ovsynch protocol had no remarkable effects on plasma estradiol-17β and progesterone concentrations during and after the treatments or on conception after timed AI. This study indicates that the low plasma estradiol-17β concentration at the second administration of GnRH in the protocols can be a predictor for impaired luteal formation and lower likelihood of pregnancy in dairy cows with cystic ovarian diseases.  相似文献   

20.
Cystic ovarian disease is an important cause of reproductive failure. The objective of this study was to evaluate transrectal ultrasonography as a diagnostic tool and gonadotropin-releasing hormone (GnRH) as a therapeutic approach for ovarian follicular cysts in goats. Goats were considered to have a follicular cyst(s) if a non-echoic structure >10 mm in diameter was detected in the absence of corpora lutea (CL) in three ultrasonic examinations performed at 5-day intervals. After diagnosis (Day 0), goats with ovarian follicular cysts (n = 5) were treated with a single bolus injection of 10.5 microg synthetic GnRH followed by administration of 125 microg prostaglandin F2alpha (PGF2alpha) 10 days later. Five blood samples were collected at 5-day intervals for determination of progesterone and estradiol-17beta. For detection of LH surge, blood samples were collected every 2 h. Ovulation rate was determined and pregnancy was confirmed by transrectal ultrasonography. The results showed that transrectal ultrasonography is reliable for diagnosis of ovarian follicular cysts and the mean diameter of the follicular cysts was 12.6 +/- 0.4 mm. Plasma concentrations of progesterone and estradiol-17beta at the time of diagnosis of follicular cysts (Day 0) were 0.7 +/- 0.2 ng/ml and 12.7 +/- 0.9 pg/ml, respectively. The concentration of progesterone increased to 4.0 +/- 0.5 ng/ml 10 days after administration of GnRH indicating luteinization of the ovarian follicular cysts concomitant with a decrease in the concentration of estradiol-17beta (3.5 +/- 0.4 pg/ml). Administration of GnRH to cystic goats resulted in a surge of LH within 2 h of treatment. The interval from PGF2alpha injection to the preovulatory LH surge was 62.8 +/- 1.4 h. All goats exhibited estrus 55.2 +/- 2.3 h after PGF2alpha injection and four goats out of the five ovulated. The ovulation rate was 1.5 +/- 0.3. In conclusion, results of this study suggest that transrectal ultrasonography is a reliable tool for diagnosis of ovarian follicular cysts. In addition, GnRH can be used to effectively treat ovarian follicular cysts in goats with 80% success rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号