首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE-To compare the effect of oral administration of tramadol alone and with IV administration of butorphanol or hydromorphone on the minimum alveolar concentration (MAC) of sevoflurane in cats. DESIGN-Crossover study. ANIMALS-8 Healthy 3-year-old cats. PROCEDURES-Cats were anesthetized with sevoflurane in 100% oxygen. A standard tail clamp method was used to determine the MAC of sevoflurane following administration of tramadol (8.6 to 11.6 mg/kg [3.6 to 5.3 mg/lb], PO, 5 minutes before induction of anesthesia), butorphanol (0.4 mg/kg [0.18 mg/lb], IV, 30 minutes after induction), hydromorphone (0.1 mg/kg [0.04 mg/lb], IV, 30 minutes after induction), saline (0.9% NaCl) solution (0.05 mL/kg [0.023 mL/lb], IV, 30 minutes after induction), or tramadol with butorphanol or with hydromorphone (same doses and routes of administration). Naloxone (0.02 mg/kg [0.009 mg/lb], IV) was used to reverse the effects of treatments, and MACs were redetermined. RESULTS-Mean +/- SEM MACs for sevoflurane after administration of tramadol (1.48 +/- 0.20%), butorphanol (1.20 +/- 0.16%), hydromorphone (1.76 +/- 0.15%), tramadol and butorphanol (1.48 +/- 0.20%), and tramadol and hydromorphone (1.85 +/- 0.20%) were significantly less than those after administration of saline solution (2.45 +/- 0.22%). Naloxone reversed the reductions in MACs. CONCLUSIONS AND CLINICAL RELEVANCE-Administration of tramadol, butorphanol, or hydromorphone reduced the MAC of sevoflurane in cats, compared with that in cats treated with saline solution. The reductions detected were likely mediated by effects of the drugs on opioid receptors. An additional reduction in MAC was not detected when tramadol was administered with butorphanol or hydromorphone.  相似文献   

2.
The halothane-sparing effect of 2 benzodiazepines, diazepam and temazepam, were investigated in ponies by measuring the minimum alveolar concentration (MAC) for halothane before and after drug administration. The MAC value for halothane decreased 29% and 16% when either 0.044 mg/kg of diazepam or 0.044 mg/kg of temazepam, respectively, was administered intravenously. Heart rate, respiratory rate, systolic and mean arterial blood pressure, and expired CO2 were also measured. No differences were present in these variables before and after drug administration nor were differences noted between the benzodiazepines.  相似文献   

3.
OBJECTIVE: To determine sedative and cardiorespiratory effects of dexmedetomidine alone and in combination with butorphanol or ketamine in cats. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given dexmedetomidine alone (10 microg/kg [4.5 mg/lb], IM), a combination of dexmedetomidine (10 microg/kg, IM) and butorphanol (0.2 mg/kg [0.09 mg/lb], IM), or a combination of dexmedetomidine (10 microg/kg, IM) and ketamine (5 mg/kg [2.3 mg/lb], IM). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were assessed before and after drug administration. Time to lateral recumbency, duration of lateral recumbency, time to sternal recumbency, time to recovery from sedation, and subjective evaluation of sedation, muscle relaxation, and auditory response were assessed. RESULTS: Each treatment resulted in adequate sedation; time to lateral recumbency, duration of lateral recumbency, and time to recovery from sedation were similar among treatments. Time to sternal recumbency was significantly greater after administration of dexmedetomidine-ketamine. Heart rate decreased significantly after each treatment; however, the decrease was more pronounced after administration of dexmedetomidine-butorphanol, compared with that following the other treatments. Systolic and diastolic blood pressure measurements decreased significantly from baseline with all treatments; 50 minutes after drug administration, mean blood pressure differed significantly from baseline only when cats received dexmedetomidine and butorphanol. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that in cats, administration of dexmedetomidine combined with butorphanol or ketamine resulted in more adequate sedation, without clinically important cardiovascular effects, than was achieved with dexmedetomidine alone.  相似文献   

