首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Clenbuterol, a beta2 agonist/antagonist, is the only bronchodilator approved by the US Food and Drug Administration for use in horses. The Association of Racing Commissioners International classifies clenbuterol as a class 3 agent, and, as such, its identification in post-race samples may lead to sanctions. Anecdotal reports suggest that clenbuterol may have been administered by intratracheal (IT) injection to obtain beneficial effects and avoid post-race detection. The objectives of this study were (1) to measure the pharmacological efficacy of IT dose of clenbuterol and (2) to determine the analytical findings in urine in the presence and absence of furosemide. When administered intratracheally (90 microg/horse) to horses suffering from chronic obstructive pulmonary disease (COPD), clenbuterol had effects that were not significantly different from those of saline. In parallel experiments using a behavior chamber, no significant effects of IT clenbuterol on heart rate or spontaneous locomotor activity were observed. Clenbuterol concentrations in the urine were also measured after IT dose in the presence and absence of furosemide. Four horses were administered i.v. furosemide (5 mg/kg), and four horses were administered saline (5 mL). Two hours later, all horses were administrated clenbuterol (IT, 90 microg), and the furosemide-treated horses received a second dose of furosemide (2.5 mg/kg, i.v.). Three hours after clenbuterol dose (1 h after hypothetical 'post-time'), the mean specific gravity of urine samples from furosemide-treated horses was 1.024, well above the 1.010 concentration at which furosemide is considered to interfere with drug detection. There was no interference by furosemide with 'enhanced' ELISA screening of clenbuterol equivalents in extracted and concentrated samples. Similarly, furosemide had no effect on mass spectral identification or quantification of clenbuterol in these samples. These results suggest that the IT dose of clenbuterol (90 microg) is, in pharmacological terms, indistinguishable from the dose of saline, and that, using extracted samples, clenbuterol dose is readily detectable at 3 h after dosing. Furthermore, concomitant dose of furosemide does not interfere with detection or confirmation of clenbuterol.  相似文献   

2.
Clenbuterol is a beta2 agonist/antagonist bronchodilator marketed as Ventipulmin and is the only member of this group of drugs approved by the US Food and Drug Administration (FDA) for use in horses. Clenbuterol is a class 3 drug in the Association of Racing Commissioners International (ARCI) classification system; therefore, its identification in postrace samples may lead to sanctions. Recently, the sensitivity of postrace testing for clenbuterol has been substantially increased. The objective of this study was to determine the 'detection times' for clenbuterol after administration of an oral clinical dose (0.8 g/kg, b.i.d.) of Ventipulmin syrup. Five horses received oral clenbuterol (0.8 g/kg, b.i.d.) for 10 days, and urine concentrations of clenbuterol were determined by an enhanced enzyme-linked immunoabsorbent assay (ELISA) test and gas chromatography/mass spectrometric (GC/MS) analysis by two different methods for 30 days after administration. Twenty-four hours after the last administration, urine concentrations of apparent clenbuterol, as measured by ELISA, averaged about 500 ng/mL, dropping to about 1 ng/mL by day 5 posttreatment. However, there was a later transient increase in the mean concentrations of apparent clenbuterol in urine, peaking at 7 ng/mL on day 10 postadministration. The urine samples were also analysed using mass spectral quantification of both the trimethylsilyl (TMS) and methane boronic acid (MBA) derivatives of clenbuterol. Analysis using the TMS method showed that, at 24 h after the last administration, the mean concentration of recovered clenbuterol was about 22 ng/mL. Thereafter, clenbuterol concentrations fell below the limit of detection of the TMS-method by day 5 after administration but became transiently detectable again at day 10, with a mean concentration of about 1 ng/mL. Derivatization with MBA offers significant advantages over TMS for the mass spectral detection of clenbuterol, primarily because MBA derivatization yields a high molecular weight base peak of 243 m/z, which is ideal for quantitative purposes. Therefore, mass spectral analyses of selected urine samples, including the transient peak on day 10, were repeated using MBA derivatization, and comparable results were obtained. The results show that clenbuterol was undetectable in horse urine by day 5 after administration. However, an unexpected secondary peak of clenbuterol was observed at day 10 after administration that averaged approximately 1 ng/mL. Because of this secondary peak, the detection time for clenbuterol (0.8 g/kg, b.i.d. x 10 days) is at least 11 days if the threshold for detection is set at 1 ng/mL.  相似文献   

