首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungicides are the preferred rice blast (Pyricularia oryzae) control option by farmers. However, no fungicides are yet registered for this purpose in Australia. Hence, it is important to test the baseline sensitivity of P. oryzae isolates collected from blast-affected regions across northern Australia, which have not yet been exposed to the fungicides, as part of a resistance management strategy. Further, it is also important to investigate and compare effect of application timing of fungicides on conidial development, including germination and germ tube growth, and penetration on susceptible rice. The EC50 of a collection of fungicide-sensitive blast isolates were within the range of 0.02–2.02 and 0.06–1.91 mg L?1 for azoxystrobin and propiconazole, respectively. Azoxystrobin was shown to have greater inhibitory effect on conidial germination than propiconazole. In addition, for pre-inoculation application, only germ tubes in the presence of external nutrients continued to grow from 24 to 48 hpi. On susceptible seedlings, both fungicides completely controlled blast disease when applied the same day as inoculation. However, for pre- or post-inoculation application of fungicide, the extent of disease control was reduced, with azoxystrobin more efficacious than propiconazole. A stimulatory effect of both fungicides at low dose was observed on certain P. oryzae isolates. This is the first study to assess the baseline sensitivity of the P. oryzae population in Australia and the first to report a stimulatory effect of low azoxystrobin concentration on growth of P. oryzae. The study highlights, for the first time, the critical role of external nutrients in promoting germ tube growth under fungicide stress conditions. Lastly, it demonstrates the high degree of efficacy of the fungicides and their potential for future rice blast management in Australia.  相似文献   

2.
The nematicidal effect of a formulated product containing extract from Quillaja saponaria was evaluated against the root-knot nematodes. The product QL Agri® 35 (QL) was tested to record the effect on second stage juveniles motility, egg hatch and also against field populations in greenhouse experiments contacted in three different locations of Greece. Convulsive movement of second stage juveniles of Meloidogyne incognita was recorded after exposure for 8 days at a series of doses, while the most paralyzed juveniles were counted at the dose of 8 mg l?1. There was also a gradual decrease in the number of juveniles emerging from egg masses of the same nematode species when the dose of Q. saponaria was increased from 0 to 8 mg l?1. In greenhouse experiments, the use of Q. saponaria could control root-knot nematodes and prevent nematodes increase in soil. The present study demonstrates that the use of Q. saponaria extract has the ability to control root-knot nematodes. Control given by Q. saponaria in field populations infecting cucumber was similar to that of cadusafos (Rugby®) and oxamyl (Vydate®) under the tested dosages and the specific conditions of the experiments.  相似文献   

3.
The purpose of this study was to determine if exogenous cholesterol availability influenced Pythiaceae resistance to antibiosis. Characterisation of an isolate of Phytophthora erythroseptica and Pythium ultimum for tolerance to antibacterial compounds found that 0.05 g.l?1 chloramphenicol inhibited mycelial growth by 96.6 % and 23.5 % respectively. However, the addition of cholesterol (0.01 g l?1) to potato dextrose agar (PDA) containing 0.05 g l?1 chloramphenicol was found to increase mycelial growth of P. erythroseptica, indicating a role for cholesterol in tolerance to inhibitory antibacterial compounds. To determine if this property extended to suppressive effects of a potential biocontrol agent, P. erythroseptica and P. ultimum were then tested against a cell-free filtrate of diffusible metabolites produced by a suppressive Trichoderma harzianum isolate in the presence and absence of cholesterol in PDA. In the absence of cholesterol, diffusible metabolites of the T. harzianum isolate were found to inhibit mycelial growth of P. erythroseptica and P. ultimum on PDA by 98 % and 63.6 % respectively (P?<?0.0001). However, the inhibitory effect of the metabolites was mitigated when 0.005 g l?1 of cholesterol was present in PDA, with mycelial growth of P. ultimum and P. erythroseptica reduced by only 60.4 % and 41.8 %, respectively (P?<?0.0001), much less inhibition than was observed in the absence of cholesterol. These results demonstrated that access to exogenous cholesterol can influence the sensitivity of Pythiaceae species to antibiosis by positively influencing mycelial growth.  相似文献   

