首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since 1997, when human infections with a highly pathogenic (HP) avian influenza A virus (AIV) subtype H5N1 – previously infecting only birds – were identified in a Hong Kong outbreak, global attention has focused on the potential for this virus to cause the next pandemic. From December 2003, an unprecedented H5N1 epizootic in poultry and migrating wild birds has spread across Asia and into Europe, the Middle East, and Africa. Humans in close contact with sick poultry and on rare occasion with other infected humans, have become infected. As of early March 2007, 12 countries have reported 167 deaths among 277 laboratory-confirmed human infections to WHO. WHO has declared the world to be in Phase 3 of a Pandemic Alert Period. This paper reviews the evolution of HP AIV H5N1, molecular changes that enable AIVs to infect and replicate in human cells and spread efficiently from person-to-person, and strategies to prevent the emergence of a pandemic virus.  相似文献   

2.
Vaccines against mildly pathogenic avian influenza (AI) have been used in turkeys within the United States as part of a comprehensive control strategy. Recently, AI vaccines have been used in control programs against highly pathogenic (HP) AI of chickens in Pakistan and Mexico. A recombinant fowl pox-AI hemagglutinin subtype (H) 5 gene insert vaccine has been shown to protect specific-pathogen-free chickens from HP H5 AI virus (AIV) challenge and has been licensed by the USDA for emergency use. The ability of the recombinant fowl pox vaccine to protect chickens preimmunized against fowl pox is unknown. In the current study, broiler breeders (BB) and white leghorn (WL) pullets vaccinated with a control fowl poxvirus vaccine (FP-C) and/or a recombinant fowl poxvirus vaccine containing an H5 hemagglutinin gene insert (FP-HA) were challenged with a HP H5N2 AIV isolated from chickens in Mexico. When used alone, the FP-HA vaccine protected BB and WL chickens from lethal challenge, but when given as a secondary vaccine after a primary FP-C immunization, protection against a HP AIV challenge was inconsistent. Both vaccines protected against virulent fowl pox challenge. This lack of consistent protection against HPAI may limit use to chickens without previous fowl pox vaccinations. In addition, prior exposure to field fowl poxvirus could be expected to limit protection induced by this vaccine.  相似文献   

3.
CAV与REV共感染SPF鸡对疫苗免疫反应的抑制作用   总被引:3,自引:0,他引:3  
用1日龄SPF鸡人工感染鸡贫血病毒(CAV)和禽网状内皮增生病病毒(REV),探讨病毒感染对鸡体疫苗免疫反应的影响。结果表明,在用禽流感病毒(AIV,H5和H9)疫苗免疫后,CAV与REV单独感染均显著抑制了鸡体对H5和H9亚型禽流感病毒灭活疫苗的HI抗体反应,在CAV与REV共感染后,这种抑制作用更为明显。CAV单独感染后鸡体对新城疫病毒(NDV)和传染性法氏囊病病毒(IBDV)疫苗的免疫反应受到抑制,但与对照组在统计学上的差异不显著,然而,CAV可以显著加重REV感染对鸡体在NDV和IBDV疫苗免疫后抗体反应的抑制作用。从而证实CAV与REV共感染在疫苗免疫抑制上有协同作用。  相似文献   

4.
H9亚型禽流感病毒流行毒株交叉免疫攻毒保护试验   总被引:3,自引:0,他引:3  
采用1998-2009年在河北、河南及山东分离的3株禽流感H9亚型流行毒株,分别制备灭活疫苗,免疫SPF鸡,免疫后21 d,采血测定HI抗体,然后用从上述3个地区及北京分离的共5株禽流感H9亚型流行毒株进行攻击,观察不同时期及地点分离的H9亚型流行毒株的交叉免疫攻毒保护效果。结果显示,用不同时期及地点的3个分离毒株所制备出的灭活疫苗免疫鸡后,各免疫组试验鸡H9亚型禽流感的HI抗体效价均明显上升,不同毒株灭活疫苗所诱导产生的HI抗体效价存在着不同程度的差异,用同源毒株作为抗原测定免疫组鸡的血清样品,可获得较高的HI抗体效价。攻毒试验结果证明,对不同时期及地点分离的禽流感H9亚型流行毒株间产生了较好的交叉保护力。用1998年分离的WD98株制备出的灭活疫苗对目前的流行毒株仍具有较好的保护效力。  相似文献   

