首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lettuce big‐vein associated virus (LBVaV, genus Varicosavirus) was shown to be responsible for characteristic necrotic symptoms observed in combination with big‐vein symptoms in lettuce breeding lines when tested for their susceptibility to lettuce big‐vein disease (BVD) using viruliferous Olpidium virulentus spores in a nutrient film technique (NFT) system. Lettuce plants showing BVD are generally infected by two viruses: Mirafiori lettuce big‐vein virus (MiLBVV, genus Ophiovirus) and LBVaV. New mechanical inoculation methods were developed to separate the two viruses from each other and to transfer both viruses to indicator plants and lettuce. After mechanical inoculation onto lettuce plants MiLBVV induced vein‐band chlorosis, which is the characteristic symptom of BVD. LBVaV caused a syndrome of necrotic spots and rings which was also observed earlier in lettuce plants inoculated in the NFT system, resembling symptoms described for lettuce ring necrosis disease (RND). This observation is in contrast with the idea that LBVaV only causes latent infections in lettuce. De novo next‐generation sequencing demonstrated that LBVaV was the only pathogen present in a mechanically inoculated lettuce plant with symptoms, providing evidence that LBVaV was the causal agent of the observed necrotic syndrome and thus fulfilling Koch’s postulates for this virus. The necrotic syndrome caused by LBVaV in lettuce is referred to as LBVaV‐associated necrosis (LAN).  相似文献   

2.
Lettuce corky root (CR) is caused by bacteria in the genera Rhizorhapis, Sphingobium, Sphingopyxis and Rhizorhabdus of the family Sphingomonadaceae. Members of this family are common rhizosphere bacteria, some pathogenic to lettuce. Sixty‐eight non‐pathogenic isolates of bacteria obtained from lettuce roots were tested for control of CR caused by Rhizorhapis suberifaciens CA1T and FL1, and Sphingobium mellinum WI4T. In two initial screenings, 10 isolates significantly reduced CR induced by one or more pathogenic strains on lettuce seedlings in vermiculite, while seven non‐pathogenic isolates provided significant CR control in natural or sterilized field soil. Rhizorhapis suberifaciens FL11 was effective at controlling all pathogenic strains, but most effective against R. suberifaciens CA1T. The other selected isolates controlled only pathogenic strains belonging to their own genus. In a greenhouse experiment, a soil drench with selected biocontrol agents (R. suberifaciens FL11, Sphingomonas sp. NY3 and S. mellinum CA16) controlled CR better than seed treatments or application of alginate pellets. In microplots infested with R. suberifaciens CA1T, seed treatment with R. suberifaciens FL11 provided complete control and a soil drench with FL11 significantly reduced the disease. Pathogenicity tests with FL11 on 23 plant species in 10 families resulted in slight yellowing on roots of lettuce and close relatives; similar yellowing appeared on some roots of non‐inoculated lettuce plants. This research showed that biocontrol agents can be genus‐specific. Only one isolate, FL11, provided more general control of various pathogenic strains causing CR even in field soil in pots and microplots.  相似文献   

3.
The severity of fusarium wilt is affected by inoculum density in soil, which is expected to decline during intervals when a non‐susceptible crop is grown. However, the anticipated benefits of crop rotation may not be realized if the pathogen can colonize and produce inoculum on a resistant cultivar or rotation crop. The present study documented colonization of roots of broccoli, cauliflower and spinach by Fusarium oxysporum f. sp. lactucae, the cause of fusarium wilt of lettuce. The frequency of infection was significantly lower on all three rotation crops than on a susceptible lettuce cultivar, and the pathogen was restricted to the cortex of roots of broccoli. However, F. oxysporum f. sp. lactucae was isolated from the root vascular stele of 7·4% of cauliflower plants and 50% of spinach plants that were sampled, indicating a greater potential for colonization and production of inoculum on these crops. The pathogen was also recovered from the root vascular stele of five fusarium wilt‐resistant lettuce cultivars. Thus, disease‐resistant plants may support growth of the pathogen and thereby contribute to an increase in soil inoculum density. Cultivars that were indistinguishable based on above‐ground symptoms, differed significantly in the extent to which they were colonized by F. oxysporum f. sp. lactucae. Less extensively colonized cultivars may prove to be superior sources of resistance to fusarium wilt for use in breeding programmes.  相似文献   