4.
Early blight and brown spot, caused by respectively Alternaria solani and Alternaria alternata, can lead to severe yield losses in potato-growing areas. To date, fungicide application is the most effective measure to control the disease. However, in recent years, a reduced sensitivity towards several active ingredients has been reported. To shed light on this issue, Alternaria isolates were collected from different potato fields in Belgium during two growing seasons. Subsequently, the sensitivity of these isolates was assessed using four widely used fungicides with different modes of action. Demethylation inhibitors, quinone outside inhibitors, a dithiocarbamate and a carboxylic acid amide were included in this study. Although all fungicides reduced spore germination and vegetative growth of Alternaria species to some extent, the interspecies sensitivity was very variable. In general, A. solani was more suppressed by the fungicides compared to A. alternata. The effectiveness of the dithiocarbamate mancozeb was high, whereas the quinone outside inhibitor azoxystrobin showed a limited activity, especially towards A. alternata. Therefore, a subset of the A. alternata and A. solani isolates was tested for the presence of, respectively, the G143A substitution and the F129L substitution in the cytochrome b. The frequency of A. alternata isolates bearing the resistant G143A allele (approximately 65%) was comparable in both sampling years, although sensitivity of isolates decreased during the growing season. This finding points to a shift of the population towards resistant isolates. Both the European genotype I and American genotype II were present in the A. solani population, with genotype I being the most prevalent. None of the genotype I isolates carried the F129L substitution, whereas in 83% of the genotype II isolates this substitution was present. Our results demonstrate for the first time that the Belgian Alternaria population on potato comprises a considerable broad spectrum of isolates with different sensitivity to fungicides.  相似文献   

5.
This is the first report of Alternaria leaf spot disease on coriander (Coriandrum sativum L.) in South Africa. Using the agar plate method, Alternaria alternata was isolated from coriander seed lots together with four other fungal genera, which included Aspergillus, Fusarium, Penicillium and Rhizopus. Standard seed germination tests of coriander seed lots infected with seed-borne mycoflora showed a positive correlation with the number of diseased seedlings (r?=?0.239, p?<?0.01). Pathogenicity tests demonstrated that this seed-borne A. alternata was pathogenic on coriander and symptoms on leaves first appeared as small, dark brown to black, circular lesions (<5 mm diam.) that enlarged and coalesced to form dark brown blotches as time progressed. Leaf spot disease was most severe (64%) on wounded leaves inoculated with A. alternata. Re-isolation of A. alternata from diseased coriander plants satisfied the Koch’s postulates, thus confirming it as the causal agent of Alternaria leaf spot disease. Parsimony analysis based on rpb2 (GenBank Accession No. KT895947), gapdh (KT895949) and tef-1α (KT895945) sequences confirmed identity of the Alternaria isolate, which grouped within the A. alternata clade. Alternaria alternata was shown to be transmitted from infected coriander seed to the developing plants.  相似文献   

6.
Southern corn leaf blight (SCLB) caused by Cochliobolus heterostrophus is a fungal disease that impacts production of corn in China. Fungicides have been the main strategy to manage SCLB. In this study, 276 isolates of C. heterostrophus from seven locations in Fujian Province of China were tested for sensitivity to three demethylation inhibitor (DMI) fungicides. The results indicated that most of the isolates of C. heterostrophus tested were exceptionally sensitive to the three DMI fungicides. Correlation analysis revealed positive association between propiconazole and diniconazole (r?=?0.8145, P?<?0.0001), propiconazole and prochloraz (r?=?0.6190, P?<?0.0001), and diniconazole and prochloraz (r?=?0.5784, P?<?0.0001). However, there was no cross-resistance between these three DMI fungicides and the other six fungicides tested, which included carbendazol, chlorothalonil, mancozeb, iprodione, fluazinam, and pyraclostrobin. In a preventive pot experiment, one spray of 25% propiconazole emulsifiable concentrate (EC) with 250 μg active ingredient (a.i.) mL?1 applied 12 and 24 h before inoculation at the seedling (V6) stage reduced severity of SCLB by 85.60–89.21%. Nevertheless, the curative activity of propiconazole was much weaker (P?<?0.05) than its preventive efficacy. In greenhouse pot assays, one dose of propiconazole at 250 μg a.i. mL?1 was the most efficacious for controlling SCLB at the seedling and tasseling (VT) stages of corn, decreasing severity by 80.31%–84.85%, which was higher (P?<?0.05) compared to diniconazole, prochloraz, and other reference fungicides. Therefore, propiconazole appears to be very effective in reducing SCLB and should be applied as a preventive rather than therapeutic fungicide. Our findings provide essential information on the evolution of DMI resistance in C. heterostrophus in Fujian Province of China and may serve as a guide for early resistance monitoring in the future.  相似文献   

