首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nearly half the agriculture in the Sultanate of Oman is concentrated along the coastal strip of the Batinah Plain. Arid tropical conditions and the absence of surface water create total dependence upon groundwater withdrawal from wells. The initial equilibrium groundwater conditions were upset, first by the transition from animal bailed to pumped wells, and subsequently by agricultural expansion and increasing urban and industrial water demands. The consequent effects of saline upconing and intrusion have been monitored in selected areas by repeated electrical conductivity surveys over a 9-year period. Despite an apparent excess of fresh water in the Wadi Semail catchment, locally severe salinization has occurred, mainly due to heterogeneous aquifer conditions, thereby detracting from the benefits of agricultural expansion. In the Wadi Rusayl catchment excess of extraction over recharge has resulted in severe salinization. The situation will probably deteriorate further unless rigorous conservation measures and enhanced aquifer recharge are implemented. In such sensitive coastal areas, even if a catchment water balance has ‘excess’ groundwater flow seaward, the local subcatchment response may involve a high salinization risk. Therefore if groundwater extraction is to be increased, the water balance alone may be an insufficient basis for water resources management. The effects upon ‘high risk’/interfluvial areas should also be taken into account.  相似文献   

2.
The People's Victory Irrigation System which diverts water from the Yellow River of China covers a total irrigable area of 59 000 ha. The system encountered some serious problems in the first decade of its operation — salinity and waterlogging of irrigated land, siltation of irrigation and drainage channels, as well as a low efficiency of water use. This paper describes a series of structural and functional measures which have been adopted in the past 24 years for the rehabilitation of the system, including: improvement of the existing drainage system and construction of new drainage system on agricultural land, conjunctive use of surface and groundwater supplies, a comprehensive programme to reduce the levels of siltation as well as the implementation of improved water management practices. A model for the optimal operation of the system by using system analysis theory as an aid in reducing the operation and maintenance (O & M) costs has been developed in recent years. The results are that the soil salinity has been controlled and the agricultural production has increased whilst the efficiency of water use has improved and the siltation levels reduced. Experience gained on this system has been successfully used in developing and managing other irrigation projects along the lower reaches of the Yellow River. The proposed procedure of solving the said optimal model has also embodied some benefits from reducing O & M costs in operation.  相似文献   

3.
The assessments of potential environmental impacts of point and diffuse source pollution at regional scales are necessary to achieve the sustainable development of natural resources such as land and water. Nutrient related diffuse source pollutant inputs can enhance crop growth and improve soil eutrophication. However, excessive nutrient input can result in the impairment of water quality. The objectives of this study were to evaluate the long-term impact of point and diffuse source pollution on nitrate load in a lowland catchment using the ecohydrological model SWAT (Soil and Water Assessment Tool) and to determine the contribution of point and diffuse sources to nitrate load in the entire catchment.The study area Kielstau catchment has a size of approximately 50 km2 and is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants. Diffuse entries as well as punctual entries from the wastewater treatment plants are implemented in the model set-up. The model was first calibrated and then validated in a daily time step. The values of the Nash-Sutcliffe efficiency for the simulations of flow and nitrate load range from 0.68 to 0.75 for the calibration period and from 0.76 to 0.78 for the validation period. These statistical results revealed that the SWAT model performed satisfactorily in simulating daily flow and nitrate load in lowland catchment of Northern Germany. The results showed that diffuse sources are the main contributor to nitrate load in the entire catchment accounting for about 95% of the total nitrate load, while only 5% results from point sources. The model results also indicated that agriculture is the dominant contributor of diffuse sources and the percentage of agricultural land area is considerably positively correlated to nitrate load at the different subbasins. The area covered by forest is found to be negatively correlated with nitrate load.  相似文献   

4.
The effects of supplemental irrigation, sand columns and blocked furrows on soil water distribution and barley yield were studied on arid soils affected by surface crusts. The sand columns were 50 mm diameter, 600 mm deep, and filled with sand of 0.375 mm mean diameter. The blocked furrows were trenches about 250 mm deep, 300 mm wide, and 6 m long established perpendicular to the slope direction. Sand column and furrow treatments significantly increased soil water storage compared with natural or control treatments. Soil water storage significantly increased by about 210% and 230% near the center of the sand column and the furrow treatments, respectively, relative to the control treatment. For sand column treatments, soil water storage decreased linearly with distance from the center of the sand column to about 2.5 m, while for the furrow treatment soil water storage decreased logarithmically to a distance of about 1.0 m, beyond which the soil water storage was not significantly different from the natural or control treatments. The furrow and sand column treatments significantly increased the water application efficiency, seasonal consumptive use and barley grain and straw yields compared with natural and control treatments. Increasing furrow spacing increased the catchment area and consequently crop production per furrow, but decreased crop production per unit total (cultivated and catchment) area. Decreasing sand column spacing reduced surface runoff and increased soil water storage and consequently barley grain and straw yields. Supplemental irrigation is essential for grain production in limited rainfall areas. Soil management is also required to overcome the problems of the soil surface crusting and the low permeability of subsurface soil layers for maximum rainwater efficiency, and for optimal crop production with minimum supplemental irrigation water. Where agricultural land is not limited, furrowed soil surfaces appear to be the most suitable technique for barley grain production. Sand columns with sprinkler irrigation might be more suitable for growing barley as forage crop where agricultural land is limited. Received: 19 October 1998  相似文献   