5.
禽流感油乳剂灭活疫苗的研究   总被引:33,自引:3,他引:33  
将6种不同亚型的禽流感病毒(AIVH2N9、H3N8、H5N1、H5N2、H7N1、H9N2)分别接种鸡胚,收获尿囊液,经甲醛灭活,以矿物油为佐剂制成油乳剂灭活疫苗。疫苗接种4和8周龄SPF鸡,注苗后均无不良反应。每种亚型疫苗免疫后14天和21天攻毒保护率均达90%-100%。分别用H5N1和H9N2亚型灭活疫苗免疫8周龄SPF鸡、25和28周龄健康商品蛋鸡,免疫后7天产生免疫力,14天保护率达100%,21天后抗体达高峰,仔鸡接苗后最高血凝抑制(HI)几何平均滴度(GMT)为7.3-8.0log2,蛋鸡为8.0-10.5log2。免疫后180天,抗体效价不低于6.5log2。免疫后180天分别以AIV攻击,H5亚型疫苗组,用强毒攻击无一发病和死亡,对照鸡全部发病死亡;H9亚型疫苗组,对照鸡在攻毒后72小时停产,免疫鸡无一发病且产蛋正常,对同源攻毒的保护率达100%。  相似文献   

6.
Inactivated whole avian influenza (AI) virus vaccines, baculovirus-derived AI haemagglutinin vaccine and recombinant fowlpoxvirus-AI haemagglutinin vaccine were tested for the ability to protect chickens against multiple highly pathogenic (HP) H5 AI viruses. The vaccine and challenge viruses, or their haemagglutinin protein components, were obtained from field AI viruses of diverse backgrounds and included strains obtained from four continents, six host species, and isolated over a 38-year-period. The vaccines protected against clinical signs and death, and reduced the number of chickens shedding virus and the titre of the virus shed following a HP H5 AI virus challenge. Immunization with these vaccines should decrease AI virus shedding from the respiratory and digestive tracts of AI virus exposed chickens and reduce bird-to-bird transmission. Although most consistent reduction in respiratory shedding was afforded when vaccine was more similar to the challenge virus, the genetic drift of avian influenza virus did not interfere with general protection as has been reported for human influenza viruses.  相似文献   

7.
采用免疫荧光法、使用流式细胞检测仪对经H9亚型禽流感病毒人工感染SPF鸡、H9亚型禽流感油乳剂灭活苗免疫SPF鸡以及经免疫后使用H9亚型禽流感病毒攻毒后的SPF鸡外周血、脾脏、胸腺中T细胞表型亚类(CD4+、CD8+、TCR1+)的变化规律进行了监测,结果表明,H9亚型禽流感油乳剂灭活苗免疫后抗原的缓慢释放可在一定程度上激发机体的细胞免疫应答,使免疫活性T淋巴细胞得到活化,免疫后鸡体外周血中CD4+、CD8+和TCR1+T细胞的数量呈现出一明显升高的过程;同时,人工感染免疫鸡后,脾脏和胸腺TCR1+T细胞的数量上升,外周血CD4+、CD8+和TCR1+T细胞的数量少量降低或维持不变,随后短期即恢复正常;而人工感染SPF对照鸡后,外周血CD4+、CD8+和TCR1+T细胞的数量呈现下降趋势.  相似文献   