7.
A disease caused by Alternaria alternata occurred on the leaves of European pear cultivar Le Lectier in Niigata Prefecture, Japan, and was named black spot of European pear. In conidial inoculation tests, the causal pathogen induced not only small black lesions on the leaves of European pear cultivar Le Lectier, but severe lesions on the leaves of apple cultivar Red Gold, which is susceptible to the A. alternata apple pathotype (previously called A. mali) causing Alternaria blotch of apple. Interestingly, the apple pathotype isolate showed the same pathogenicity as the European pear pathogen. HPLC analysis of the culture filtrates revealed that A. alternata causing black spot of European pear produced AM-toxin I, known as a host-specific toxin of the A. alternata apple pathotype. AM-toxin I induced veinal necrosis on leaves of Le Lectier and General Leclerc cultivars, both susceptible to the European pear pathogen, at 5?×?10?7 M and 10?6 M respectively, but did not affect leaves of resistant cultivars at 10?4 M. PCR analysis with primers that specifically amplify the AM-toxin synthetase gene detected the product of expected size in the pathogen. These results indicate that A. alternata causing black spot of European pear is identical to that causing Alternaria blotch of apple. This is the first report of European pear disease caused by the A. alternata apple pathotype. This study provides a multiplex PCR protocol, which could serve as a useful tool, for the epidemiological survey of these two diseases in European pear and apple orchards.  相似文献   

8.
Botrytis cinerea is a complex species prone to fungicide resistance and characterized by enormous genetic diversity. During 2013, 220 B. cinerea isolates causing gray mold were collected from greenhouse-grown crops in the regions of Ammochostos, Larnaca, and Limassol (Cyprus). Sensitivities of the sampled populations to seven botryticides with different modes of action were screened in vitro. The results of this in vitro screening highlighted the widespread phenomenon of fungicide resistance in greenhouses, since only 8.6 % of the isolates were sensitive to all botryticides. Resistance to thiophanate-methyl was the most prevalent, with frequencies ranging from 53.8 % to 80 %. Similarly, high resistance frequencies were observed for pyraclostrobin (27.1 to 78.9 %) and boscalid (28.2 to 66.2 %). Multiple fungicide resistant phenotypes were predominant, covering 67.3 % of the population, with frequencies of 80.0, 37.5, 53.8, 83.1, and 60.2 % in cucumber, eggplant, green bean, strawberry, and tomato, respectively. No fludioxonil-resistant isolates were observed. Botrytis cinerea and Botrytis group S genotypes comprised the gray mold population. B. cinerea was predominant within cucumber, eggplant and strawberry, whereas both genotypes were in equilibrium in green bean and tomato. However, Botrytis group S was found in all hosts. B. cinerea was the most prevalent in the majority of fungicide resistance phenotypes from strawberry, while genotype distributions within tomato were generally more balanced. B. pseudocinerea was not detected in the sampled population. Overall, frequency of the mating type allele MAT1–1 was higher to MAT1–2, underlying their unequal distribution in the population. However, cases of 1:1 distribution were apparent within particular subpopulations, suggesting that mating in the field cannot be excluded.  相似文献   

9.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), remains a major production constraint in rice cultivation especially in irrigated and rainfed lowland ecosystems in India. The pathogen is highly dynamic in nature and knowledge on pathotype composition among the Xoo population is imperative for designing a scientific resistance breeding program. In this study, four hundred isolates of Xoo collected from diverse rice growing regions of India were analyzed for their virulence and genetic composition. Virulence profiling was carried out on a set of differentials consisting of 22 near isogenic lines (NILs) of IR24 possessing different BB resistance genes and their combinations along with the checks. It was observed that different NILs possessing single BB resistance gene were susceptible to about 59–94% of the Xoo isolates except IRBB 13 (containing BB resistance gene xa13), which showed susceptibility to about 35% of the isolates. Based on the reaction of the Xoo isolates on the differentials, they were categorized into 22 pathotypes. Among the 22 pathotypes, IXoPt-1 and IXoPt-2 were least virulent and IXoPt # 18–22 were highly virulent. Pathotype IXoPt-19 which was virulent on all single BB resistance genes except xa13 constituted the major pathotype (22.5% isolates) and was widely distributed throughout India (16 states). This was followed by pathotype IXoPt-22 (17.25%) which was virulent on all the NILs possessing single BB resistance genes. Molecular analysis was carried out using two outwardly directed primers complementary to sequence of IS1112, a repetitive element of Xoo. A high level of genetic polymorphism was detected among these isolates and the isolates were grouped into 12 major clusters. The data indicated complex nature of evolution of the Xoo pathotypes and there was no strong correlation between pathotypes and genetic clusters as each genetic cluster was composed of Xoo isolates belonging to different pathotypes. The study indicated that none of the single BB resistance genes can provide broad spectrum resistance in India. However, two-gene combinations like xa5 + xa13 and different 3 or 4 genes combination like Xa4 + xa5 + xa13, Xa4 + xa13 + Xa21, xa5 + xa13 + Xa21 and Xa4 + xa5 + xa13 + Xa21 are broadly effective throughout India.  相似文献   

