首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan is a biopolymer derived from chitin in crustacean shells. Over the past decade it has been studied as an environmentally benign wood-protecting agent. It is assumed to act as a fungi-stat against a wide range of fungi and even as a fungicide at higher concentrations. This study investigated the properties of wood treated with modified chitosan of different molecular weights. Scots pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.) samples were impregnated with two chitosan solutions differing in their average molecular weights. The chitosan solutions were depolymerized by nitrous acid to one solution of high molecular weight and one solution of low molecular weight with a concentration of 5% (w/v). The results show changes in sorption properties, antifungal properties, fire-retardant properties and mechanical properties of modified chitosan-treated wood. Heat-modified, chitosan-treated wood showed similar properties to chitosan-treated wood, except for brownish coloration, enhanced hydrophobation, and slightly reduced antifungal and fire-retardant properties. The modulus of rupture and hardness showed little or no change. The modulus of elasticity of the heat-modified, chitosan-treated wood increased by 27% compared with untreated wood.  相似文献   

2.
Abstract

When using chitosan as an antifungal agent in wood it is important to understand which factors contribute to a higher fixation ratio to optimize the utilization of chitosan, the active component. Small pine samples were impregnated with chitosan solutions varying in molecular weight, concentration, pH, polymerization agent, acid and degree of deacetylation. Different post-treatments such as time, temperature, moisture content and the effect of present air were applied to the samples to evaluate the effect on the relative retention. After impregnation, the samples, with a volume of 1.5 cm3, were leached in separate test-tubes according to EN-84. The samples were prepared in a paired design where both samples were impregnated, but only one was leached. Both leached and unleached samples were analysed for their chitosan content, and the relative ratio was used as a measure for the relative retention of chitosan during leaching. The results from these trials show that pH in the range of 5.1–5.9 is favourable. The molecular weight should be as high as possible yet able to penetrate the wood structure, and the use of acetic acid gives far better fixation than the use of hydrochloric acid.  相似文献   

3.
Abstract

This research work presents a study on the properties of finger jointing green oak wood (Quercus conferta L.) using a one-component polyurethane adhesive. The effect of finger-joint orientation (vertical or horizontal fingers) was also examined. In general, the results from the measurements of modulus of rupture and modulus of elasticity of green-glued finger-jointed specimens indicated that the green gluing of a high-density species such as oak wood is feasible.  相似文献   

4.
Fungi cause serious problems in wood utilization, and environmentally benign wood protection is required as an alternative to traditional chemicals. Chitosan has shown promising antimicrobial properties against several microorganisms. In this study, we present the characterization of and antifungal properties of a commercial chitosan formulation developed for impregnation of wood. A broad range of chemical and mycological methods were used to evaluate the uptake, fixation, and antifungal properties of chitosan for wood preservation. The results show that the higher the uptake of chitosan the lower the relative recovery of chitosan in wood after leaching, and the higher the molecular weight of chitosan the higher the recovery. Chitosan with high molecular weight proved to be more efficient against decay fungi than chitosan with low molecular weight. The fungi tested on chitosan-amended nutrient agar medium were totally inhibited at 1% (w/v) concentration. In decay studies using small wood blocks, 4.8% (w/v) chitosan concentration gave the best protection against brown rot fungi.  相似文献   

5.

New silvicultural regimes with high within-stand competition require new functions for estimation of standing stock and growth of biomass components, since the allometry of trees is changed by light competition. This paper presents functions for estimation of the aboveground biomass dry weights for stem wood, stem bark, branches and leaves of young (diameter at breast height <10 cm) Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and birch (Betula pendula Roth. and Betula pubescens Ehrh.) trees growing in dense mixed stands. The functions were derived from a sample consisting of 84 Scots pine, 43 Norway spruce and 66 birch trees from six stands in northern Sweden with high stand densities (>10000 st ha-1). The logarithmically transformed power function displayed a good ability to stabilize the variance of dry weights and showed a good fit to the material (0.37< R 2 <0.99). A comparison with the most commonly used biomass functions in Sweden today showed that they overestimated the weight of stem wood and branches, while the weight of foliage was underestimated. The nature of these discrepancies suggested that the precision of biomass estimations might also be improved for young trees at wider spacing.  相似文献   