8.
将未浓缩的新城疫抗原分别与未浓缩的、浓缩3倍、浓缩6倍的禽流感抗原混合,并制备成三组鸡新城疫、禽流感(H9N2 HP株)二联灭活疫苗(简称新-流二联灭活疫苗),分别免疫21日龄SPF鸡,每羽0.3 mL,同时设置未免疫的空白对照组,免疫组与对照组均在免疫前及免疫后7、14、21、28、35 d进行采血,检测新城疫和禽流感抗体。结果发现,各免疫组在免后不同日龄的新城疫抗体基本一致,禽流感病毒抗原浓缩倍数越高(即禽流感病毒含量越高)的新-流二联灭活疫苗,免后14、21 d的抗体也越高;从免后21 d开始,各免疫组的禽流感抗体水平差异逐渐减小,免疫后禽流感抗体水平的高低可以反映该疫苗的免疫效果。试验结果表明,该疫苗可以通过浓缩提高抗原病毒含量的方法来提高免后早期抗体水平,取得良好的早期免疫效果。  相似文献   

9.
H9N2亚型禽流感病毒(Avian influenza virus,AIV)属于低致病性AIV,但因其分布广泛、传播迅速,可引起感染家禽生产性能下降,给家禽业带来了极大的经济损失。H9N2亚型AIV在感染家禽过程中可引起严重的免疫抑制,使家禽极易继发上呼吸道细菌、消化道细菌等感染,从而导致H9N2亚型AIV致病力增强,细菌黏附定植能力增强,家禽死亡率显著升高。另外,H9N2亚型AIV还能与禽传染性支气管炎病毒、禽传染性法氏囊病病毒、新城疫病毒等发生混合感染,病毒入侵时有可能出现协同作用或颉颃作用,从而相互促进或抑制病毒的复制和排毒;H9N2亚型AIV还极易发生突变或与其他亚型流感病毒在混合感染时发生基因重组产生感染人的新亚型毒株,给人类健康和公共卫生安全带来重大威胁。作者综述了H9N2亚型AIV与其他病原混合感染的研究进展,通过阐述H9N2亚型AIV与细菌或病毒混合感染的协同或颉颃作用,以期为临床上H9N2亚型AIV混合感染的防治提供参考。  相似文献   

10.
Hsu SM  Chen TH  Wang CH 《Avian diseases》2010,54(4):1197-1209
Vaccination is an effective method for controlling avian influenza (AI), especially in countries with endemic infection. This study conducted a Bayesian meta-analysis to evaluate the efficacy of AI vaccines in chickens. We included both inactivated and recombinant fowlpox virus expressing H5 (rFPV-H5) vaccine studies that used specific-pathogen-free chickens where outcomes against the H5N1 or H5N2 AI viruses were measured. Vaccine efficacy was evaluated by protection from mortality, protection from morbidity, reductions in virus isolation from the respiratory tract, and reductions in virus isolation from the cloaca. The efficacies for homologous inactivated vaccines by those four outcomes were 92% (95% confidence interval 90%-95%), 94% (91%-96%), 54% (50%-58%), and 88% (84%-91%), respectively. Corresponding figures for heterologous inactivated vaccines were 68% (63%-73%), 78% (74%-81%), 24% (16%-31%), and 71% (64%-77%); and efficacies for rFPV-H5 vaccine were 97% (94%-99%), 93% (90%-94%), 21% (14%-27%), and 78% (72%-84%), respectively. Although those vaccines protect chickens from morbidity and mortality, virus shedding would be an important biosecurity issue for further AI endemic control.  相似文献   

11.
Avian influenza (AI) is an acute respiratory disease caused by influenza A virus.Avian influenza virus (AIV) can infect poultry,wild birds and some mammals including human.AI is a big threat to both poultry and human health because the virus can cross the species barrier to get the capacity of transmitting from poultry to human.Vaccination is the most efficient measure against AI outbreaking.Traditional vaccines include inactivated vaccine based on chick embryo and attenuated vaccine.Although the traditional vaccines play important roles in the past AI epidemics,many disadvantages have been proved to exist in traditional vaccines.Forced by major drawbacks of traditional vaccines,several studies focused on the development of novel vaccines.In this review,we reviewed recombinant live vector vaccine,subunit vaccine,DNA vaccine and virus-like particle vaccine of AI in order to provide some references for prevention and control of AI.  相似文献   