10.
Anthracnose, which is caused by Colletotrichum acutatum, is a destructive disease of pepper. A preliminary study demonstrated that fludioxonil (a phenylpyrrole fungicide) has good activity against C. acutatum and thus has potential to be used as an alternative fungicide for the management of pepper anthracnose. However, there is no information regarding the baseline sensitivity and resistance risk of C. acutatum to fludioxonil. Thus, the sensitivities of 205 isolates of C. acutatum to fludioxonil were determined. The results showed that the frequency distributions of the EC50 values were unimodal, and the mean EC50 values for the inhibition of mycelial growth and spore germination were 0.031 μg/mL and 0.035 μg/mL, respectively. Three stable mutants with high resistance to fludioxonil were obtained in the laboratory. Two parameters, namely in vitro sporulation and the in vitro and in vivo germination of spores, showed significant difference (P < 0.01) when the mutants were compared to the sensitive isolates. Moreover, the mutants were more sensitive to osmotic stress compared to the parents. No significant differences (P ≥ 0.05) were detected in colony diameter, mycelia weight, pathogenicity or sporulation in vivo between the fludioxonil-resistant mutants and their corresponding parents. Cross-resistance occurred between fludioxonil, iprodione and procymidone. Overall, resistance risk of C. acutatum to fludioxonil was low to medium, and thus resistance management should be considered.  相似文献   

11.
This study was conducted to investigate the Alternaria species associated with leaf spot of date palm and wheat in Oman. Out of 98 date palm leaf samples and 146 wheat leaf samples, Alternaria was isolated from 27 and 23% of the samples developing leaf spot symptoms, respectively. Identification of Alternaria isolates using sequences of the internal transcribed spacer region of the ribosomal RNA (ITS rRNA), glyceraldehyde-3-phosphate dehydrogenase (GPDH), translation elongation factor (TEF) and RNA polymerase II subunit (RPB2) genes, showed that the isolates belong to seven Alternaria species or species complexes. A. burnsii - A. tomato and A. arborescens species complexes (58 and 4%, respectively) and A. alternata (38%) were the species recovered from the symptomatic date palm leaves. A. alternata (67%), A. burnsii - A. tomato species complex (15%), A. jacinthicola (3%), A. ventricosa (3%), A. slovaca (6%) and Alternaria caespitosa (6%) were isolated from wheat. Pathogenicity test showed that tested isolates of A. alternata (DPM19, WDK12), A. burnsii - A. tomato species complex (DPM31), A. jacinthicola (WBR4) and A. slovaca (WDK9, WDK7) were pathogenic on date palm, while A. alternata (DPM19, WDK12), A. burnsii - A. tomato species complex (DPM31, WDK11) and A. slovaca (WDK9, WDK7) were pathogenic on wheat. This is the first report of date palm and wheat as new hosts for A. burnsii - A. tomato species complex and the first reports of A. burnsii - A. tomato species complex, A. caespitosa A. slovaca, and A. ventricosa in Oman. The study shows that several species of Alternaria are associated with leaf spot in date palm and wheat in Oman, with some isolates having the ability to cause infection in both hosts.  相似文献   