3.
Clenbuterol (0.8 microgram/kg intravenously) was administered to 10 anesthetized horses with an abnormally low PaO2 (less than 90 mm Hg) despite controlled ventilation with an oxygen-rich gas mixture. Results were compared with those from 10 controls to which no clenbuterol was given and in which conventional methods to increase PaO2 were ongoing. Horses treated with clenbuterol had higher PaO2 values for at least 90 minutes. Clenbuterol was associated with increased heart rate and profuse sweating. Clenbuterol can be administered intravenously to increase the PaO2 of mechanically ventilated horses that have low arterial oxygen tension while under inhalation anesthesia. Further studies are warranted to define more precisely the circumstances under which clenbuterol may be used safely.  相似文献   

4.
The present study was carried out to ascertain whether beta2-adrenergic receptor stimulation with clenbuterol would attenuate the pulmonary arterial, capillary and venous hypertension in horses performing high-intensity exercise and, in turn, modify the occurrence of exercise-induced pulmonary haemorrhage (EIPH). Experiments were carried out on 6 healthy, sound, exercise-trained Thoroughbred horses. All horses were studied in the control (no medications) and the clenbuterol (0.8 pg/kg bwt, i.v.) treatments. The sequence of these treatments was randomised for every horse, and 7 days were allowed between them. Using catheter-tip-transducers whose in-vivo signals were referenced at the point of the left shoulder, right heart/pulmonary vascular pressures were determined at rest, sub-maximal exercise and during galloping at 14.2 m/s on a 3.5% uphill grade--a workload that elicited maximal heart rate and induced EIPH in all horses. In the control experiments, incremental exercise resulted in progressive significant increments in right atrial as well as pulmonary arterial, capillary and venous (wedge) pressures and all horses experienced EIPH. Clenbuterol administration to standing horses caused tachycardia, but significant changes in mean right atrial or pulmonary vascular pressures were not observed. During exercise performed after clenbuterol administration, heart rate as well as right atrial and pulmonary arterial, capillary and wedge pressures also increased progressively with increasing work intensity. However, these values were not found to be statistically significantly different from corresponding data in the control study and the incidence of EIPH remained unaffected. Since clenbuterol administration also does not affect the transpulmonary pressure during exercise, it is unlikely that the transmural force exerted onto the blood-gas barrier of exercising horses is altered following i.v. clenbuterol administration at the recommended dosage.  相似文献   

5.
REASONS FOR PERFORMING STUDY: Analysis of human hair for drug residues is being used increasingly as a diagnostic tool in the investigation of drug use and abuse. Hair analysis is complementary to urine/blood testing in that it can provide an extensive historical record of drug use, is noninvasive, impersonal and can facilitate retesting. However, the technique has not been studied in horses. HYPOTHESIS: That the systemic administration of drugs in horses could be identified by the detection of drug residues in hair. OBJECTIVE: To evaluate hair analysis as a potential retrospective diagnostic test for drug administration in horses by studying the deposition of systemically administered drugs in tail hair. METHODS: Tail hairs (n = 40-50) from 4 horses with known drug histories were washed, chopped into 3-5 mm fragments and extracted overnight, in 0.1 mol/l hydrochloric acid, prior to solid-phase extraction and analysis by high-performance liquid chromatography. Horse 1, a 3-year-old Thoroughbred colt (gastric ulcer), was treated for 14 days with omeprazole; Horse 2, a 3-year-old Thoroughbred colt (anaerobic infection), was treated for 5 days with metronidazole; Horse 3, an 8-year-old Thoroughbred gelding (sinusitis), was treated for 10 days with trimethoprim/sulphadiazine; and Horse 4, a 3-year-old Thoroughbred colt (respiratory infection), was treated for 5 days with procaine benzylpenicillin. RESULTS: Omeprazole was not detected in tail hair. Metronidazole was detected in tail hair at a concentration of 0.57 ng/mg, trimethoprim and sulphadiazine at concentrations of 9.14 and 2.26 ng/mg, respectively, and procaine at a concentration of 1.66 ng/mg. CONCLUSIONS: The data presented suggest that hair analysis may become a useable technique for the retrospective detection of drug administration in horses. POTENTIAL RELEVANCE: This technique could ultimately be used as part of a prepurchase veterinary examination to identify misuse of anti-inflammatory and sedative drugs, in an in-training testing programme to identify use of anabolic agents, or to provide evidence to support post race blood or urine test results. Clearly, more extensive research will be required to evaluate the effectiveness of the technique over a much broader range of drugs.  相似文献   