4.
OBJECTIVE: To determine the effect of IV administration of perzinfotel on the minimum alveolar concentration (MAC) of isoflurane in dogs. Animals-6 healthy sexually intact male Beagles. PROCEDURES: Dogs were instrumented with a telemetry device that permitted continuous monitoring of heart rate, arterial blood pressure, and body temperature. Dogs were anesthetized with propofol (4 to 6 mg/kg, IV) and isoflurane for 30 minutes before determination of MAC of isoflurane. Isoflurane MAC values were determined 4 times, separated by a minimum of 7 days, before and after IV administration of perzinfotel (0 [control], 5, 10, and 20 mg/kg). Bispectral index and percentage hemoglobin saturation with oxygen (SpO(2)) were monitored throughout anesthesia. RESULTS: Isoflurane MAC was 1.32 +/- 0.14%. Intravenous administration of perzinfotel at 0, 5, 10, and 20 mg/kg decreased isoflurane MAC by 0%, 24%, 30%, and 47%, respectively. Perzinfotel significantly decreased isoflurane MAC values, compared with baseline and control values. The bispectral index typically increased with higher doses of perzinfotel and lower isoflurane concentrations, but not significantly. Heart rate, body temperature, and SpO(2) did not change, but systolic, mean, and diastolic arterial blood pressures significantly increased with decreases in isoflurane MAC after administration of perzinfotel at 10 and 20 mg/kg, compared with 0 and 5 mg/kg. CONCLUSIONS AND CLINICAL RELEVANCE: IV administration of perzinfotel decreased isoflurane MAC values. Improved hemodynamics were associated with decreases in isoflurane concentration.  相似文献   

5.
In the present study the influence of three volatile agents (halothane, isoflurane and sevoflurane) in oxygen at two concentrations [1.5 and 2 minimum alveolar concentration (MAC)] on non-invasive cardio-respiratory parameters (heart and respirators rates, non-invasive blood pressures at 15, 30, 60 min and after extubation) and on the recovery times (appearance of the first eyelid reflex, emergence time) after clinical anaesthesia was studied. After premedication with fentanyl-droperidol (5 microg/kg and 0.25 mg/kg, intramuscularly) and induction with propofol (5 mg/kg, intravenously) six dogs were randomly anaesthetized for 1 h for a standard neurologic stimulation test. A wide individual variation in respiration rate (induced by an initial hyperpnea) was observed in the 1.5 MAC protocols, without significant differences. Heart rate was significantly lower during 1.5 and 2 MAC halothane when compared to isoflurane and sevoflurane. An increase from 1.5 to 2 MAC induced significant decreases in diastolic (DAP) and mean arterial blood pressure in all groups without significant changes in the systolic arterial pressures. Only DAP in sevoflurane protocol was significantly different at 1.5 and 2 MAC compared to halothane. Time had no significant influences in the non-invasive blood pressures in all protocols. Extubation induced a significant increase of all parameters in all protocols. The time for a first eyelid reflex was significantly longer after 2 MAC compared to the 1.5 MAC protocol. There was no significant difference between the three anaesthetic agents. Although emergence time was longest for halothane at both anaesthetic concentrations, no significant difference in emergence time was observed for the three volatile agents.  相似文献   

6.
OBJECTIVE: To determine sedative and cardiorespiratory effects of romifidine alone and romifidine in combination with butorphanol and effects of preemptive atropine administration in cats sedated with romifidine-butorphanol. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given saline (0.9% NaCl) solution followed by romifidine alone (100 microg/kg [45.4 microg/lb], i.m.), saline solution followed by a combination of romifidine (40 microg/kg [18.1 microg/lb], i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or atropine (0.04 mg/kg [0.02 mg/lb], s.c.) followed by romifidine (40 microg/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were determined before and after drug administration. Time to recumbency, duration of recumbency, time to recover from sedation, and subjective evaluation of sedation, muscle relaxation, and analgesia were assessed. RESULTS: Bradycardia developed in all cats that received saline solution and romifidine-butorphanol or romifidine alone. Preemptive administration of atropine prevented bradycardia for 50 minutes in cats given romifidine-butorphanol. Oxyhemoglobin saturation was significantly decreased 10 minutes after romifidine-butorphanol administration in atropine-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that administration of romifidine alone or romifidine-butorphanol causes a significant decrease in heart rate and that preemptive administration of atropine in cats sedated with romifidine-butorphanol effectively prevents bradycardia for 50 minutes.  相似文献   