4.
White mould (Sclerotinia sclerotiorum) is a destructive disease of soybean worldwide. However, little is known of its impact on soybean production in Brazil. A meta‐analytic approach was used to assess the relationship between disease incidence and soybean yield (35 trials) and between incidence and sclerotia production (29 trials) in experiments conducted in 14 locations across four seasons. Region, site elevation and season included as moderators in random‐effects and random‐coefficients models did not significantly explain the variability in the slopes of the incidence–yield relationship. The Pearson's r, obtained from back‐transforming the Fisher's Z estimated by an overall random‐effects model, showed that incidence of white mould was moderately and negatively correlated with yield (= ?0.76, < 0.0001). A random‐coefficients model estimated a slope of ?17.2 kg ha?1%?1, for a mean attainable yield of 3455 kg ha?1, indicating that a 10% increase in white mould incidence would result in a mean yield reduction of 172 kg ha?1. White mould incidence and production of sclerotia were strongly and positively correlated (= 0.85, < 0.0001). For every 10% increase in white mould incidence, 1 kg ha?1 of sclerotia was produced. The relationship between disease incidence and production of sclerotia was stronger in southern regions and at higher elevation. In the absence of management, economic losses associated with white mould epidemics, assuming 43% incidence in 22% of the soybean area, were estimated at approximately US $1.47 billion annually within Brazil.  相似文献   

5.
The ectoparasitic dagger nematodes Xiphinema index and Xiphinema diversicaudatum, often at low numbers in the soil, are vectors of grapevine nepoviruses, which cause huge agronomical problems for the vineyard industry. This study reports a method, based on real‐time PCR, for the specific detection of these species and of the closely related non‐vector species Xiphinema vuittenezi and Xiphinema italiae. Specific primers and TaqMan probes were designed from the ribosomal DNA internal transcribed spacer 1 (ITS1), enabling the specific detection of single individuals of each of the X. index, X. diversicaudatum, X. italiae and X. vuittenezi species whatever the nematode population. The specificity of detection and absence of false positive reaction were confirmed in samples of each species mixed with the three other Xiphinema species or mixed with nematodes representative from other genera (non‐plant‐parasitic Dorylaimida, Longidorus sp., Meloidogyne spp., Globodera spp. and Pratylenchus sp.). The method was shown to be valid for the relative quantification of X. index numbers through its use, from crude nematode extracts of soil samples, in a greenhouse assay of grapevine accessions ranging from highly susceptible to resistant. As an alternative to time‐consuming microscopic identification and counting, this real‐time PCR method will provide a fast, sensitive and reliable diagnostic and relative quantification technique for X. index nematodes extracted from fields or controlled conditions.  相似文献   

6.
Since 2008, Pseudomonas syringae pv. actinidiae virulent strains (Psa‐V) have quickly spread across the main areas of kiwifruit (Actinidia deliciosa and A. chinensis) cultivation causing sudden and re‐emerging outbreaks of bacterial canker to both species. The disease caused by Psa‐V strains is considered worldwide as pandemic. Recently, P. syringae strains (ex Psa‐LV, now called PsD) phylogenetically related to Psa‐V have been isolated from kiwifruit, but cause only minor damage (i.e. leaf spot) to the host. The different biological significance of these bacterial populations affecting kiwifruit highlights the importance of having a diagnostic method able to detect Psa‐V, which is currently solely responsible for the severe damage to the kiwifruit industry. In order to improve the specific molecular detection of Psa‐V, a real‐time PCR assay has been developed based on EvaGreen chemistry, together with a novel qualitative PCR (PCR‐C). Both methods are based on specific primer sets for the hrpW gene of Psa. The real‐time PCR and PCR‐C were highly specific, detecting down to 50 and 200 fg, respectively, and were applied to a range of organs/tissues of kiwifruit with and without symptoms. These methods are important tools for both sanitary and certification programmes, and will help to avoid the spread of Psa‐V and to check possible inoculum sources. In addition to being used as routine tests, they will also enable the study of the biology of Psa‐V and the disease that it causes, whilst avoiding the detection of other populations of related P. syringae present in kiwifruit.  相似文献   