6.
The pharmacokinetics and residues of clenbuterol in veal calves.   总被引:4,自引:0,他引:4  
Seven female Brown Swiss calves were used to study the pharmacokinetics of clenbuterol after an effective anabolic dosage of 5 micrograms/kg of BW was given twice daily for 3 wk. Analyses of clenbuterol concentrations in different tissues was done by enzyme immunoassay (EIA). Tissue samples were taken from three calves on the last day of administration and from two more after 3.5 or 14 d of clenbuterol withdrawal. The rate of clenbuterol elimination was dependent on time and tissue. Clenbuterol concentrations in the lung dropped from a mean of 76 ng/g to a level of less than .08 ng/g after 14 d, whereas in the liver the clenbuterol concentrations decreased from 46 ng/g to .6 ng/g within 14 d of withdrawal. Highest levels were always found in the eye: 118 ng/g, 57.5 ng/g, and 15.1 ng/g after 0, 3.5, and 14 d of withdrawal, respectively. These data reveal that different compartments contribute to the elimination of clenbuterol; therefore, concentrations in urine do not follow first order kinetics. An initial rapid decline in the concentration of clenbuterol in urine with a half-life of 10 h is followed by a slower elimination with a half-life of about 2.5 d. Treatments using the anabolic dose of 5 micrograms/kg of BW require longer withdrawal times than the therapeutic dose (.8 micrograms/kg BW).  相似文献   

7.
β-激动剂克伦特罗在猪肝脏和肌肉组织中的残留   总被引:8,自引:0,他引:8  
本文报道用高效液相色谱法检测β 肾上腺素能激动剂(克伦特罗Clenbuterol)在猪肝脏和背最长肌中的残留量。在肥育猪日粮中添加3mg/kg克伦特罗,试验期30天,停药0、1、2、3、4天屠宰取肝脏和肌肉样。组织经匀浆浓缩提取,色谱条件为:CLC ODS色谱柱;以20mmol/LKH2PO4+30μmol/LEDTA(pH3.9)乙腈=8218(V/V)为流动相;紫外检测波长为243nm。结果表明,克伦特罗最低检测限为2ng/g。停药当天(0天)肝脏和肌肉组织残留量分别为208.5ng/g和10.0ng/g。停药后残留量迅速下降,肌肉在停药后第2天即检测不出,而肝脏要到第4天才检测不出。  相似文献   

8.
The use of hair as a sample matrix to determine the mineral status of an animal has received a lot of interest. The objective of this study was to determine if the trace element content in horse mane hair changed with age when evaluated in a group of horses representing a large age range. As a second objective, whole blood trace element content was evaluated, and its relationship to mane hair trace element content, as well as age, were tested. Therefore, mane hair and whole blood samples were obtained from 59 horses, ranging from 2 months to 26 years in age, housed on the same farm. Mane hair samples were washed, and hair and blood digested and analyzed for 11 trace elements. Weak correlations (P < .05) between age and mane hair trace element content was detected for arsenic (r = 0.29), copper (r = −0.39) and selenium (r = −0.27). While the mane hair color did not affect trace element concentration, greater variability was detected in the black mane hair samples. This resulted in outliers that were removed from the final statistical analysis. However, data is presented to the reader both ways. Correlations were also detected (P < .05) between age and whole blood iron (r = 0.62), selenium (r = 0.76) and zinc (r = 0.47). This is similar to what has been reported in horses using serum or plasma. The trace element concentrations of mane hair and whole blood were not correlated (P > .05) in this study. However, the concentrations of trace elements in mane hair were higher than that of blood. Trace elements, specifically chromium and lead, that were below detection levels in the blood, were detectable in mane hair. This suggests that mane hair may be a potential means to investigate suspected exposure to excessive levels of trace minerals or heavy metals that are difficult to detect in blood.  相似文献   

