首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]比较不同地区灵芝热水提物的体外抗氧化活性。[方法]分别从总还原力、清除羟基自由基(·OH)、超氧阴离子自由基(O_2~-·)和DPPH自由基4个方面对7种灵芝子实体热水提物的体外抗氧化活性进行了初步研究。[结果]在相同浓度下,猫儿山野生灵芝热水提物的总还原力最强,吸光度高达2.48;·OH清除能力最高,清除率99.46%;清除DPPH自由基能力最强,清除率为96.62%;清除O_2~-·能力排第三。[结论]猫儿山野生灵芝热水提取物在总还原力、清除·OH、DPPH自由基3个方面的抗氧化能力表现出最强,说明猫儿山野生灵芝具有非常好的开发潜力。  相似文献   

2.
以2,6-二叔丁基-4-甲基苯酚(BHT)对照品、槲皮素对照品和丁香(Eugenia caryophyllata Thunb.)挥发油为对照,对丁香总黄酮还原力、清除1,1-二苯基-2-三硝基苯肼(DPPH·自由基)能力进行了评价。结果表明,丁香总黄酮有较好的抗氧化活性,其还原力略低于阳性对照BHT而高于丁香挥发油,清除DPPH·自由基能力则随浓度增大明显增强,浓度达到0.15、0.20 mg/mL时,其DPPH·自由基清除率分别超过丁香挥发油和阳性对照BHT。  相似文献   

3.
为研究并优化野生鱼腥草甲醇提取工艺及其体外抗氧化能力,在单因素试验的基础上设计正交试验,通过方差分析、多重比较确定最优提取工艺。用羟基自由基(·OH)的清除作用、总抗氧化能力、1,1-二苯基-2-苯基自由基(DPPH·)清除作用及清除亚硝酸盐(NO-2)能力的测定方法评价甲醇提取物体外抗氧化活性。结果表明:最佳提取工艺条件为料液比1 g∶35 m L、提取时间1.0 h、提取温度80℃、甲醇体积分数70%;甲醇提取物在0~1 mg/m L浓度范围具有明显的抗氧化活性,并且随着浓度的增大,活性增强;当甲醇提取物的浓度为1 mg/m L时,其对羟基自由基的清除率达到50.23%,对DPPH·的清除率达78.86%,对亚硝酸盐的清除率高达87.24%;与对照品维生素C相比,提取物的总抗氧化能力与其接近。因此可知,野生鱼腥草甲醇提取物具有明显体外抗氧化活性。  相似文献   

4.
采用GC-MS法检测分析水蒸气蒸馏法提取的樱桃核挥发油的化学组成,并测定其体外抗氧化活性。结果表明,从樱桃核挥发油中鉴定出9种成分,其中,棕榈酸(29.272%)、反-2-辛烯醛(13.307%)、反式-2,4-癸二烯醛(10.409%)等是主要成分。在试验浓度范围内,樱桃核挥发油的总还原力和对超氧阴离子的清除能力略低于对照相同浓度的V_C;随试验浓度的增加,樱桃核挥发油对DPPH·、羟自由基、ABTS·的清除能力增强,均与对照相同浓度的V_C相当。樱桃核挥发油具有一定的体外抗氧化活性。  相似文献   

5.
以2,6-二叔丁基-4-甲基苯酚(BHT)为阳性对照,利用紫外-可见分光光度计测定不同浓度梯度的蕨菜总黄酮样品溶液来探究其对1,1-二苯基-2-苦肼基(DPPH)、羟基自由基(·OH)、超氧阴离子(O~-_2·)的清除能力以及总还原力,探究商洛野生蕨菜总黄酮的抗氧化活性。当样品溶液浓度达到4.0 mg/mL时,对DPPH自由基、羟基自由基、超氧阴离子的清除率分别达到55.34%、71.30%、81.00%,总还原力的吸光度为0.735。试验结果表明,商洛野生蕨菜总黄酮具有较强的体外抗氧化活性,其抗氧化活性的强弱与其质量浓度呈正相关关系,在试验浓度范围内,总黄酮的抗氧化活性低于BHT。  相似文献   