7.
This study was undertaken to evaluate the effect of 3 different doses of epidurally administered morphine sulphate on the minimum alveolar concentration (MAC) of isoflurane in healthy cats. Five 4-year-old, spayed female cats weighing 4.7 ± 0.8 kg were allocated randomly to receive one of 3 doses of morphine on each study day. The 3 doses of morphine were 0.05, 0.1 and 0.2 mg/kg bwt and each cat was studied 3 times so that each cat received all doses. On each study day, cats were anaesthetised with isoflurane and instrumented. The MAC of isoflurane was determined in triplicate and morphine sulphate was administered via an epidural catheter chronically implanted prior to the study. Maximum MAC reduction was determined over the following 2 h. At the end of the study cats were allowed to recover. There was a significant reduction in MAC of isoflurane, with all doses of epidural morphine (P<0.05). The maximum reduction in MAC of isoflurane after 0.05 mg/kg bwt, 0.10 mg/kg bwt and 0.20 mg/kg bwt morphine was 21.4 ± 9.796, 30.8 ± 9.696, and 30.2 ± 6.8%, respectively, with no significant difference between doses. Systolic, mean and diastolic blood pressure, heart rate, respiratory rate and arterial pH decreased significantly whereas arterial carbon dioxide tension increased significantly after morphine administration (P<0.05). The means for all variables returned to pre-morphine values when the end-tidal isoflurane concentration was reduced to the new MAC point. In conclusion, epidural morphine decreased the concentration of isoflurane required to prevent movement in response to noxious mechanical stimulation to the tail base. A similar effect may be seen clinically allowing lower doses of isoflurane to be used to provide surgical anaesthesia for procedures involving the hind limbs, pelvis and tail.  相似文献   

8.
The purpose of this study was to compare the cardiovascular effects of halothane when used alone at increasing doses (1.2, 1.45 and 1.7 minimum alveolar concentration, MAC) to those produced with equipotent doses of halothane after potentiation of the anesthetic effect with acepromazine (ACP) sedation (45% reduction of halothane MAC). Six healthy mature dogs were used on three occasions. The treatments were halothane and intramuscular (IM) saline (1.0 mL), halothane and ACP (0.04 mg/kg IM), or halothane and ACP (0.2 mg/kg IM). Anesthesia was induced and maintained with halothane in oxygen and the dogs were prepared for the collection of arterial and mixed venous blood and for the determination of heart rate, systolic, diastolic and mean arterial pressure, mean pulmonary arterial pressure (PAP), central venous pressure and cardiac output. Following animal preparation the saline or ACP was administered and positive pressure ventilation instituted. Twenty-five minutes later the dogs were exposed to the first of three anesthetic levels, with random assignment of the sequence of administration. At each anesthetic level, measurements were obtained at 20 and 35 min. Calculated values included cardiac index, stroke index, left ventricular work, systemic vascular resistance, arterial oxygen content, mixed venous oxygen content, oxygen delivery and oxygen consumption. Heart rate was significantly higher with halothane alone than with both halothane-ACP combinations and was significantly higher with high dose ACP compared to low dose ACP. Systolic and mean blood pressures were lowest with halothane alone and highest with 0.2 mg/kg ACP, the differences being significant for each treatment. Oxygen uptake and PAP were significantly lower in dogs treated with ACP. It was concluded that ACP does not potentiate the cardiovascular depression that accompanies halothane anesthesia when the resultant lower dose requirements of halothane are taken into consideration.  相似文献   

9.
OBJECTIVE: To determine whether opioids with varying interactions at receptors induce a reduction in minimum alveolar concentration (MAC) of isoflurane in cats. ANIMALS: 12 healthy, female, spayed cats. PROCEDURE: Cats were anesthetized with isoflurane and instrumented to allow collection of arterial blood and measurement of arterial blood pressure. Each drug was studied separately, and for each drug cats were randomly allocated to receive 2 doses. The drugs studied were morphine (0.1 or 1.0 mg/kg), butorphanol (0.08 or 0.8 mg/kg), buprenorphine (0.005 and 0.05 mg/kg), and U50488H (0.02 and 0.2 mg/kg). All drugs were diluted in 5 ml of saline (0.9% NaCl) solution and infused IV for 5 minutes. The MAC of isoflurane was determined in triplicate, the drug administered, and the MAC of isoflurane redetermined for a period of 3 hours. RESULTS: All drugs had a significant effect on MAC over time. With morphine only, the effect on MAC over time was different between doses. The greatest mean (+/- SD) reductions in MAC of isoflurane in response to morphine, butorphanol, buprenorphine, and U50488H administration were 28 +/- 9, 19 +/- 3, 14 +/- 7, and 11 +/- 7%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Morphine (1.0 mg/kg) and butorphanol (0.08 and 0.8 mg/kg) induced significant reductions in MAC of isoflurane that were considered clinically important. Although significant, reductions in MAC of isoflurane induced by morphine (0.1 mg/kg), buprenorphine (0.005 and 0.05 mg/kg), and U50488H (0.02 and 0.2 mg/kg) were not considered clinically relevant because they fell within the error of the measurement technique. Administration of morphine or butorphanol decreases the need for potent inhalant anesthetics in cats and could potentially be beneficial in combination with inhalants.  相似文献   