7.
The potential for using the composting process to sanitize plant waste infected with one of three plant pathogens was investigated using bench‐scale composting equipment. Two of these pathogens, the potato wart disease fungus Synchytrium endobioticum and Potato spindle tuber viroid (PSTVd) are currently subject to European quarantine regulations. The third, Polymyxa betae, a parasite of sugar beet, is regulated in some European countries when in association with Beet necrotic yellow vein virus (BNYVV), the causal organism of rhizomania disease of sugar beet. Survival of test organisms following various combinations of compost temperature, exposure time and moisture was determined using RNA‐based detection methodology and/or plant‐based bioassays. Mathematically definable relationships between compost treatment (temperature/time) and organism viability were identified for P. betae and S. endobioticum; these give some indication of the practicality of using composting for dealing with infected wastes. However, for PSTVd, the considerable variability in measured susceptibility of the viroid to the composting process meant that no such definable relationship could be determined and further work would be needed to extrapolate to practical situations.  相似文献   

8.
J Y Li  X K Guo  Q Zhang  C H Liu  Z H Lin  Z M Yu  H Wu  H B He 《Weed Research》2015,55(5):441-448
Screening crop accessions for allelopathic activity is of paramount importance for crop allelopathy research. Previous bioassays often did not use a mixed culture of donor and target plants, did not use soil and were not conducted under natural conditions. In this study, we designed an inhibitory‐circle method in which a rice accession (donor plant) and Echinochloa crus‐galli (target plant) were cultured together in paddy soil under natural conditions. First, we determined that the highest allelopathic activity of allelopathic rice accession PI312777 was at the 5‐leaf stage, and the suitable distance of rice seedlings and E. crus‐galli was 12 cm apart. This method was then validated by a field test. A further 40 rice accessions were evaluated for allelopathic activity to E. crus‐galli using this method. Two rice accessions, PI312777 and Taichung Native 1, had highly allelopathic activity to E. crus‐galli (inhibitory rate > 50%), while another accession, Lemont, had non‐allelopathic activity. These experimental results were in accordance with previous studies using direct field experiments. The inhibitory‐circle method integrated three necessary conditions, that is donor and target plants grown together, with soil as the medium and under natural conditions for reliable results. The ‘inhibitory‐circle method’, which combined donor and target plants, soil medium and field conditions, can give reliable results in one step, compared with laboratory screening methods. Also, the ‘inhibitory‐circle method’ gave results in 30‐35 days, thereby substantially reducing the requirements for time, labour and cost.  相似文献   

9.
The relationship between initial soil inoculum level of Spongospora subterranea f. sp. subterranea (Sss) and the incidence and severity of powdery scab on potato tubers at harvest was investigated. In all experiments soil inoculum level of Sss (sporeballs/g soil) was measured using a quantitative real‐time PCR assay. Of 113 commercial potato fields across the UK, soil inoculum was detected in 75%, ranging from 0 to 148 Sss sporeballs/g soil. When arbitrary soil inoculum threshold values of 0, <10 and >10 sporeballs/g soil were set, it was observed that the number of progeny crops developing powdery scab increased with the level of inoculum quantified in the field soil preplanting. In four field trials carried out to investigate the link between the amount of inoculum added to the soil and disease development, disease incidence and severity on progeny tubers was found to be significantly (P < 0·01) greater in plots with increasing levels of inoculum incorporated. There was a cultivar effect in all years, with disease incidence and severity scores being significantly greater in cvs Agria and Estima than in Nicola (P < 0·01).  相似文献   