9.
To evaluate the effects of clenbuterol on cardio-respiratory parameters and blood lactate relation to exercise tolerance, experimental horses performed standardized exercise tests on a high-speed treadmill before and after administration of the drug. Clenbuterol was administered in feed to six healthy Standardbreds at a dose rate of 0.8 micrograms/kg b.wt twice daily for 5.5 days. Each horse was tested twice, without and with a respiratory mask, during two consecutive days. One week elapsed between the baseline tests without drug and the tests with clenbuterol treatment (each horse served as its own control). The results show an unchanged heart rate response to exercise 2 h after the last clenbuterol administration. The blood lactate response and the arterial oxygen tension during exercise did not differ before and after drug treatment. The oxygen uptake as well as pulmonary ventilation relative to the work load performed was essentially unaffected. The arterial pH during exercise was significantly increased (P less than 0.05) following clenbuterol treatment. Plasma levels of clenbuterol were maximal 2 h post-administration with values between 0.45 and 0.75 ng/ml. The plasma half-life of elimination was 10.4 h (+/- 2.25 SD). In conclusion, clenbuterol did not cause any major effects on the cardio-respiratory and blood lactate parameters studied in healthy horses performing submaximal exercise tolerance tests.  相似文献   

10.
盐酸克伦特罗在羊主要脏器中残留量消除规律的研究   总被引:1,自引:0,他引:1  
本试验对盐酸克伦特罗在休药期肉羊眼睛、心脏、肾脏、肺脏、脾脏等组织中的残留规律进行了研究。选择24头体重为(30±5)kg健康肉羊进行试验,在饲料中添加50 μg/kg盐酸克伦特罗,连续饲喂35 d后休药,通过液相色谱—质谱联用/质谱检测休药期肉羊组织中克伦特罗含量,研究其残留量消除规律。试验结果表明,肉羊眼睛中有高浓度的盐酸克伦特罗残留且其在肝脏中消除较慢;停药第14天眼睛中盐酸克伦特罗的浓度仍为42.42~63.48 μg/kg,脾脏中盐酸克伦特罗消除速度是最快的;停药3 d时,检测不到盐酸克伦特罗的残留量(低于检出限0.07 μg/kg),故眼睛可用作检测盐酸克伦特罗在肉羊生产上非法使用的靶标。  相似文献   

11.
Effects of longitudinal exercise training and acute intensive exercise (simulated race test) on immune function have not been reported in horses. Clenbuterol, a beta2-adrenergic agonist, is used to manage inflammatory airway disease in horses. This study investigated the interaction of 8 wk of exercise training with or without 12 wk of clenbuterol administration in horses. Twenty-three untrained standardbred mares (10 +/- 3 yr, Mean +/- SE) were used and divided into four experimental groups. Horses given clenbuterol plus exercise (CLENEX; n = 6) and clenbuterol alone (CLEN; n = 6) received 2.4 microg/kg BW of clenbuterol twice daily (in an average volume of 20 mL) on a schedule of 5 d on and 2 d off for 12 wk. The CLENEX group was also aerobically trained 3 d/wk. Mares given exercise alone (EX; n = 5) were aerobically trained for 3 d/wk, and the control group (CON; n = 6) remained sedentary. Both EX and CON horses were administered similar volumes (approximately 20 mL) of molasses twice daily. A simulated race test (SRT) resulted in an elevation in lymphocyte number postexercise (P < 0.05). There was no significant difference after acute exercise in either monocyte or granulocyte number. Acute exercise resulted in a decrease (P < 0.05) in the percentage of CD4+ and an increase (P < 0.05) in the percentage of CD8+ cells. The SRT resulted in a decreased lymphoproliferative response to pokeweed mitogen (P < 0.05). A SRT had no effect on antibody production in response to equine influenza vaccine. The EX group demonstrated greater cortisol concentrations at rest and at all other time points postexercise after completing the training regimen compared with CLENEX horses (P < 0.05). Preexercise (SRT) peripheral blood monocyte number was lower in CLENEX horses than in other treatment groups (P < 0.05). Clenbuterol and exercise training did not significantly affect post-SRT changes in leukocyte numbers. Exercise training resulted in a decrease (P < 0.05) in the percentage of CD8+ cells post-SRT compared with other groups, but the percentage of CD4+ cells was not altered by either clenbuterol or exercise conditioning. Lymphocyte proliferative response was not affected by clenbuterol or exercise treatment. Horses demonstrated responses to bouts of acute exercise as noted with other species, namely humans and rodents.  相似文献   