10.
OBJECTIVE: To determine analgesic efficacy and adverse effects of preemptive administration of meloxicam or butorphanol in cats undergoing onychectomy or onychectomy and neutering. DESIGN: Randomized controlled study. ANIMALS: 64 female and 74 male cats that were 4 to 192 months old and weighed 1.09 to 705 kg (2.4 to 15.5 lb). PROCEDURE: Cats received meloxicam (0.3 mg/kg [0.14 mg/lb], s.c.) or butorphanol (0.4 mg/kg [0.18 mg/lb], s.c.) 15 minutes after premedication and prior to anesthesia. A single blinded observer measured physiologic variables, assigned analgesia and lameness scores, and withdrew blood samples for each cat at baseline and throughout the 24 hours after surgery. Rescue analgesia (butorphanol, 0.4 mg/kg, i.v. or s.c.) or administration of acepromazine (0.025 to 0.05 mg/kg [0.011 to 0.023 mg/lb], i.v.) was allowed. RESULTS: Meloxicam-treated cats were less lame and had lower pain scores. Cortisol concentration was higher at extubation and lower at 1, 5, and 12 hours in the meloxicam-treated cats. Fewer meloxicam-treated cats required rescue analgesia at 3, 5, 12, and 24 hours after extubation. General impression scores were excellent or good in 75% of meloxicam-treated cats and 44% of butorphanol-treated cats. There was no treatment effect on buccal bleeding time; PCV and BUN concentration decreased in both groups, and glucose concentration decreased in meloxicam-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Preoperative administration of meloxicam improved analgesia for 24 hours without clinically relevant adverse effects in cats that underwent onychectomy or onychectomy and neutering and provided safe, extended analgesia, compared with butorphanol.  相似文献   

11.
Minimum alveolar concentration (MAC) for halothane was measured before and after administration of intravenous butorphanol (0.022 and 0.044 mg/kg in bodyweight in nine yearling Shetland ponies. Arterial blood pressure, heart rate, respiratory rate, expired CO2 and rectal temperature was also measured. Even though mean MAC values decreased 10 and 9 per cent after the low and high doses respectively, they were not statistically different from those measured prior to butorphanol. Halothane MAC values increased after butorphanol in two ponies, both animals increasing locomotor activity and demonstrating apparent central nervous system stimulation. No significant differences were seen in any variable measured after butorphanol administration.  相似文献   

12.
This study evaluated the effect of butorphanol tartrate, a synthetic opioid agonist-antagonist, on halothane minimum alveolar concentration (MAC) in dogs. Baseline halothane MAC was determined in each of six dogs. Butorphanol was administered and halothane MAC was redeter-mined. Each dog received butorphanol at 0.2, 0.4, and 0.8 mg/kg intravenously at 1 week intervals. Heart rate and arterial blood pressure decreased after butorphanol administration, but returned to baseline by 50 minutes. There was little effect on respiratory parameters. A halothane-sparing effect was not noted with any butorphanol dose.  相似文献   