6.
Abstract

Heat treatment of wood is an effective method by which to improve the dimensional stability and biological durability, but the mechanical strength is decreased at the same time. Besides chemical modification of cell-wall constituents, physical weakening of the microstructure owing to heat-induced defects may also contribute to strength loss. Therefore, anatomical properties of heat-treated beech (Fagus sylvatica L.) and spruce (Picea abies Karst.), studied by light microscopic and scanning electron microscopic analysis, and their interrelation with strength properties and structural integrity were investigated. For determination of structural integrity, the high-energy–multiple-impact (HEMI) test was applied. Microscopic analyses showed frequent formation of radial cracks in heat-treated beech close to the rays as well as tangential cracks in the latewood of spruce. In addition, the modulus of rupture was more affected by the heat treatments than the resistance to impact milling (RIM) determined by the HEMI test, because RIM is based on multiple fractures on the microlevel that are not affected by the formation of intercellular cracks or other defects due to the heat treatment. It was concluded that heat-induced defects in the wood microstructure contribute to the substantial strength loss of thermally modified timber.  相似文献   

7.
Abstract

One of the main disadvantages of wood is hygroscopicity resulting from its polar character. The sorption–desorption of water causes unwanted swelling and shrinkage in wood. Thermal modification substantially reduces this inconvenient feature. Unfortunately, the same chemical changes that reduce water sorption alter the polar character of the material and result in poorer wetting of thermally treated wood by waterborne adhesives. Gluability of thermally modified beech (Fagus silvatica L.) and birch (Betula pubescens Ehrh.) wood with two commercial amino resins, melamine–urea–formaldehyde (MUF) and melamine–formaldehyde (MF), and a two-component polyurethane (PUR) adhesive was investigated. Both wood species were modified according to two temperature regimes: 160°C and 190°C. Shear strengths of the joints were then determined according to EN 205:2003 standard. The results showed that thermally modified beech and birch wood can be effectively glued not only with commercially available PUR adhesives, but also with aqueous MF and MUF resins. The resultant shear strengths of the joints were limited by the strength of the thermally modified substrate.  相似文献   

8.
Beech wood (Fagus sylvatica L.) was modified with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU). The equilibrium moisture content (EMC) of wood modified with DMDHEU calculated on a dry modified basis is reduced. Previous results have shown that the modification with DMDHEU does not alter the capillary condensation; therefore, the reduction in EMC seems exaggerated. The equilibrium constants of the Hailwood–Horrobin model (K d and K h) and the molecular weight of a hypothetical polymer of modified wood capable of adsorbing one molecule of water (W i) were calculated from the EMC on a dry modified wood basis (M) and on a dry wood basis (M R). The hypothetical polymer was also calculated by stoichiometry (W c) and compared to W i to estimate the number of operative OH groups. The number of operative OH groups decreased when M was used, in contradiction with the previously obtained results of differential heat of adsorption (∆H s). Therefore, the use of M R is recommended for the analysis of moisture sorption in wood modified with DMDHEU.  相似文献   

9.
To enhance dimensional stability and biological properties, low molecular weight phenolic resins of a conventional alkaline type and neutralized type were impregnated into Japanese cedar wood (Cryptomeria japonica D. Don) and heat-cured. The treatment with the neutralized type resin retained the original wood color, whereas the alkaline treatment changed the color of wood to red-brown. The concentrations of the resin solutions and the weight gains due to the resin loading of wood after treatment were highly correlated, and the target resin loading could be assessed from the solution concentration. A high dimensional stability of 60% antiswelling efficiency was attained when both types of resins were impregnated at about 30% resin loading and no significant difference was recognized between the two. To suppress decay attack from brown-rot and white-rot fungi, 15% and 10% resin loading due to treatment was required for the neutralized and alkaline types of phenolic resins, respectively. The penetration of resin into wood cell walls was investigated by means of light microscopy, Scanning Electron Microscopy (SEM), and Electron Probe X-ray Microanalysis (EPMA). A m-Bromophenol-formaldehyde resin of three levels of an average molecular weight was used to detect the presence of resin by bromine signals. The phenolic resins with low and medium molecular weights (290 and 470) were shown to penetrate into the cell walls the furthest, thereby contributing to the enhancement of dimensional stability and decay resistance in the resin-impregnated wood. Also, for phenolic resin with a high molecular weight (820), only the resin components of low molecular weight appeared to be present in the walls, making very little contribution to the dimensional stability.  相似文献   