12.
In 12 healthy horses, the effects of the beta2-agonist clenbuterol and the glucocorticoid dexamethasone on the lymphocyte beta2-adrenoceptor density and affinity (determined by (-)-[125I]-iodocyanopindolol binding) as well as its responsiveness (assessed by lymphocyte cyclic AMP [cAMP] responses to 10 micromol/l (-)-isoprenaline) were studied. Clenbuterol treatment, 2 x 0.8 microg/kg/day i.v. for 12 days, decreased significantly ICYP binding sites by approximately 30-40%; concomitantly, lymphocyte cAMP response to (-)-isoprenaline was reduced. After withdrawal of clenbuterol, beta2-adrenoceptor density and responsiveness gradually increased, reaching predrug levels after 4 days. The effects of dexamethasone on clenbuterol-induced desensitisation were further investigated. Administration of dexamethasone (1 x 0.1 mg/kg/day, i.v. for 5 days) immediately after clenbuterol withdrawal accelerated beta2-adrenoceptor recovery: only 24 h after administration dexamethasone restored the number of binding sites and cAMP response to (-)-isoprenaline to levels statistically indistinguishable from values before clenbuterol treatment. Three days after dexamethasone administration, lymphocyte beta2-adrenoceptors were further increased about 2-fold the pretreatment values, and this increase declined gradually after dexamethasone withdrawal, reaching baseline values after 4 days. Furthermore, in groups exposed simultaneously to both drugs, dexamethasone completely prevented clenbuterol-induced decrease in lymphocyte beta2-adrenergic receptor density and responsiveness. No significant change was observed in the dissociation constant for ICYP in any of the situations. We conclude that dexamethasone (glucocorticoids) can reverse and prevent Clenbuterol-induced desensitisation (down-regulation) of the lymphocyte beta2-adrenoceptors and therefore, a combined therapy with clenbuterol and dexamethasone may be potentially beneficial in horses suffering from chronic obstructive pulmonary disease (COPD).  相似文献   

13.
Detection of enrofloxacin and its metabolite ciprofloxacin in equine hair   总被引:4,自引:0,他引:4  
Hair analysis to detect drug administration has not been studied extensively in horses. This study aimed to (a) develop an analytical method for enrofloxacin and its metabolite ciprofloxacin in mane and tail hair, (b) relate measured values to doses, routes of administration, hair colour, and (c) demonstrate long-term detectability. Samples were extracted in trifluoroacetic acid at 70 degrees C. Extracts were cleaned-up by solid-phase extraction and analysed by high-performance liquid chromatography with UV-diode array detection. Analyte recoveries were > 87%. Horses were sampled after therapeutic enrofloxacin administration either orally at 7.5 mg/kg daily for 3-13 days or twice daily for 10-14 days (Group 1, n=7) or intravenously at 5.0 mg/kg daily for 12 and 15 days (Group 2, n=2). Enrofloxacin and ciprofloxacin were detected at concentrations up to 452 and 19 ng/mg, respectively, up to 10 months post-treatment. In vitro, enrofloxacin and ciprofloxacin were extensively bound to melanin (> 96%) and in vivo, their uptake was 40-fold greater in black than white hair. Enrofloxacin and ciprofloxacin concentrations correlated to enrofloxacin dose (r2=0.777 and r2=0.769). Enrofloxacin:ciprofloxacin ratios were 21:1 and 13:1 following intravenous and oral administration, respectively. Longitudinal analyte distributions correlated to treatment-sampling interval.  相似文献   