13.
OBJECTIVE: To evaluate the effects of butorphanol and carprofen, alone and in combination, on the minimal alveolar concentration (MAC) of isoflurane in dogs. DESIGN: Randomized complete-block crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURE: Minimal alveolar concentration of isoflurane was determined following administration of carprofen alone, butorphanol alone, carprofen and butorphanol, and neither drug (control). Anesthesia was induced with isoflurane in oxygen, and MAC was determined by use of a tail clamp method. Three hours prior to induction of anesthesia, dogs were fed a small amount of canned food without any drugs (control) or with carprofen (2.2 mg/kg of body weight [1 mg/lb]). Following initial determination of MAC, butorphanol (0.4 mg/kg [0.18 mg/lb], i.v.) was administered, and MAC was determined again. Heart rate, respiratory rate, indirect arterial blood pressure, endtidal partial pressure of CO2, and saturation of hemoglobin with oxygen were recorded at the time MAC was determined. RESULTS: Mean +/- SD MAC of isoflurane following administration of butorphanol alone (1.03 +/- 0.22%) or carprofen and butorphanol (0.90 +/- 0.21%) were significantly less than the control MAC (1.28 +/- 0.14%), but MAC after administration of carprofen alone (1.20 +/- 0.13%) was not significantly different from the control value. The effects of carprofen and butorphanol on the MAC of isoflurane were additive. There were not any significant differences among treatments in regard to cardiorespiratory data. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of butorphanol alone or in combination with carprofen significantly reduces the MAC of isoflurane in dogs; however, the effects of butorphanol and carprofen are additive, not synergistic.  相似文献   

14.
OBJECTIVE: To determine effects of preoperative administration of ketoprofen on whole blood platelet aggregation, buccal mucosal bleeding time, and hematologic indices in dogs after elective ovariohysterectomy. DESIGN: Randomized, masked clinical trial. ANIMALS: 22 healthy dogs. PROCEDURE: 60 minutes before induction of anesthesia, 11 dogs were given 0.9% NaCl solution (control), and 11 dogs were given ketoprofen (2 mg/kg [0.9 mg/lb], IM). Thirty minutes before induction of anesthesia, glycopyrrolate (0.01mg/kg [0.005 mg/lb]), acepromazine (0.05 mg/kg [0.02 mg/lb]), and butorphanol (0.2 mg/kg 10.09 mg/lb]) were given IM to all dogs. Anesthesia was induced with thiopental (5 to 10 mg/kg [2.3 to 4.5 mg/lb], IV) and maintained with isoflurane (1 to 3%). Ovariohysterectomy was performed and butorphanol (0.1 mg/kg [0.05 mg/lb], IV) was given 15 minutes before completion of surgery. Blood samples for measurement of variables were collected at intervals before and after surgery. RESULTS: In dogs given ketoprofen, platelet aggregation was decreased 95 +/- 10% and 80 +/- 35% (mean +/- SD) immediately after surgery and 24 hours after surgery, respectively, compared with preoperative values. At both times, mean values in dogs given ketoprofen differed significantly from those in control dogs. Significant differences between groups were not observed for mucosal bleeding time or hematologic indices. CONCLUSIONS AND CLINICAL RELEVANCE: Preoperative administration of ketoprofen inhibited platelet aggre gation but did not alter bleeding time. Ketoprofen can be given before surgery to healthy dogs undergoing elective ovariohysterectomy, provided that dogs are screened for potential bleeding problems before surgery and monitored closely after surgery.  相似文献   

15.
Five adult dogs were used to determine whether acepromazine maleate (ACP), administered IM, decreases the maintenance requirement of halothane and to measure any decrease for the ACP dosages of 0.02, 0.04, 0.06, 0.08, 0.10, and 0.20 mg/kg. The value minimal alveolar concentration, a measure of anesthetic potency, was used as the measure of anesthetic requirement of halothane before and after ACP was administered. All dogs were randomly exposed to each dosage of ACP, as well as to control of 0.2 ml of sterile water. At all dosages of ACP, the decrease in the minimal alveolar concentration of halothane was significant (P less than or equal to 0.05) when compared with that of the control. The decreases at the 0.04 and 0.20 mg/kg dosages were significantly (P less than or equal to 0.05) greater than those at the 0.02 and 0.06 mg/kg dosages. Halothane requirements at all other ACP dosages (0.08 and 0.10 mg/kg) were not significantly different from each other or from those at any of the other dosages. The percentage of decrease in anesthetic requirement after ACP was administered varied from 34% to 46%, with a mean decrease of 40%. The largest decrease was recorded at the dosage of 0.04 mg/kg.  相似文献   