12.
使用鸡新城疫-禽流感(H9N2 HP株)二联灭活疫苗分别免疫3、7、14日龄三组商品肉鸡各40羽,同时设一组空白对照组。各免疫组及对照组于3、7、14、21、28、35、42日龄采血检测新城疫、禽流感抗体,于21、28、35日龄进行禽流感病毒攻毒,对比不同日龄免疫组的抗体消涨情况及不同日龄禽流感攻毒结果。发现对照组随鸡日龄增加,新城疫与禽流感抗体逐渐下降,在42日龄时下降至0,而不同免疫组新城疫与禽流感抗体均先下降,21日龄左右开始上升,至35日龄新城疫与禽流感抗体升至6log2以上。3日龄免疫组的禽流感免疫保护效果最好,21、28、35日龄时禽流感强毒攻毒保护率均达100%;7日龄免疫组在21、35日龄时禽流感强毒攻毒保护率均达100%,28日龄时禽流感强毒攻毒保护率达70%;14日龄免疫组在28、35日龄时禽流感强毒攻毒保护率均达100%,21日龄时禽流感强毒攻毒保护率只达30%。试验表明,商品肉鸡选择3日龄免疫鸡新城疫-禽流感(H9N2 HP株)二联灭活疫苗时禽流感免疫保护效果最好,采用3日龄免疫程序可以提高新城疫与禽流感的免疫保护效果,减少养殖业的经济损失。  相似文献   

13.
禽流感是由A型流感病毒引起的一种急性呼吸道传染病,家禽、野鸟和部分哺乳动物均可感染.禽流感给中国养殖业造成了巨大的损失,同时,随着病毒的种间传播,人类的生命安全也受到了严重威胁.目前,疫苗免疫仍是防控禽流感最主要的手段,传统的疫苗主要有鸡胚灭活苗和禽流感弱毒疫苗.虽然在过往几次禽流感暴发过程中,传统疫苗发挥了重要作用,但其自身却存在诸多弊端,因此研制新型疫苗来弥补传统疫苗的不足是很有必要的.文章主要对禽流感重组活载体疫苗、基因工程亚单位疫苗、DNA疫苗和病毒样颗粒疫苗等新型疫苗的研究进展进行综述,旨在为禽流感的防控提供参考.  相似文献   

14.
Influenza A viruses have been isolated from humans, from several other mammalian species and a wide variety of avian species, among which, wild aquatic birds represent the natural hosts of influenza viruses. The majority of the possible combinations of the 15 haemagglutinin (HA) and nine neuraminidase (NA) subtypes recognized have been identified in isolates from domestic and wild birds. Infection of birds can cause a wide range of clinical signs, which may vary according to the host, the virus strain, the host's immune status, the presence of any secondary exacerbating microorganisms and environmental factors. Most infections are inapparent, especially in waterfowl and other wild birds. In contrast, infections caused by viruses of H5 and H7 subtypes can be responsible for devastating epidemics in poultry. Despite the warnings to the poultry industry about these viruses, in 1997 an avian H5N1 influenza virus was directly transmitted from birds to humans in Hong Kong and resulted in 18 confirmed infections, thus strengthening the pandemic threat posed by avian influenza (AI). Indeed, reassortant viruses, harbouring a combination of avian and human viral genomes, have been responsible for major pandemics of human influenza. These considerations warrant the need to continue and broaden efforts in the surveillance of AI. Control programmes have varied from no intervention, as in the case of the occurrence of low pathogenic (LP) AI (LPAI) viruses, to extreme, expensive total quarantine-slaughter programmes carried out to eradicate highly pathogenic (HP) AI (HPAI) viruses. The adoption of a vaccination policy, targeted either to control or to prevent infection in poultry, is generally banned or discouraged. Nevertheless, the need to boost eradication efforts in order to limit further spread of infection and avoid heavy economic losses, and advances in modern vaccine technologies, have prompted a re-evaluation of the potential use of vaccination in poultry as an additional tool in comprehensive disease control strategies. This review presents a synthesis of the most recent research on AI that has contributed to a better understanding of the ecology of the virus and to the development of safe and efficacious vaccines for poultry.  相似文献   