10.
Bean anthracnose is a seedborne disease of common bean (Phaseolus vulgaris) caused by the fungal pathogen Colletotrichum lindemuthianum. Using seed that did not test positive for the pathogen has been proven to be an effective strategy for bean anthracnose control. To quantify the extent of anthracnose seed infection, a real‐time PCR‐based diagnostic assay was developed for detecting C. lindemuthianum in seeds of the commercial bean class navy bean. The ribosomal DNA (rDNA) region consisting of part of the18S rDNA, 5.8S rDNA, internal transcribed spacers (ITS) 1, 2 and part of the 28S rDNA of seven races of C. lindemuthianum, 21 isolates of Colletotrichum species and nine other bean pathogens were sequenced with the universal primer set ITS5/ITS4. Based on the aligned sequence matrix, one primer set and a probe were designed for a SYBR Green dye assay and a TaqMan MGB (minor groove binder) assay. The primer set was demonstrated to be specific for C. lindemuthianum and showed a high sensitivity for the target pathogen. The detection limit of both assays was 5 fg of C. lindemuthianum genomic DNA. To explore the correlation between the lesion area and the DNA amount of C. lindemuthianum in bean seed, seeds of the navy bean cultivar Navigator with lesions of different sizes, as well as symptomless seeds, were used in both real‐time PCR assays.  相似文献   

11.
The potential of UV‐C radiation of Andean lupin (Lupinus mutabilis) seeds to eradicate seedborne infections of anthracnose caused by Colletotrichum acutatum was investigated. UV‐C doses from 0 to 691.2 kJ m?2 (resulting from 0 to 96 h of exposure time) on disease incidence reduction and germination on artificially and naturally infected seed were evaluated. The degree of incidence reduction and seed germination was dependent on the dose of UV‐C. The UV‐C doses of 86.4 kJ m?2 and higher reduced incidence from 6% to 7% to undetectable levels, but these UV‐C doses also reduced seed germination. UV‐C can deleteriously affect physiological processes and overall growth. To assess its impact, L. mutabilis seeds irradiated with UV‐C doses of 57.6 and 86.4 kJ m?2 were grown. Seedlings grown from noninfected seed and UV‐C treated seed showed an increased concentration of chlorophyll and protein contents, as well as an increase in the activation of defence enzymes peroxidase and catalase, in comparison with plants grown from infected seed. UV‐C doses resulted in seed emergence and seedling dry weight rates that were similar to the noninfected control or better than the fungicide control. Moreover, 57.6 kJ m?2 reduced transmission of the pathogen from seed to the plantlets by 80%, while 86.4 kJ m?2 apparently eradicated the pathogen, under greenhouse conditions. The use of UV‐C, first reported here, is advantageous for controlling anthracnose in lupin.  相似文献   

12.
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real‐time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus‐Israel (TYLCV‐IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B. tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality‐assurance purposes, two internal control assays were included in the assay panel for the co‐amplification of solanaceous plant DNA or B. tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV‐IL, 100 plasmid copies of ToLCV, 500 fg B. tabaci MEAM1 and 300 fg B. tabaci MED DNA. Evaluated methods for routine testing of field‐collected whiteflies are presented, including protocols for processing B. tabaci captured on yellow sticky traps and for bulking of multiple B. tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality‐assured diagnostic method for the identification and discrimination of tomato‐infecting begomovirus and B. tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease‐management programmes both in Australia and worldwide.  相似文献   

13.
Studies were carried out in controlled environment rooms reflecting field situations. In the presence of the devastating soilborne pathogen Phytophthora clandestina, subterranean clover (Trifolium subterraneum) seedling emergence was significantly affected by moisture, soil type, temperature and cultivar. The level of rotting of tap and lateral roots was significantly affected by nutrition, soil type, temperature and cultivar. There were significant interactions involving temperature, moisture, soil type and cultivar; cultivar resistance, high moisture, high or medium temperature, high nutrition and sand soil all contributed towards less pre‐emergence damping‐off and tap and lateral root disease and to greater clover productivity. Host resistance of subterranean clover cultivars was critical for reducing disease severity and increasing productivity, even when favourable environmental conditions for severe disease occurred. In the presence of P. clandestina, the most resistant cultivar, Seaton Park, performed best under a high temperature, high nutrition and high moisture combination, but showed lower productivity under conditions of low nutrition or lower temperature, even when moisture level was high. In contrast, less resistant cultivars Riverina and Meteora had less disease and greater productivity under low moisture conditions. Findings reflect field observations that pre‐emergence damping‐off and root disease from P. clandestina in subterranean clover is particularly severe under colder conditions and in nutritionally impoverished sandy soils, and demonstrate how variations in soil type, nutrition, moisture, temperature and cultivar have profound effects on the expression and severity of phytophthora pre‐emergence damping‐off and root disease and the productivity of subterranean clover forages.  相似文献   