16.
OBJECTIVE: To compare the effectiveness of preoperative PO and SC administration of buprenorphine and meloxicam for prevention of postoperative pain-associated behaviors in cats undergoing ovariohysterectomy. DESIGN: Randomized controlled study. ANIMALS: 51 female cats (4 to 60 months old; weight range, 1.41 to 4.73 kg [3.1 to 10.4 lb]). PROCEDURE: Cats received 1 of 5 treatments at the time of anesthetic induction: buprenorphine PO (0.01 mg/kg [0.0045 mg/lb]; n = 10), buprenorphine SC (0.01 mg/kg; 10), meloxicam SC (0.3 mg/kg 10.14 mg/lb]; 10), meloxicam PO (0.3 mg/kg; 10), or 0.3 mL of sterile saline (0.9% NaCI) solution SC (control group; 11). Sedation scores and visual analog scale and interactive visual analog scale (IVAS) pain-associated behavior scores were assigned to each cat 2 hours before and at intervals until 20 hours after surgery. RESULTS: Cats receiving meloxicam PO or SC had significantly lower IVAS scores (2.91 and 2.02, respectively), compared with IVAS scores for cats receiving buprenorphine PO (755). Pain-associated behavior scores for cats administered buprenorphine or meloxicam PO or SC preoperatively did not differ significantly from control group scores. Rescue analgesia was not required by any of the cats receiving meloxicam, whereas 3 of 10 cats receiving buprenorphine PO, 2 of 10 cats receiving buprenorphine SC, and 1 of 11 cats receiving the control treatment required rescue analgesia. CONCLUSIONS AND CLINICAL RELEVANCE: On the basis of pain-associated behavior scores, cats receiving meloxicam PO or SC before ovariohysterectomy appeared to have less pain after surgery than those receiving buprenorphine PO preoperatively.  相似文献   

17.
Halothane MAC (the minimum alveolar concentration of halothane to produce anaesthesia in 50% of the animals tested) was determined to be 0.92 ± 0.16 volumes % in eight English Pointer dogs. Alterations in halothane MAC induced by an intravenous bolus of xylazine (1.1 mg/kg) and then tolazoline (5 mg/kg) was determined in each dog following control (halothane MAC) measurement. Following xylazine administration, MAC significantly decreased to 0.57 ± 0.023%. Immediately following determination of the xylazine-halothane MAC value in each dog, tolazoline was administered and the halothane requirement (MAC) was again assessed. Halothane MAC significantly increased to 1.24 ± 0.036%. Tolazoline administration induced immediate arousal in the xylazine-halothane anaesthetized dogs requiring a rapid increase in halothane concentration to maintain anaesthesia. Thus, the administration of tolazoline, an alpha adrenergic antagonist, following xylazine administration significantly increased the anaesthetic requirement (MAC) of halothane. Xylazine, an alpha 2 adrenergic agonist, decreased halothane anaesthetic requirement (MAC) in the eight dogs studied. These results are consistent with the hypotheses that stimulation of central alpha 2 receptors is the mechanism by which xylazine produces sedation and that inhibition of CNS excitatory neurotransmitter release decreases halothane anaesthetic requirement. In contrast, the increase in halothane requirement and arousal from xylazine-halothane anaesthesia that occurred following i.v. tolazoline administration indicates an increase in CNS excitatory neurotransmitter activity.  相似文献   

18.
OBJECTIVE: To evaluate the effects of ketamine, magnesium sulfate, and their combination on the minimum alveolar concentration (MAC) of isoflurane (ISO-MAC) in goats. ANIMALS: 8 adult goats. PROCEDURES: Anesthesia was induced with isoflurane delivered via face mask. Goats were intubated and ventilated to maintain normocapnia. After an appropriate equilibration period, baseline MAC (MAC(B)) was determined and the following 4 treatments were administered IV: saline (0.9% NaCl) solution (loading dose [LD], 30 mL/20 min; constant rate infusion [CRI], 60 mL/h), magnesium sulfate (LD, 50 mg/kg; CRI, 10 mg/kg/h), ketamine (LD, 1 mg/kg; CRI, 25 microg/kg/min), and magnesium sulfate (LD, 50 mg/kg; CRI, 10 mg/kg/h) combined with ketamine (LD, 1 mg/kg; CRI, 25 microg/kg/min); then MAC was redetermined. RESULTS: Ketamine significantly decreased ISOMAC by 28.7 +/- 3.7%, and ketamine combined with magnesium sulfate significantly decreased ISOMAC by 21.1 +/- 4.1%. Saline solution or magnesium sulfate alone did not significantly change ISOMAC. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine and ketamine combined with magnesium sulfate, at doses used in the study, decreased the end-tidal isoflurane concentration needed to maintain anesthesia, verifying the clinical impression that ketamine decreases the end-tidal isoflurane concentration needed to maintain surgical anesthesia. Magnesium, at doses used in the study, did not decrease ISOMAC or augment ketamine's effects on ISOMAC.  相似文献   