5.
The study explores the potential of introducing an additional crop during dry season in Rwanda, comparing the efficiency of in situ soil moisture conservation techniques to sustain rain-fed agriculture. Comparative study of in situ soil moisture conservation techniques in bench terraces and unterraced field with maize crop had been conducted from June 2007 to October 2007. Bench terrace increased the average soil moisture content in 90 cm soil depth by more than 50% than that of unterraced land. Within the bench terraced field compartment bund and ridges and furrows increased soil moisture by 19.5% and 27.9% higher than plain bed. In terms of efficiency of moisture conservation, ridges and furrows performed well with 85.8% followed by compartment bund with 75.9% in terraced field. Unterraced field conserved moisture very poorly with 13.9% efficiency inferring importance of bench terraces for soil moisture conservation. No maize grain yield was recorded in all the techniques because soil water depleted to 60% and above from the beginning of the cropping period inferring the need of supplementary irrigation. Analysis of rainfall, crop water demand and in situ moisture conservation reveals exciting opportunities for water productivity enhancements by integrating components of water management within the context of rain-fed farming through water harvesting and supplemental or microirrigation for dry spell mitigation. Detailed analysis is needed for feasibility of lift irrigation with different crops under different altitudes to derive suitable policy for hill land irrigation.  相似文献   

6.
浑沙灌区是沈阳地区的大型灌区,一直发挥着当地粮仓的作用.农业用水水价的改革可以改善农业生产条件,提高农业综合生产能力,同时也是保障国家粮食安全的需要.本文对浑沙灌区农业用水水价存在的问题进行分析,说明引起水价问题的原因,并提出进行农业用水水价改革的必要性和具体的改革方案.针对具体的改革方案,预测水价改革后产生的效果为:可以改善农田周边的整体环境,增加灌溉面积,减少机井提取地下水,提高地下水位,有效地保护地下水资源.  相似文献   

7.
Summary A 8.93 ha graded agricultural watershed was developed with a 0.4% slope of cultivation line farming. Within this agricultural watershed, 6 ponds, each with a volume of about 180 m3, were dug for an average catchment size of 0.91 ha which was referred to as a small watershed. This attempt to store water is the first of its kind in this region at this scale under arable conditions. It was found that about 20% of the annual run-off could be retained by these ponds. With effective sealants, such as plastic lining overlaid with brick work or cement plastering on brick work, water could be retained in the ponds for longer periods to provide for the needs of crops at stress periods. Natural silting was not effective in controlling seepage in these small ponds. Despite wide variations in rainfall during the period 1976–1985, it was observed that the ponds were filled annually from run-off. In this study area increasing pond size to 300 m3 for a 1.0 ha catchment would be desirable to provide enough stored water for supplemental irrigation to the cropping system.  相似文献   

8.
【目的】研究土地利用方式变化对排涝模数的影响,优化区域排涝管理。【方法】选取湖北四湖流域螺山排区为研究区域,将流域水文模型SWAT和土地利用变化模型CLUE-S联合应用,设置了6种水旱比、5种水面率及5种城市化率的单因素变化(即其他2个因素不发生变化)条件下不同土地利用情景,应用CLUE-S模型模拟生成各情景下的土地利用空间分布图,建立了SWAT模型模拟不同土地利用情景的降雨径流过程,分析了不同土地利用方式对排涝模数的影响。【结果】在相同的设计暴雨、其他因素维持现状条件下:当水旱比由0增加到1时,排涝模数减小了0.117 m~3/(s·km~2);当水面率由0增加到20%时,排涝模数减小了0.111 m~3/(s·km~2);当城市化率由0增加到10%时,排涝模数增加了0.104 m~3/(s·km~2)。排涝模数随着水旱比和水面率的增大均呈减小趋势,随着城市化率的增大呈增大趋势。在相同设计暴雨、其他因素维持现状条件下:当水旱比由0增加到0.2时,排涝模数只减小了3.06%;当水面率由0增加到10%时,排涝模数减小了14.03%;当城市化率由0增大到10%时,排涝模数增大了16.67%。3种引起土地利用方式变化的因素中,排涝模数对水面率和城市化率变化的敏感程度相当,对二者的敏感程度明显大于水旱比。【结论】在未来区域规划中,可以通过增大水旱比、增大水面面积和限制城市扩张来减轻排涝压力,其中适当增大水面面积和限制城市扩张更加有效。  相似文献   