15.
Two low-pathogenicity (LP) and two high-pathogenicity (HP) avian influenza (AI) viruses were inoculated into chickens by the intranasal route to determine the presence of the AI virus in breast and thigh meat as well as any potential role that meat could fill as a transmission vehicle. The LPAI viruses caused localized virus infections in respiratory and gastrointestinal (GI) tracts. Virus was not detected in blood, bone marrow, or breast and thigh meat, and feeding breast and thigh meat from virus-infected birds did not transmit the virus. In contrast to the two LPAI viruses, A/chicken/Pennsylvania/1370/1983 (H5N2) HPAI virus caused respiratory and GI tract infections with systemic spread, and virus was detected in blood, bone marrow, and breast and thigh meat. Feeding breast or thigh meat from HPAI (H5N2) virus-infected chickens to other chickens did not transmit the infection. However, A/lchicken/Korea/ES/2003 (H5N1) HPAI virus produced high titers of virus in the breast meat, and feeding breast meat from these infected chickens to other chickens resulted in Al virus infection and death. Usage of either recombinant fowlpox vaccine with H5 AI gene insert or inactivated Al whole-virus vaccines prevented HPAI virus in breast meat. These data indicate that the potential for LPAI virus appearing in meat of infected chickens is negligible, while the potential for having HPAI virus in meat from infected chickens is high, but proper usage of vaccines can prevent HPAI virus from being present in meat.  相似文献   

16.
This account takes stock of events and involvements, particularly on the avian side of the influenza H5N1 'bird flu' incident in Hong Kong SAR in 1997. It highlights the role of the chicken in the many live poultry markets as the source of the virus for humans. The slaughter of chicken and other poultry across the SAR seemingly averted an influenza pandemic. This perspective from Hong Kong SAR marks the coming-of-age of acceptance of the role of avian hosts as a source of pandemic human influenza viruses and offers the prospect of providing a good baseline for influenza pandemic preparedness in the future. Improved surveillance is the key. This is illustrated through the H9N2 virus which appears to have provided the 'replicating' genes for the H5N1 virus and which has since been isolated in the SAR from poultry, pigs and humans highlighting its propensity for interspecies transmission.  相似文献   

17.
Birds of the order Psittaciformes are - besides chickens, turkeys and other birds - also susceptible to infection with avian influenza A viruses (AIV) and succumb following severe disease within one week. Published data prove that various parakeets, amazons, cockatoos, African grey parrots and budgerigars (genera Barnardius, Psittacula, Cacatua, Eolophus, Amazona, Myiopsitta, Psittacus and Melopsittacus) were found dead following natural infections. Natural infections of highly pathogenic avian influenza viruses (HPAIV) of the haemagglutinin subtypes H5 and H7 cause severe disease and high rates of mortality. Experimental transmission studies with AlVs of the subtypes H5 and H7 confirm these data. Viruses of the subtypes H3N8, H4N6, H4N8, H11N6 and H11N8 may cause also clinical signs and occasionally losses in naturally infected psittacine birds. Clinical signs and losses were also noted following experimental infection of budgerigars with a H4N6 virus. In the EU and in other countries, vaccination of exposed exotic and rare birds and poultry is a possible and an acceptable measure to provide protection. Currently, the EU Commission accepts inactivated adjuvanted vaccines whereas in some other countries recently developed vector vaccines are applied. However, birds remain susceptible during the time interval between application of any vaccine and the development of immunity. This critical period can be bridged with antiviral drugs. Our in ovo studies demonstrate that the neuraminidase inhibitor oseltamivir is non-toxic for chicken embryos at concentrations of 0.1, 1.0 and 10.0 mg/kg body weight. These dosages prevented entirely the replication of a HPAIV of the subtype H7N1 when this drug is given shortly prior to, simultaneously or soon after inoculation of chicken embryos with this AIV. Thus, we speculate that exposed valuable birds such as psittacines at risk can be successfully treated.  相似文献   