10.
ABSTRACT

In the present work, Eucalyptus nitens was thermally modified in an open (atmospheric pressure) and a closed (under pressure) reactor system. The effect of the changes of the chemical composition on the mechanical properties was investigated. Hemicelluloses, cellulose, lignin, extractives, acetic acid, formic acid, total phenols and the cellulose degree of polymerization (DP) as well as modulus of elasticity (MOE) and modulus of rupture (MOR) were measured for each modification. The results indicated that the closed system modification, particularly at high pressure, presented stronger variations on the chemical structure of the modified wood than the modifications in the open system. In both modifications, MOR showed a better correlation with the chemical changes than the MOE, especially xylose, cellulose DP, lignin and total phenols. These correlations suggest a tendency of a more brittle wood in the closed system modification at high pressure than in the modifications in the open system. Results can be used as a reference for future applications of thermally modified E. nitens wood.  相似文献   

11.
In order to investigate the pyrolytic characteristics of the burning residue of fire-retardant wood, a multifunctional fire-resistance test oven aimed at simulating the course of a fire was used to burn fire-retardant wood and untreated wood. Samples at different distances from the combustion surface were obtained and a thermogravimetric analysis (TG) was applied to test the prrolytic process of the burning residue in an atmosphere of nitrogen. The results showed that: 1) there was little difference between fire-retardant wood and its residue in the initial temperature of thermal degradation. The initial temperature of thermal degradation of the combustion layer in untreated wood was higher than that in the no burning wood sample; 2) the temperature of the flame retardant in fire-retardant wood was 200°C in the differential thermogravimetry (DTG). The peak belonging to the flame retardant tended to dissipate during the time of burning; 3) for the burning residue of fire-retardant wood, the peak belonging to hemicellulose near 230°C in the DTG disappeared and there was a gentle shoulder from 210 to 240°C; 4) the temperature of the main peaks of the fire-retardant wood and its burning residue in DTG was 100°C lower than that of the untreated wood and its burning residue. The rate of weight loss also decreased sharply; 5) the residual weight of fire-retardant wood at 600°C clearly increased compared with that of untreated wood. Residual weight of the burning residue increased markedly as the heating temperature increased when burning; 6) there was a considerable difference with respect to the thermal degradation temperature of the no burning sample and the burning residue between fire-retardant wood and untreated wood. __________ Translated from Journal of Beijing Forestry University, 2006, 28(3): 133–138 [译自: 北京林业大学学报]  相似文献   

12.
The dynamic water vapour sorption properties of Scots pine (Pinus sylvestris L.) wood samples were studied to investigate the modifying effects of glutaraldehyde. Pine sapwood was treated with solutions of glutaraldehyde and a catalyst (magnesium chloride) to obtain weight per cent gains of 0.5, 8.6, 15.5, and 21.0%, respectively. The sorption behaviour of untreated and treated wood was measured using a Dynamic Vapour Sorption apparatus. The results showed considerable reduction in equilibrium moisture content of wood and the corresponding equilibrium time at each target relative humidity (RH) due to glutaraldehyde treatment. The moisture adsorption and desorption rates of modified and unmodified wood were generally faster in the low RH range (up to approximate 20%) than in the high range. Modification primarily reduced the adsorption and desorption rates over the high RH range of 20–95%. Glutaraldehyde modification resulted in a reduction in sorption hysteresis due to the loss of elasticity of cell walls.  相似文献   