14.
用HPLC-MS/MS研究动物毛发中克伦特罗的残留及代谢规律   总被引:4,自引:0,他引:4  
研究建立了高效液相色谱-串联质谱(HPLC-MS/MS)测定毛发中盐酸克伦特罗残留的方法。猪毛发以0.1moL/L盐酸溶液提取,MCX固相萃取柱净化,流动相溶解定容。以SB-C18柱为分离柱,1%乙酸水溶液和甲醇(60∶40,V∶V)作为流动相,MS/MS进行定性和定量分析。在优化条件下的最低检出限为0.05μg/kg,定量限为0.2μg/kg。毛发样品中添加不同浓度盐酸克伦特罗,测得回收率在79.0%~86.2%之间,变异系数均低于15.2%。应用该方法研究了盐酸克伦特罗在猪毛发中的代谢并初步探讨其代谢机理。结果表明:在较高饲喂浓度(10mg/kg)时,用药5d后,黑色猪毛发有少量盐酸克伦特罗残留,而白色猪毛发中未检出。从第7天起猪毛发中盐酸克伦特罗蓄积量逐渐增加,最高蓄积浓度为4852.5μg/kg。  相似文献   

15.
On four occasions, four horses with heaves and four horses with small airway inflammatory diseases inhaled 0.9% saline based aerosol mixtures with or without lipopolysaccharides (LPS). Prior to the first saline and LPS inhalation, horses were untreated, while three and a half days prior to the third and forth inhalation horses had received 0.8 μ g/kg clenbuterol intravenously twice daily. The messenger RNA (mRNA) expression of tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10 and interferon- γ (IFN- γ) was investigated by RT-PCR, all of which were expressed in the white blood cells of samples collected. Inhalation of LPS only changed the cytokine expression profile of IL-10, IL-4 and TNF-α mRNA which were higher after challenge with LPS. However in those horses that were treated with clenbuterol the LPS-induced IL-10 mRNA expression was shown to be suppressed. Further changes in IL-4 and TNF-α were not significant. Thus the results of this study indicated that clenbuterol can modulate the expression of IL-10 mRNA in peripheral white blood cells in those horses with small airway diseases that have been exposed to LPS. van den Hoven, R., Duvigneau, J.C., Hartl, R.T. and Gemeiner, M., 2006. Clenbuterol affects the expression of messenger RNA for interleukin 10 in peripheral leukocytes from horses challenged intrabronchially with lipopolysaccharides. Veterinary Research Communications, 30(8), 921–928  相似文献   

16.
An Internet-based questionnaire among horse owners was carried out to identify factors affecting the incidence of insect bite hypersensitivity (IBHI) among horses in the Netherlands. Information was obtained for 794 horses of various breeds, but the breed distribution was not representative for the Dutch horse population. Of the horses for which information was available, 56% suffered from IBH and 44% did not. The most common clinical symptoms were pruritus, scaling, and hair loss, occurring mainly at the base of the tail and along the mane. Breed, age, region (and local habitat), stabling, type of bedding in the stable, use of the horse, deworming frequency, and season were associated with significant differences in IBH incidence. Knowledge of the factors influencing the incidence of IBH may make it possible to reduce the number of animals affected and help alleviate symptoms in affected horses.  相似文献   

17.
Clenbuterol is a beta(2)-agonist and potent selective bronchodilator that is used to treat bronchospasm in the horse. The drug is normally administered to horses orally as a syrup formulation. Once absorbed into the systemic circulation, clenbuterol has the potential to cause many side effects, including a repartitioning effect and major alterations in cardiac and skeletal muscle function. Recent studies have also reported that clenbuterol can affect bone and the immune, endocrine and reproductive systems. A great deal of information has been published on the beneficial effects of short term therapeutic doses of clenbuterol on the equine respiratory system, although there is limited information about chronic administration, particularly since this has been associated with adverse physiological effects on other systems. This review summarizes the relevant understanding of clenbuterol for clinicians and horse owners who may administer this drug to pleasure and performance horses.  相似文献   