12.
In 2010, symptoms of cobweb disease were observed on cultivated Pleurotus eryngii crops in Spain. Based on morphological and genetic analyses, the causal agent of cobweb was identified as Cladobotryum mycophilum. Pathogenicity tests on fruit bodies were performed using conidial suspensions of three C. mycophilum isolates. The causal agent was re-isolated in 80–85 % of the fruit bodies inoculated internally and 15–40 % of those fruit bodies inoculated on the cap surface. The results pointed to a certain resistance of the P. eryngii cap surface to the mycelium of C. mycophilum. Two cropping trials inoculated with C. mycophilum were set up to evaluate the pathogenicity of the causal agent of cobweb in two casings. At the end of the growth cycle, 50–60 % of the inoculated blocks cased with mineral soil, and 20–33 % of the inoculated blocks cased with black peat showed cobweb symptoms. This difference in the appearance of the disease and its aggressiveness may be partly explained by different electrical conductivity values of the casing materials used. In vitro sensitivity of the C. mycophilum isolates and P. eryngii strains against four fungicides (chlorothalonil, prochloraz-Mn, thiabendazole and thiophanate-methyl) was assessed in radial growth experiments on fungicide-amended media. The most effective fungicides for inhibiting the in vitro growth of C. mycophilum were prochloraz-Mn and chlorothalonil, while prochloraz-Mn was also the most selective fungicide between P. eryngii and C. mycophilum, and chlorothalonil was the most toxic fungicide against the P. eryngii mycelium.  相似文献   

13.
Tomato fruits are susceptible to infection by Alternaria species. In addition, Alternaria species may contaminate the fruits with mycotoxins. There is thus interest in control systems to minimise pathogenicity and control toxin production. The objectives of this study were to examine the effect of plant extracts of Eucalyptus globulus and Calendula officinalis on the growth of strains of Alternaria alternata and A. arborescens, on pathogenicity of tomato fruits and mycotoxin production. The growth bioassays showed that the ethanolic and chloroformic fractions of E. globulus were the most effective in reducing growth of A. alternata (66–74 %) and A. arborescens (86–88 %), respectively at 2500 μg/g. The effects of plant extracts on mycotoxin biosynthesis were variable and strain dependent. The most effective fractions in decreasing mycotoxin accumulation were the ethanolic and chloroformic extracts of E. globulus, which reduced tenuazonic acid by 89 %, alternariol by 75–94 % and almost complete inhibition of alternariol monomethyl ether. All the tested fractions reduced percentage of infected tomato fruits when compared to the controls. The ethanolic and chloroformic fractions of E. globulus completely inhibited growth of A. alternata and A. arborescens on unwounded fruits and reduced the aggressiveness on wounded fruits of strains of both species significantly.  相似文献   

14.
Nine insecticides, namely, imidacloprid, thiamethoxam, chlorantraniliprole, clothianidin, pymetrozine, ethofenprox, BPMC, endosulfan, acephate, and the product Virtako® (Syngenta; chlorantraniliprole 20%?+?thiamethoxam 20%) were tested to determine their toxicity to the parasitoid Trichogramma chilonis using an insecticide-coated vial (scintillation) residue bioassay. All the insecticides tested showed different degrees of toxicity to the parasitoid. Thiamethoxam showed the highest toxicity to T. chilonis with an LC50 of 0.0014 mg a.i. l ?1, followed by imidacloprid (0.0027 mg a.i. l ?1). The LC50 values of acephate and endosulfan were 4.4703 and 1.8501 mg a.i. l ?1, exhibiting low toxicity when compared with other insecticides tested. Thiamethoxam was found to be 3,195, 1,395 and 1,322 times more toxic than acephate, chlorantraniliprole and endosulfan, respectively, as revealed by the LC50 values to T. chilonis. Based on risk quotient, which is the ratio between the field-recommended doses and the LC50 of the beneficial, only chlorantraniliprole was found to be harmless to T. chilonis. The insecticides thiamethoxam, imidacloprid, Virtako®, ethofenprox and BPMC were found to be dangerous to the parasitoid. Since T. chilonis is an important egg parasitoid of leaf folders, reported to reduce the pest population considerably and often released augmentatively in rice IPM programs, the above noted dangerous chemicals should be avoided in the rice ecosystem.  相似文献   