6.
[目的]分析资源植物玉叶金花叶中挥发油的有效成分并评价其体外抗氧化活性。[方法]通过水蒸气蒸馏法提取玉叶金花叶中的挥发油,采用色谱-质谱联用(GC-MS)技术分析其化学组成。以VC作为对照,以总还原力和对超氧阴离子自由基、羟基自由基、DPPH自由基、ABTS自由基的清除能力为评价指标,研究玉叶金花挥发油的体外抗氧化活性。[结果]玉叶金花叶挥发油中共鉴定出49个有效成分,占其总量的68.19%,其中包括极具研究和应用价值的N-甲基吡咯(37.37%)和叶绿醇(7.34%)。且在试验浓度范围内,玉叶金花挥发油的总还原力以及对DPPH自由基、超氧阴离子自由基、羟基自由基、ABTS自由基的清除能力均随浓度的增大而增大。[结论]玉叶金花挥发油具有良好的体外抗氧化活性。  相似文献   

7.
本试验采用了羟自由基体系、超氧阴离子体系、ABTS体系和DPPH体系4种不同的体外抗氧化模型进行大蒜绿色素体外抗氧化活性研究,结果表明,大蒜绿色素对羟自由基(·OH)、超氧阴离子(O2-·)、ABTS自由基、DPPH自由基均表现出抗氧化活性,且随着大蒜绿色素浓度增加,自由基清除率显著增加.大蒜绿色素清除自由基的能力顺序为:羟自由基>超氧阴离子> ABTS自由基>DPPH自由基.  相似文献   

8.
通过测定王枣子提取物的还原能力和对化学模拟体系中羟自由基(·OH)、超氧阴离子(O-2·)及二苯代苦味酰基自由基(DPPH·)的清除能力,研究了王枣子水提取物及醇提取物的体外抗氧化活性。结果表明,王枣子水提取物及醇提取物在一定的质量浓度范围内均具有抗氧化活性及清除自由基的作用,抗氧化活性与质量浓度呈显著的量效关系(P0.01),醇提取物的还原能力显著大于水提取物的还原能力(P0.01);在王枣子提取物质量浓度为1.0 g·L-1时,王枣子水提取物对·OH、O-2·和DPPH·的清除率分别为65.25%、82.30%和65.18%,而体积分数为65%的乙醇提取物对相应自由基的清除率分别为72.51%、98.54%和91.64%,王枣子醇提取物对自由基的清除效果更好。  相似文献   

9.
为研究地黄不同部位乙醇浸提物的抗氧化活性能力,采用DPPH法、过氧化氢清除法、还原能力测定法三种评价体系,研究了河北省涉县产地黄不同营养器官乙醇浸提物的抗氧化活性。结果表明:(1)地黄不同营养器官乙醇浸提物均具有抗氧化活性,在实验质量浓度范围内,随浓度的增加,其抗氧化活性不断增强,当浓度达到一定值时抗氧化活性趋于稳定;(2)地黄不同营养器官乙醇浸提物对DPPH自由基清除能力为:叶根茎;对过氧化氢清除能力:根叶茎;还原能力:叶根茎。  相似文献   

10.
为弄清榛蘑(Armillariella mellea)水溶性多糖的体外抗氧化活性,采用Smirnoff水杨酸法和邻苯三酚自氧化法等测定方法,从清除1,1-二苯基-2-三硝基苯肼自由基(DPPH·)、羟基自由基(·OH)和超氧阴离子自由基(O2-·)3个方面研究了A.mellea水溶性多糖的体外抗氧化活性,并与Vc进行了比较.结果表明:A.mellea多糖对3种自由基均有不同程度的清除作用,清除DPPH·和·OH的能力低于阳性对照天然抗氧化剂抗坏血酸,在多糖浓度为2 mg/mL时,对DPPH·的清除率达到97.1%,在浓度为3 mg/mL和5 mg/mL时,对DPPH·的清除率达到100%.A.mellea多糖具有一定的体外抗氧化能力.  相似文献   