14.
Biological control of plant diseases using soil amendments such as animal manure and composted materials can minimize organic waste and has been proposed as an effective strategy in crop protection. In this study, 35 organic amendments (OAs) and 16 compost mixtures were evaluated against Verticillium dahliae by assessing both the antagonistic effect on the mycelial growth of two representative isolates of V. dahliae and the effect on the reduction of microsclerotia viability of the pathogen in naturally infested soil. Eleven OAs and five compost mixtures showed a consistent inhibition effect in in vitro sensitivity tests, with solid olive‐oil waste compost one of the most effective. Therefore, a bioassay with olive plants was conducted to evaluate the suppressive effect against V. dahliae of these selected OAs and compost mixtures. Significant reduction in the severity of the symptoms of V. dahliae indicates the potential use of grape marc compost (100% disease severity reduction) and solid olive‐oil waste, combined with other OAs. Microorganism mixtures and dairy waste OAs had a potential suppressive effect when they were combined with compost, showing a 73% and 63% disease severity reduction, respectively. A mixture of agro‐industrial waste with other biological control agents is a promising strategy against verticillium wilt of olive. To the authors' knowledge, this is the first report on the effectiveness of compost extracts (compost teas) on the inhibition of natural microsclerotia of V. dahliae, and also on verticillium wilt suppression in olive with solid olive‐oil waste.  相似文献   

15.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

16.
Over‐winter mortality, that is, winterkill, reduces cereal crop competitive ability and yield. While management and environmental variables are known to affect winterkill, the extent to which weeds contribute to increased winterkill is largely unknown. Winter annual weeds may increase winterkill through resource competition and by increasing incidence of and damage from plant pathogens that cause winterkill. We evaluated the impact of summer annual (Avena fatua) and winter annual (Bromus tectorum) weeds on the over‐winter survival rate of winter wheat over three winters, during which plots were covered with snow. Pink snow mould (Microdochium nivale), a winterkill pathogen known to infect B. tectorum and winter wheat, was common in wheat stands. In weed‐free treatments, mortality rates were initially near zero, but increased by nearly 45% in each subsequent winter, presumably due to an increase in snow mould disease in continuously cropped winter wheat. Whereas A. fatua infestation had no impact on crop survival rates, winter wheat survival in B. tectorum‐infested plots was 50% less than the weed‐free control in the second and third years of this study. Among B. tectorum‐infested plots, winter wheat over‐winter survival declined with increasing weed seed produced in the previous summer. Overall, this study demonstrated that winter annual weed infestations can reduce crop stand densities below replanting thresholds by reducing fall‐sown cereal winter survival. The effects of winter annual weeds on winter wheat may be meditated by increased proliferation of snow mould disease.  相似文献   

17.
Cultivated plants are known to readily hybridise with their wild relatives, sometimes forming populations with weedier life‐history strategies than their progenitors. Due to altered precipitation patterns from human‐induced global climate change, crop‐wild hybrid populations may have new and unpredictable environmental tolerances relative to parental populations, which would further challenge farming and land‐management weed control strategies. To recognise the role of seed dormancy variation in weed invasion, we compared seedbank dynamics of two cross‐type populations (wild radish, Raphanus raphanistrum, and crop‐wild hybrid radish, R. raphanistrum × R. sativus) across a soil moisture gradient. In a seed‐burial experiment, we assessed relative rates of seed germination, dormancy and seed mortality over two years across cross types (crop‐wild hybrid or wild) and watering treatments (where water was withheld, equal to annual rainfall, or double annual rainfall). Weekly population censuses in 2012 and 2013 assessed the frequency and timing of seedling emergence within a growing season. Generally, germination rates were two times higher and seed dormancy was 58% lower in hybrid versus wild populations. Surprisingly, experimental soil moisture conditions did not determine seedbank dynamics over time. Yet, seed bank dynamics changed between years, potentially related to different amounts of annual rainfall. Thus, variation in seedbank dynamics may be driven by crop‐wild hybridisation rates and, potentially, annual variation in soil moisture conditions.  相似文献   