13.
In order to investigate the effects of chemical components and matrix structure on the destabilization of quenched wood, we examined the physical and mechanical properties of steam-treated wood, hemicellulose-extracted wood, and delignified wood, which were treated at different levels. For steam-treated and hemicellulose-extracted wood,the relative relaxation modulus of the quenched sample was lower than that of the respective control sample. For delignified wood, the relative relaxation modulus fell with weight loss and reached a minimum value at a certain weight loss, and subsequently increased significantly. The hygroscopicity of all treated samples changed slightly by steaming, whereas increased with removing the component. More-over, the average volumetric swelling per 1% MC at 100% relative humidity (RH) was less than at 75% RH and 93% RH for component-removed wood. It was clear that a void structure existed. As a result, the destabilization evaluated by the fluidity (1 - E t/E 0) of steam-treated wood was influenced by the amount of adsorbed water. For component-removed wood, destabilization increased temporarily at lower weight loss because of nonuniform cohesive structure. At high weight loss, destabilization will decreased because capillary-condensed water gathered in the voids and obstructed the motion of adsorbed water. However, the destabilization of all treated wood changed less than that of chemically modified wood.  相似文献   

14.
The biological activity of 17 potential wood preservatives—quaternary ammonium and imidazolium compounds—was determined employing screening agar-plate and agar-block methods. Experiments were carried out on Scots pine (Pinus sylvestris L.) wood. The fungicidal value of new compounds with cycloalkyl substituents for Coniophora puteana ranged from 0.64 kg/m3 to 2.2 kg/m3. Aspergillus niger turned out to be the most resistant fungus to the action of modified ICs, whereas Sclerophoma pityophila was effectively inhibited by the examined salts. It was stated that the antifungal and surface active properties of new compounds depend upon the alkyl chain and the size of the cycloalkyl ring in the molecule. The presented results demonstrate the relationship between the effective dose (ED) and the lethal dose (LD) and critical micelle concentration of new QACs and ICs as well as the relation between inhibition of fungal colonies and concentration of compounds in the substrate.  相似文献   

15.
Studying the impregnation and distribution of oil-based preservative in dried wood is complicated as wood is a nonhomogeneous, hygroscopic and porous material, and especially of anisotropic nature. However, this study is important since it has influence on the durability of wood. To enhance the durability of thermally modified wood, a new method for preservative impregnation is introduced, avoiding the need for external pressure or vacuum. This article presents a study on preservative distribution in thermally treated Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) sapwood using computed tomography scanning, light microscopy, and scanning electron microscopy. Secondary treatment of thermally modified wood was performed on a laboratory scale by impregnation with two types of preservatives, viz. Elit Träskydd (Beckers) and pine tar (tar), to evaluate their distribution in the wood cells. Preservative solutions were impregnated in the wood using a simple and effective method. Samples were preheated to 170 °C in a drying oven and immediately submerged in preservative solutions for simultaneous impregnation and cooling. Tar penetration was found higher than Beckers, and their distribution decreased with increasing sample length. Owing to some anatomical properties, uptake of preservatives was low in spruce. Besides, dry-induced interstitial spaces, which are proven important flow paths for seasoned wood, were not observed in this species.  相似文献   

16.
Abstract

Wood properties, including tracheid cross-sectional dimensions, show a large degree of variation. To improve the properties of products made from wood, different methods to control variation have been developed. This study aims to determine the theoretical efficiency of three control strategies: the fractionation of pulped tracheids into earlywood and latewood, the separation of juvenile and mature wood, and sorting of logs according to tree size. The efficiency of each method was studied by first constructing virtual trees from measured tracheid cross-sectional dimensions, then simulating the efficiency of above-mentioned methods. The tracheid dimension data include Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). The simulations show that separation into earlywood and latewood classes has the highest theoretical efficiency and yields the lowest variances in raw material. Classification into juvenile and mature wood groups is the second most efficient method, and the sorting of logs according to the size class of the tree is the least efficient method. It was also concluded that the variation in cell-wall thickness and radial diameter mainly originates from differences between earlywood and latewood, whereas the variation in tangential diameter mainly originates from differences between mature and juvenile wood.  相似文献   

17.
When using chitosan as an antifungal agent in wood it is important to understand which factors contribute to a higher fixation ratio to optimize the utilization of chitosan, the active component. Small pine samples were impregnated with chitosan solutions varying in molecular weight, concentration, pH, polymerization agent, acid and degree of deacetylation. Different post-treatments such as time, temperature, moisture content and the effect of present air were applied to the samples to evaluate the effect on the relative retention. After impregnation, the samples, with a volume of 1.5 cm3, were leached in separate test-tubes according to EN-84. The samples were prepared in a paired design where both samples were impregnated, but only one was leached. Both leached and unleached samples were analysed for their chitosan content, and the relative ratio was used as a measure for the relative retention of chitosan during leaching. The results from these trials show that pH in the range of 5.1-5.9 is favourable. The molecular weight should be as high as possible yet able to penetrate the wood structure, and the use of acetic acid gives far better fixation than the use of hydrochloric acid.  相似文献   