15.
Monilinia fructicola, the most destructive pathogen of the genus Monilinia, has recently been introduced into Serbia and many other European countries. Since then, many studies have been conducted to evaluate the characteristics of Monilinia species that have a role in the establishment and survival of the pathogen in new areas. The present study assessed the capacity of M. fructicola to repress and replace Monilinia laxa in Serbia based on: fungicide sensitivity, growth rate and aggressiveness at different temperatures, as well as frost hardiness of the isolates of both species. The results showed that the isolates of M. fructicola, compared to M. laxa, were significantly less sensitive to the following fungicides: iprodione, tebucanozole, chlorothalonil, azoxystrobin, fluopyram, and boscalid. In addition, M. laxa isolates exhibited little variation in sensitivity to all of the tested fungicides, whereas M. fructicola isolates displayed a wide range of sensitivity. The temperature of 5°C favored M. laxa growth and aggressiveness, while at 30°C M. fructicola grew faster and had higher lesion expansion rate. These results support an assumption that M. fructicola will continue to spread in Serbian orchards in coming years, particularly on stone fruits harvested during hot summer weather.  相似文献   

16.
Sunflower (Helianthus annuus L.) is an important oilseed crop in South Africa, and is grown in rotation with maize in some parts of North West, Limpopo, Free State, Mpumalanga and Gauteng provinces. Alternaria leaf blight is currently one of the major potential disease threats of sunflower and is capable of causing yield losses in all production regions. Alternaria helianthi was reported as the main cause of Alternaria leaf blight of sunflower in South Africa; however small-spored Alternaria species have been consistently isolated from leaf blight symptoms during recent surveys. The aim of this study was to use morphological and molecular techniques to identify the causal agent(s) of Alternaria blight isolated from South African sunflower production areas. Alternaria helianthi was not recovered from any of the sunflower lesions or seeds, with only Alternaria alternata retrieved from the symptomatic tissue. Molecular identification based on a combined phylogenetic dataset using the partial internal transcribed spacer regions, RNA polymerase second largest subunit, glyceraldehyde-3-phosphate dehydrogenase, translation elongation factor and Alternaria allergen gene regions was done to support the morphological identification based on the three-dimensional sporulation patterns of Alternaria. Furthermore, this study aimed at evaluating the pathogenicity of the recovered Alternaria isolates and their potential as causal agents of Alternaria leaf blight of sunflower. Pathogenicity tests showed that all the Alternaria alternata isolates tested were capable of causing Alternaria leaf blight of sunflower as seen in the field. This is the first report of A. alternata causing leaf blight of sunflower in South Africa.  相似文献   

17.
Field isolates of Alternaria alternata collected from tomato processors were characterized for sensitivity to respiration inhibitors using in vitro mycelial growth assays. Pyraclostrobin (QoI), boscalid, fluopyram and isopyrazam (SDHIs) mean EC50 values were 0.32, 1.43, 2.21, and 3.53 μg/ml respectively. Of the 42 isolates, 36 were sensitive to all respiration inhibiting fungicides tested whereas three isolates were less sensitive to boscalid, one to pyraclostrobin and two were simultaneously resistant to both inhibitors and isopyrazam. Correlation analysis between fungicide sensitivities revealed a positive cross-resistance between pyraclostrobin and tebuconazole, and between cyprodinil and mancozeb. There was no cross-resistance between QoIs, SHDIs or any other mode of action. Sequencing of the QoI and SDHI targets revealed the G143A cytochrome b resistance mutation in all pyraclostrobin-resistant isolates while analysis of the succinate dehydrogenase coding gene revealed point mutations in two of three of the gene subunits analyzed in boscalid-resistant isolates. Specifically, two isolates carried the H277Y and three the H133Q resistance mutations located in the sdhB and sdhD subunits of the respiration complex II, respectively. Isolates bearing the H277Y mutation also carried the G143A cytochrome b resistance mutation. Boscalid and pyraclostrobin-resistant isolates exhibited greater pathogenicity and sporulation compared to sensitive isolates, respectively. Isolates with cross-resistance exhibited greater pathogenicity and sporulation but slower mycelial growth compared to sensitive isolates. This is the first report of field isolates of A. alternata with single or double resistance to QoIs and SDHIs in Greece and should be considered in planning and implementing effective anti-resistance strategies.  相似文献   