19.
OBJECTIVE: To establish a dosing regimen for potassium bromide and evaluate use of bromide to treat spontaneous seizures in cats. DESIGN: Prospective and retrospective studies. ANIMALS: 7 healthy adult male cats and records of 17 cats with seizures. PROCEDURE: Seven healthy cats were administered potassium bromide (15 mg/kg [6.8 mg/lb], p.o., q 12 h) until steady-state concentrations were reached. Serum samples for pharmacokinetic analysis were obtained weekly until bromide concentrations were not detectable. Clinical data were obtained from records of 17 treated cats. RESULTS: In the prospective study, maximum serum bromide concentration was 1.1 +/- 0.2 mg/mL at 8 weeks. Mean disappearance half-life was 1.6 +/- 0.2 weeks. Steady state was achieved at a mean of 5.3 +/-1.1 weeks. No adverse effects were detected and bromide was well tolerated. In the retrospective study, administration of bromide (n = 4) or bromide and phenobarbital (3) was associated with eradication of seizures in 7 of 15 cats (serum bromide concentration range, 1.0 to 1.6 mg/mL); however, bromide administration was associated with adverse effects in 8 of 16 cats. Coughing developed in 6 of these cats, leading to euthanasia in 1 cat and discontinuation of bromide administration in 2 cats. CONCLUSIONS AND CLINICAL RELEVANCE: Therapeutic concentrations of bromide are attained within 2 weeks in cats that receive 30 mg/kg/d (13.6 mg/lb/d) orally. Although somewhat effective in seizure control, the incidence of adverse effects may not warrant routine use of bromide for control of seizures in cats.  相似文献   

20.
OBJECTIVE: To determine the effect of two doses of fentanyl, administered transdermally, on the minimum alveolar concentration (MAC) of isoflurane in cats. STUDY DESIGN: Prospective, randomized study. ANIMALS: Five healthy, spayed, female cats. METHODS: Each cat was studied thrice with at least 2 weeks between each study. In study 1, the baseline isoflurane MAC was determined in triplicate for each cat. In studies 2 and 3, isoflurane MAC was determined 24 hours after placement of either a 25 or 50 microg hour(-1) fentanyl patch. In each MAC study, cats were instrumented to allow collection of arterial blood and measurement of arterial blood pressure. Twenty-four hours prior to studies 2 and 3, a catheter was placed and secured in the jugular vein and either a 25 or 50 microg hour(-1) fentanyl patch was placed in random order on the left thorax. Blood samples for plasma fentanyl determination were collected prior to patch placement and at regular intervals up to 144 hours. After determination of MAC in studies 2 and 3, naloxone was administered as a bolus dose (0.1 mg kg(-1)) followed by an infusion (1 mg kg(-1) hour(-1)) and MAC redetermined. RESULTS: The baseline isoflurane MAC was 1.51 +/- 0.21% (mean +/- SD). Fentanyl (25 and 50 micro g hour(-1)) administered transdermally significantly reduced MAC to 1.25 +/- 0.26 and 1.22 +/- 0.16%, respectively. These MAC reductions were not significantly different from each other. Isoflurane MAC determined during administration of fentanyl 25 micro g hour(-1) and naloxone (1.44 +/- 0.16%) and fentanyl 50 micro g hour(-1) and naloxone (1.51 +/- 0.19%) was not significantly different from baseline MAC (1.51 +/- 0.21%). CONCLUSIONS AND CLINICAL RELEVANCE: Fentanyl patches are placed to provide long-lasting analgesia. In order to be effective postoperatively, fentanyl patches must be placed prior to surgery. Plasma fentanyl concentrations achieved intraoperatively decrease the need for potent inhalant anesthetics in cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号