18.
In general, avian influenza (AI) vaccines protect chickens from morbidity and mortality and reduce, but do not completely prevent, replication of wild AI viruses in the respiratory and intestinal tracts of vaccinated chickens. Therefore, surveillance programs based on serological testing must be developed to differentiate vaccinated flocks infected with wild strains of AI virus from noninfected vaccinated flocks in order to evaluate the success of vaccination in a control program and allow continuation of national and international commerce of poultry and poultry products. In this study, chickens were immunized with a commercial recombinant fowlpox virus vaccine containing an H5 hemagglutinin gene from A/turkey/Ireland/83 (H5N8) avian influenza (AI) virus (rFP-H5) and evaluated for correlation of immunological response by hemagglutination inhibition (HI) or agar gel immunodiffusion (AGID) tests and determination of protection following challenge with a high pathogenicity AI (HPAI) virus. In two different trials, chickens immunized with the rFP-H5 vaccine did not develop AGID antibodies because the vaccine lacks AI nucleoprotein and matrix genes, but 0%-100% had HI antibodies, depending on the AI virus strain used in the HI test, the HI antigen inactivation procedure, and whether the birds had been preimmunized against fowlpox virus. The most consistent and highest HI titers were observed when using A/turkey/Ireland/83 (H5N8) HPAI virus strain as the beta-propiolactone (BPL)-inactivated HI test antigen, which matched the hemagglutinin gene insert in the rFP-H5 vaccine. In addition, higher HI titers were observed if ether or a combination of ether and BPL-inactivated virus was used in place of the BPL-inactivated virus. The rFP-H5 vaccinated chickens survived HPAI challenge and antibodies were detected by both AGID and HI tests. In conclusion, we demonstrated that the rFP-H5 vaccine allowed easy serological differentiation of infected from noninfected birds in vaccinated populations of chickens when using standard AGID and HI tests.  相似文献   

19.
Chickens and turkeys vaccinated with inactivated virus oil-emulsion vaccines containing different concentrations of either 1 (monovalent) or 4 (polyvalent) strains of avian influenza virus (AIV) were challenged-exposed with virulent AIV A/chicken/Scotland/59 or A/turkey/Ontario/7732/66. Four of 6 vaccines protected completely against postexposure mortality. Vaccine valency did not alter the serologic and challenge-exposure responses of chickens vaccinated with AIV A/turkey/Wisconsin/68, which was the virus component common to both monovalent and polyvalent vaccines. The magnitude of the serologic responses and protection against challenge-exposure were dependent on the concentration of virus in the vaccines. These data indicate that control of virulent AIV in chickens and turkeys by vaccination with inactivated vaccines may be feasible.  相似文献   

20.
禽流感H9亚型流行毒株交叉免疫保护试验   总被引:3,自引:0,他引:3  
采用北京市农林科学院畜牧兽医研究所1998年-2008年在北京及河北省分离的4株禽流感病毒H9亚型流行毒株,分别制备不同分离毒株灭活疫苗,免疫SPF鸡,进行交叉免疫保护试验。结果表明,用4个不同时期的分离毒株所制备出的灭活疫苗免疫鸡后,各免疫组鸡禽流感(H9亚型)的HI抗体效价均明显上升,所诱导产生的HI抗体效价基本相同;不同时期分离毒株大多产生了较好的交叉保护力。用1998年、2004年及2006年分离的流行毒株制备出的灭活疫苗能够保护2008年流行毒株的攻击。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号