18.
Helicoverpa armigera is a strong insecticidal resistance developed insect pest. The understanding of its innate immune responses to emerging biocontrol agent entomopathogenic nematode-bacterial complex can provide an opportunity to control this insect in an environmentally benign manner. Study was focused on role of hemocytes changes and PO activity in Steinernema abbasi-Xenorhabdus indica challenged larvae of H. armigera over the time. Total cell count changed effectively from 10.2?±?1.81?×?105 to 15.5?±?3.3?×?105 cells/mm3 upto 9 h and reduced distinctly up to 8.0?±?2.49?×?105 cells/ mm3 in 24 h. PO activity inclined significantly and was recorded highest at 9 h (24.67?±?1.08?×?102 units) and lowest at 24 h (14.34?±?0.74?×?102 units) in total hemolymph with a similar pattern in plasma and the cellular fraction. Phenoloxidase activity in total and cellular component of hemolymph was positively correlated with prohemocytes, granulocytes and oenocytoids. Study showed the hemocytes and PO accounted as active immune responses against nematode infection. The results provide the first insight to understand the hemolytic activity, quick immunosuppression responses of S. abbasi-X. indica and vulnerability of H. armigera.  相似文献   

19.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum species complex (FGSC) and also by other species of this genus, is one of the most destructive cereal diseases with high yield losses and mycotoxin contamination worldwide. The aim of this study was to identify Fusarium species, characterize their virulence factors such as trichothecene genotypes and cell wall degrading enzymes (CWDEs), and also investigate virulence of the isolates obtained from wheat plants with FHB symptoms in Golestan province of Iran. Among 41 isolates tested, 24 were F. graminearum sensu stricto (s.s.), six were F. proliferatum, four were F. culmorum, three isolates belonged to each of F. subglutinans and F. meridionale species and one isolate of F. asiaticum was identified. Among Fusarium isolates, the nivalenol (NIV) genotype could be found more frequently, followed by 3-acetyl deoxynivalenol (3-ADON) and 15-acetyl deoxynivalenol (15-ADON) genotypes. Production of trichothecenes in autoclaved rice cultures was analyzed by gas chromatography (GC) and confirmed by GC–MS. The mean levels of NIV, 3-ADON and 15-ADON produced by Fusarium spp. were 824, 665 and 622 μg kg?1, respectively. All Fusarium isolates were capable of producing CWDEs, mainly cellulase and xylanase. Lipase and pectinase activities appeared later and at less quantities. In overall, the isolates FH1 of F. graminearum and FH8 of F. proliferatum showed the maximum activity of CWDEs, which was correlated with high level of their virulence and aggressiveness on wheat. On the other hand, correlation was observed between the level and type of trichothecene produced by each isolate and its virulence on wheat. Virulence of trichothecene producing isolates was higher than that of non-trichothecene producing isolates. Our results suggested that CWDEs and trichothecenes, as virulence factors, have considerable roles on virulence and aggressiveness of the pathogen. This is the first report on the effect of trichothecenes and CWDEs on virulence and aggressiveness of Fusarium spp. associated with FHB disease in wheat growing regions of Iran.  相似文献   

20.
Bacterial canker caused by Pseudomonas syringae pv. syrinage (Pss) in apricot has widely spread in Turkey, especially in Malatya province, in recent years. The main objective of this study was to determine resistance of apricot cultivars to bacterial canker caused by Pss in apricot cultivars grown in Turkey. During the 2006–2007 growing period, bacterial isolations were taken from diseased apricot trees in Malatya and 53 Pseudomonas syringae isolates were obtained. Forty-two isolates were determined as Pseudomonas syringae pv. syringae and 11 isolates as pv. morsprunorum. In a pathogenicity test, leaves of cv. Hacihalilo?lu were used and five Pss isolates (K24, K25, K43, K47 and K51) were detected to be the most virulent and were used to test for cultivar resistance to Pss. Leaves of fifteen apricot cultivars (Alyanak, Çatalo?lu, Çölo?lu, Erken A?erik, Hacihalilo?lu, Hasanbey, ?smaila?a, Kabaa?i, Karacabey, Sakit 2, So?anci, ?am, ?ekerpare, Tokalo?lu (Erzincan) and Turfanda Eski Malatya) were tested for resistance to Pss. Green shoots were spray-inoculated with a concentration of 108 cfu ml?1 Pss mixed culture. Sprayed shoots were covered with moist plastic bags for 3 days and maintained in the growth chamber and monitored for symptom development. Hasanbey, Çölo?lu, So?anci and ?ekerpare apricot cultivars were resistant and ?am, Tokalo?lu (Erzincan) and Erken A?erik apricot cultivars were susceptible to Pss. This is the first report of a resistance source in apricot cultivars grown in Turkey against Pss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号