18.
OBJECTIVE: To evaluate cytokine production by equine alveolar macrophages after exposure to lipopolysaccharide (LPS), Aspergillus fumigatus, and hay dust, and determine the effect of clenbuterol on the cytokine response. ANIMALS: 6 horses. PROCEDURE: Alveolar macrophages were exposed to PBS solution (negative control), LPS, hyphae and conidia of Aspergillus fumigatus (AF), or a suspension of hay dust (HDS) and incubated for 24 hours at 37 degrees C. Concentrations of tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta were measured in the supernatant. The procedure was repeated with cells that were concurrently incubated with 0.5 microM clenbuterol. RESULTS: Exposure to HDS and AF significantly increased production of TNF-alpha by equine alveolar macrophages. The increase in TNF-alpha produced in response to HDS and AF was 5 and 7 times as great, respectively, as the increase measured in response to LPS. The concentration of IL-1beta in the supernatant was significantly increased after exposure of cells to AF. Clenbuterol was effective at inhibiting TNF-alpha production by cells exposed to LPS, HDS, or AF. CONCLUSIONS AND CLINICAL RELEVANCE: Increased production of TNF-alpha and IL-1 indicated that the pro-inflammatory cytokines produced by alveolar macrophages in response to allergens may play a role in recurrent airway obstruction (RAO) in horses. Equine alveolar macrophages are not only a primary pulmonary defense mechanism but may also influence the pathogenesis of equine RAO. The beta2-adrenoceptor agonist clenbuterol, a drug that is commonly used for treatment of equine RAO, promotes immediate bronchodilation and may also contribute to downward modulation of the inflammatory response.  相似文献   

19.
Neonatal pigs were treated with lipolytic agents to determine whether this would cause a long-term decrease in their ability to deposit fat, with a consequent increase in muscle growth and feed efficiency. Groups of 25 female piglets were given clenbuterol (100 microg/kg BW), porcine somatotropin (pST; 100 microg/kg BW), pST plus clenbuterol, or saline injections from 3 d to 40 d of age. Five piglets from each group were then slaughtered to determine body composition. Clenbuterol and pST both increased ADG up to weaning when given separately (24%, P < 0.05; 20%, P < 0.1 respectively) but did not reduce fat deposition. In contrast, pigs given clenbuterol plus pST showed no increase in ADG and a 41% reduction in carcass fat (P < 0.05). Clenbuterol caused a marked decrease in beta2-adrenoceptor density in porcine adipose tissue (P < 0.001) and skeletal muscle (P < 0.01). This effect was attenuated by concurrent pST treatment, which helps to explain the synergistic effect of these drugs on fat deposition. Once the drugs were withdrawn at 40 d, the anabolic effect of pST gradually disappeared, so that the live weight of pST-treated and control pigs was identical at 168 d. Clenbuterol withdrawal caused the rapid loss of extra weight gained, plus an additional 4 to 5 kg live weight that was never recovered. During the 4-wk finishing period there was an increase in feed intake in pigs that had previously undergone treatment with pST (23%, P < 0.1), with no increase in ADG, and so feed efficiency was impaired (P < 0.05). Pigs that were treated with pST plus clenbuterol showed no marked increase in feed intake during this period. Carcasses from clenbuterol-treated pigs tended to be leaner at 168 d, but there was no long-term effect of pST or the combined treatment on carcass composition. Overall, the treatment of neonatal pigs with repartitioning agents was counter-productive, due to the withdrawal effects of the beta-adrenefgic agonist and the delayed long-term effect of pST on feed intake.  相似文献   

20.
Concentrations of trace elements (As, Al, Pb, Cd, Hg, Se, Si, P, Na, K, Ca, Mg, Fe, Cu, Zn, Mn, Cr, Ni and Mn) in the mane hair obtained from 9 female and 15 male healthy racing Thoroughbred horses aged 2-5 years were analyzed by the inductively coupled plasma atomic emission spectrometry (ICP-AES) method. No significant differences between the female and male horses were observed in the mean concentrations of those minerals. Significantly positive correlations with age were observed in Cd (r=0.546, p<0.01) and Mo (r=0.733, p<0.001). Significantly negative correlations with age were observed in Hg (r= -0.726, p<0.001), Mn (r= -0.450, p<0.05) and Fe (r=-0.642, p<0.01). This reference range of trace elements in the mane hair of racing horses should be used to assess disease and the nutritional status in equine practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号