11.
对火龙果花中多酚类化合物抗氧化活性进行研究。采用抗氧化能力的体外实验方法,研究火龙果花中多酚类化合物的还原能力、清除·OH、O2-、DPPH·和ABTS·四种自由基的能力,以评价其抗氧化性,并以BHT作为阳性对照。结果表明,火龙果花中多酚类化合物抗氧化能力与浓度(0.4~0.8 mg/m L)呈量效关系。虽总体抗氧化活性较弱于BHT,但总体趋势与BHT相同,在浓度为0.7 mg/m L时,其羟自由基清除活性甚至略高于对比溶液。因此,火龙果花中多酚类化合物具有较好的抗氧化活性,可进一步研究开发为抗氧化功能性食品。  相似文献   

12.
为了研究覆瓦蓟Cirsium leducei(Franch.)Levl.根部挥发油化学成分及其抗氧化活性,采用水蒸气蒸馏法,从覆瓦蓟根部提取挥发油,结合GC-MS联用技术进行化学成分分析,利用铁氰化钾还原法和水杨酸法初步探讨其抗氧化活性。结果表明,从覆瓦蓟根部挥发油中共分离出13个化合物,鉴定出其中11个成分,随着浓度增加,覆瓦蓟根部挥发油的还原能力和对OH·自由基的清除能力逐渐增强。结果揭示,覆瓦蓟根部挥发油主要成分为脂肪烃类和萜类及其衍生物,具有一定的抗氧化能力。  相似文献   

13.
紫荆花红色素体外抗氧化活性的研究   总被引:2,自引:0,他引:2  
用邻苯三酚自氧化法(325 nm)测定紫荆花红色素清除超氧阴离子自由基(O-2 ·),用Fenton法(536 nm)测定其清除羟自由基(·OH)的能力.结果表明,紫荆花红色素具有一定的抗氧化活性,且抗氧化能力高于传统抗氧化剂维生素C,在测试浓度范围内与浓度呈正相关.紫荆花红色素清除·OH比清除O-2 ·的能力强,在样品浓度为0.100 g/L时,该色素对·OH的清除率为80.69%,对O-2 ·的清除率为44.87%.  相似文献   

14.
本项研究对不同产地的银耳活性成分含量进行比较,并利用多种抗氧化测定方法,测定不同银耳抗氧化能力,分析不同抗氧化测定方法之间的相关性以及活性成分含量与抗氧化测定方法之间的相关性。结果表明,不同产地银耳活性成分含量存在显著差异(P0.05),其中TF5的多糖得率、总酚含量和黄酮含量最高,TF1蛋白质含量最高;对不同自由基的清除能力大小依次为DPPH羟基超氧阴离子自由基,其中TF1对(·OH)和DPPH自由基的清除作用最大,TF2的还原力最大,TF3对(O-2)自由基的清除作用最大;对不同抗氧化测定方法之间的相关性评价,羟基自由基和DPPH自由基的清除作用之间存在较大相关性(R=0.954),其余抗氧化测定方法之间没有明显的相关性,表明不能用一种抗氧化测定方法代替另一种测定方法;活性成分含量与自由基清除之间有一定相关性,但差异很大;抗氧化能力可能不是由单一活性成分决定,而是多种活性成分的共同作用的结果。  相似文献   

15.
用清除有机自由基DPPH法评价竹叶挥发油抗氧化能力   总被引:3,自引:0,他引:3  
采用水蒸气蒸馏法从15种竹叶中提取挥发油,以TBHQ为对照,用DPPH·法研究竹叶挥发油对自由基的清除作用.结果表明,绿竹竹叶挥发油的得率最高为0.637%,而福建茶竿竹竹叶挥发油的得率仅为0.252%,水蒸气蒸馏法适宜于提取竹叶挥发油.15种竹叶挥发油均有一定的抗氧化活性,竹叶挥发油的抗氧化活性与挥发油的浓度呈正相关性.其中银丝竹竹叶挥发油的抗氧化活性最强,,IC50值为3.605 mg·mL-1,绿竹竹叶挥发油的IC50值为4.464 mg·mL-1,短穗竹竹叶挥发油抗氧化活性最低,其IC50值为12.128 mg·mL-1.综合研究结果表明,竹叶挥发油具有较高的应用价值,可作为天然抗氧化剂进一步开发和利用.  相似文献   