18.
The effects of a Maillard reaction between glucose and chitosan on the resultant chitosan films and the bonding properties of chitosans with different molecular weights were investigated. In film preparation, chitosan and glucose were dissolved in 1% acetic acid and dried in a Petri dish at 50°C. The bonding properties of the Maillard-reacted chitosan in three-ply plywood were evaluated by a tensile shear test. The weight, color, free amino groups, insoluble fraction, and thermal properties of the film changed significantly as the amount of added glucose increased. However, few differences in these properties due to the use of chitosan of different molecular weights were observed. The effect of glucose addition on the tensile strength of the film differed for chitosans of different molecular weights. Improvement of the strength by 10 wt% glucose addition was observed in low-molecular-weight chitosans. The dry- and wet-bond strengths were significantly enhanced with increasing glucose addition for low-molecular-weight chitosans. In addition, good bond strength was maintained even in 1% acetic acid solution. It was thus clarified that the bonding properties of low-molecular-weight chitosan were improved markedly by the environmentally safe method of glucose addition.  相似文献   

19.
Specimens of beech, ash, lime and poplar were thermally modified (T) and treated with an aqueous solution of melamine (M) resin to investigate the mechanical changes after combined (double) modification (TM). Density, solution uptake, weight percent gain, bulking and equilibrium moisture content were recorded to ensure proper treatment. Samples for Brinell hardness and three-point bending were cured at 120°C under dry conditions. The WPGs of the two treatment groups M and TM were similar, but bulking of TM specimens was negative. This might indicate an incomplete penetration into the thermally modified cell wall in combination with a potential leaching of soluble hemicellulose components by the alkaline impregnation solution. The decreased hardness of heat-treated wood was substantially increased by melamine treatment (combined modification). Both modifications and their combination slightly increased the modulus of elasticity. The modulus of rupture was increased after melamine treatment, decreased after thermal modification and combined modification. The work in bending was severely reduced for all treatments. Melamine treatment of thermally modified wood was carried out successfully and some mechanical properties were improved. Double-modified wood with increased modulus of rupture (MOR) and extraordinary surface hardness would be suitable for non-structural outdoor applications such as decking and cladding.

Abbreviations: ANOVA: Analysis of variance; EMC: Equilibrium moisture content; EMCR: Reduced (corrected) equilibrium moisture content; IB: Impact bending strength; M: Melamine treated; MOE: Modulus of elasticity; MOR: Modulus of rupture; MUF: melamine-urea-formaldehyde resin; OD: Oven dry density; R: Untreated references; RH: relative humidity; SC: Solid content; SU: Solution uptake; T: Thermally modified; TM: Thermally modified and melamine treated (double modification); WB: Work in bending; WPG: Weight percent gain  相似文献   


20.
This study was aimed at evaluating the effect of thermal modification temperature on the mechanical properties, dimensional stability, and biological durability of Picea mariana. The boards were thermally modified at different temperatures 190, 200 and 210 °C. The results indicated that the thermal modification of wood caused a significant decrease in the modulus of rupture (MOR) after 190 °C, while the modulus of elasticity (MOE) seemed less affected with a slight increase up to 200 °C and slight decrease with further increase in temperature. The hardness of the thermally modified wood increased in the axial direction. This increase was also observed in tangential and axial directions but at a lesser extent. The final value was slightly higher in axial direction and lower in radial and tangential directions compared to those of the untreated wood. Dimensional stability improved with thermal modification in the three directions compared to the dimensional stability of unmodified wood. The fungal degradation results showed that the decay resistance of thermally modified wood against the wood-rotting fungi Trametes versicolor and Gloephyllum trabeum improved compared to that of the untreated wood. By contrast, the thermal modification of P. mariana had a limited effect on the degradation caused by the fungus Poria placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号