18.
A transposon‐like element, A3aPro, with multiple copies in the Phytophthora sojae genome, was identified as a suitable detection target for this devastating soyabean root rot pathogen. The PCR primers TrapF1/TrapR1 were designed based on unique sequences derived from the transposon‐like sequence. A 267‐bp DNA fragment was amplified using this primer pair, the specificity of which was evaluated against 118 isolates of P. sojae, 72 isolates of 25 other Phytophthora spp., isolates of Pythium spp. and isolates of true fungi. In tests with P. sojae genomic DNA, detection sensitivities of 10 pg and 10 fg DNA were achieved in standard PCR (TrapF1/TrapR1) and nested PCR (TrapF1/TrapR1 and TrapF2/TrapR2), respectively. Meanwhile, PCR with TrapF1/TrapR1 primers detected the pathogen at the level of a single oospore, and even one zoospore. These primers also proved to be efficient in detecting pathogens from diseased soyabean tissues, residues and soils. In addition, real‐time quantitative PCR (qPCR) assays coupled with the TrapF1/TrapR1 primers were developed to detect and quantify the pathogen. The results demonstrated that the TrapF1/TrapR1 and TrapF2/TrapR2 primer‐based PCR assay provides a rapid and sensitive tool for the detection of P. sojae in plants and in production fields.  相似文献   

19.
Ochradenus baccatus is a widely distributed shrub in desert regions of the Middle East and North Africa. This plant's nematicidal activity against the root‐knot nematode Meloidogyne javanica was evaluated because it has been found to contain exceptionally high levels of glucosinolates. In in vitro assays with aqueous extracts of the plant, 100% of second‐stage juveniles were immobilized after exposure to 4% root‐core extract for 48 h; 8% root‐core extract suppressed their hatching by 87%, whereas stem, flower and root bark showed lower activity. Incorporation of root core or bark into the soil, as fresh or dry powder at 1 and 0·5% (w/w), respectively, reduced the number of nematodes recovered from the soil by 95–100%, whereas the flower and stem were much less effective. Results from further pot experiments indicated that only the root bark consistently contains nematicidal compounds which are effective in soil, whereas the nematicidal activity of the root core in soil was inconsistent. The presence of non‐volatile lipophilic and lipophobic nematicidal compounds in the root bark was suggested by extraction with different polar solvents, but these compounds do not seem to be isothiocyanates – glucosinolate‐hydrolysed compounds with nematicidal activity. Very poor host status of Ochradenus baccatus to M. javanica, Mincognita and M. hapla, but with root‐penetration rates of juveniles similar to those in tomato roots, suggest that this plant may be used as a cover plant or trap plant to reduce nematode populations in the soil.  相似文献   

20.
Meloidogyne ethiopica is an important nematode pathogen causing serious economic damage to grapevine in Chile. In Brazil, M. ethiopica has been detected with low frequency in kiwifruit and other crops. The objectives of this study were to evaluate the intraspecific genetic variability of M. ethiopica isolates from Brazil and Chile using AFLP and RAPD markers and to develop a species‐specific SCAR‐PCR assay for its diagnosis. Fourteen isolates were obtained from different geographic regions or host plants. Three isolates of an undescribed Meloidogyne species and one isolate of M. ethiopica from Kenya were included in the analysis. The results showed a low level of diversity among the M. ethiopica isolates, regardless of their geographical distribution or host plant origin. The three isolates of Meloidogyne sp. showed a high homogeneity and clustered separately from M. ethiopica (100% bootstrap). RAPD screenings of M. ethiopica allowed the identification of a differential DNA fragment that was converted into a SCAR marker. Using genomic DNA from pooled nematodes as a template, PCR amplification with primers designed from this species‐specific SCAR produced a fragment of 350 bp in all 14 isolates of M. ethiopica tested, in contrast with other species tested. This primer pair also allowed successful amplification of DNA from single nematodes, either juveniles or females and when used in multiplex PCR reactions containing mixtures of other root‐knot nematode species, thus showing the sensitivity of the assay. Therefore, the method developed here has potential for application in routine diagnostic procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号