16.
为了获得高抗氧化活性乳酸菌,测定了8株乳酸菌对DPPH·、羟自由基(·OH)和超氧阴离子(O-2·)3种自由基的清除能力,并对R36和R39组合的协同抗氧化能力进行了测定。结果表明,8株乳酸菌不同组分都有一定的抗氧化能力,乳酸菌的发酵上清液对自由基的清除能力均高于完整细胞和无细胞提取物,其中R36和R39对3种自由基的清除能力均较高,分别为51.09%、67.86%、72.02%和50.26%、67.67%、72.16%。二者组合时,发酵上清液对3种自由基的清除能力均显著提高,分别为59.36%、77.36%、81.02%。通过对自由基清除能力分析得出,R36和R39具有较高抗氧化活性,2者具有协同抗氧化能力。  相似文献   

17.
通过研究甲壳低聚糖对自由基的清除能力和对脂质的吸附效果,探讨其在体外的抗氧化和降血脂活性.试验结果表明,甲壳低聚糖对羟自由基(·OH)和超氧阴离子(O-2·)的清除效果显著,当浓度为30mg·mL-1时,对羟自由基(·OH)和超氧阴离子(O-2·)的清除率分别达到92.9%和97.6%;对脂质的吸附能力也较强,300 ...  相似文献   

18.
[目的]本文旨在比较传统工艺与新工艺金华火腿中抗氧化肽的活性。[方法]分别以传统工艺与新工艺生产的金华火腿为材料提取粗多肽,测定粗肽粉中粗肽含量及抗氧化肽活性。以谷胱甘肽(GSH)为对照,测定不同质量浓度粗肽液清除1,1-二苯基-2-三硝基苯肼(DPPH)自由基、螯合金属离子和清除超氧阴离子自由基的能力,以及还原力和总抗氧化能力,比较2种工艺条件下金华火腿中抗氧化肽活性的差异。[结果]传统工艺粗肽含量显著高于新工艺,并且当质量浓度1.0~5.0 mg·m L~(-1)时,传统工艺粗肽液清除超氧阴离子自由基的能力强于新工艺;当质量浓度为1.0 mg·m L~(-1)时,传统工艺粗肽液螯合亚铁离子能力显著高于新工艺(P0.05);新工艺粗肽液总抗氧化能力在4.0 mg·m L~(-1)时达到0.85 U,显著大于传统工艺;当质量浓度大于2.0 mg·m L~(-1)时,新工艺粗肽液清除DPPH自由基能力显著高于传统工艺,并且2种工艺提取的粗肽液还原能力均显著低于GSH。[结论]传统工艺比新工艺生产的金华火腿具有更高含量的粗肽,2种粗肽液还原能力相当,传统工艺粗肽液螯合亚铁离子能力及清除自由基能力强于新工艺,而新工艺粗肽液清除DPPH自由基能力和总抗氧化能力强于传统工艺。  相似文献   

19.
以我国西部地区特色野生药用植物茵陈挥发油为研究对象,采用超临界CO_2萃取其中挥发油成分,测定其对·O_2~-抗氧化活性能力的大小。结果表明,各溶液的浓度低于100μg·mL-1时,消除·O_2~-的作用大小次序为:茵陈黄酮(芦丁)Vc回流液挥发油。通过研究,为茵陈药物的进一步研究利用提供理论依据。  相似文献   

20.
该研究主要对两种乳清蛋白(WPC、WPI)90℃热处理后在不同浓度(0.5%、1%、2%、3%和4%,w/v)下的抗氧化性进行测定。以ABTS自由基清除率,DPPH自由基清除率,还原力为指标进行测定,结果表明,乳清蛋白溶液浓度越高,其抗氧化活性越强。就不同乳清蛋白溶液还原力测定结果和对ABTS自由基清除能力的测定结果来看,溶液浓度越高则其相应抗氧化性越强,其还原力和自由基清除能力均在溶液浓度为4%时达到最高;而对DPPH自由基清除能力的测定来看,不同溶液对自由基清除能力在浓度较高(2%、3%、4%)时均一致地呈现出较高的自由基清除能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号