9.
Scaling-out of water system innovations such as soil and water conservation is important for increased and sustainable agricultural production. A wealth of upgraded soil and water conservation technologies such as terraces has not been widely adopted in places vulnerable to land degradation and agricultural water stress. Much focus should be on rethinking approaches for scaling-out of well-proved innovations rather than on generation of new technologies. This paper presents an empirical framework for scaling-out water system innovations at catchment level. The framework is built based on findings from studies that were conducted in the Makanya catchment in Northern Tanzania. The empirical data and information were collected through inter-related research methods entailing farmers’ questionnaire surveys and consultations with key NGOs involved in the promotion of agricultural land and water management technologies. The data collection involved 234 and 294 farmers in the first and second rounds, respectively. The framework has four stages, which are technology and community strength evaluation, partnership building, scaling-out process and uptake evaluation. Stage 1 evaluates the technology efficacy in conserving soil and water and increasing benefits, and community strength mainly in terms of social capital. Stage 2 entails partnering with the target community and change agents to champion the scaling-out process in the target community. Stage 3 is concerned with the actual innovation scaling-out process through effective pathways such as field demonstration, lead farmers and appropriate channels of communication. Stage 4 evaluates the outcome of the innovation scaling-out process. Though the framework is developed using field evidences related to scaling-out of terraces, it could be adapted to enhance scaling-out of other water system innovations.  相似文献   

10.
《Agricultural Systems》1998,56(2):225-251
Human-induced soil salinisation is a major resource degradation issue in Australia. While the processes and remedial activities are generally understood, the pressing questions remain as to whether the problem can be managed and who should take what action. This paper presents an analysis for a catchment in Eastern Australia where dryland salinisation is emerging in the plains. A spatial and dynamic mathematical programming model is developed as a systems analysis tool. The model results establish that salinisation on the plains is caused by water imports from surrounding areas. Salinity imposes severe external costs on affected landholders who have to change their land use systems, both as a response to its emergence and to control groundwater tables. Taking a catchment perspective, it is investigated what contribution different areas within the catchment ought to make to control soil salinisation on the plains. The results indicate that some land use changes for groundwater table control would optimally be implemented in uphill recharge areas but most of the cost would be borne by plains farmers. The results also demonstrate that climatic variability tends to exacerbate salinisation and lower agricultural incomes.  相似文献   

11.
In this paper the results of an assessment of the hydrological and economic implications of reallocating water in the Musi sub-basin, a catchment within the Krishna Basin in India, are reported. Policy makers identified a number of different but plausible scenarios that could apply in the sub-basin, involving; supplying additional urban demand from agricultural allocations of water, implementing a number of demand management strategies, changing the timing of releases for hydropower generation, changing the crops grown under irrigation, reducing existing stream flows and allowing for more environmental flows. The framework chosen to undertake this assessment was a simulation model that measures and compares the economic values of water allocation scenarios determined from a water allocation model that accounts for supplies of groundwater and surface water across a number of regions and over a variety of uses. Policy makers are provided with the range of measures on the security of the supply of water and the social costs and benefits of reallocating water between sectors and across regions within the sub-basin. Taking water from agriculture to supply urban users has a greater impact on irrigation supplies during dry years. It was also found that changing the allocation of water between sectors, by taking it away from agriculture had a large positive economic impact on the urban sector. Yet the costs involved in undertaking such a strategy results in a significant loss in the net present value of the scheme. Stream flow reductions, if significantly large (at around 20%), were found to have a large physical and economic impact on the agricultural sector. Implementing water saving strategies in Hyderabad was found to be more cost effective than taking water from agriculture, if rainwater tanks are used to achieve this. Changing the timing of hydropower flows resulted in best meeting of irrigation demand in NSLC and NSRC. Under this scenario, the crops grown under irrigation were found to have a significant economic impact on the sub-basin, but not as large as farmers undertaking crop diversification strategies, ones which result in farmers growing less rice. The security of supplying water to different agricultural zones has significantly improved under this scenario. Finally, releasing water for environmental purposes was found to have only a minor impact on the agricultural sector.  相似文献   

12.
Rainwater harvesting (RWH), the small-scale collection and storage of runoff to augment groundwater stores, has been seen as a solution to the deepening groundwater crisis in India. However, hydrological impacts of RWH in India are not well understood, particularly at the larger catchment-scale. A key element to grasping RWH impact involves understanding the generated recharge variability in time and space, which is the result of variability in rainfall-runoff and efficiency of RWH structures. Yet there are very few reported empirical studies of the impact of RWH. Catchment-scale impacts are best studied using a water balance model, which would require a basic level of field data and understanding of the variability. This study reports the results of a 2-year field study in the 476 km2 semi-arid Arvari River catchment, where over 366 RWH structures have been built since 1985. Difficulties associated with working in semi-arid regions include data scarcity. Potential recharge estimates from seven RWH storages, across three different types and in six landscape positions, were calculated using the water balance method. These estimates were compared with recharge estimates from monitored water levels in 29 dug wells using the water table fluctuation method. The average daily potential recharge from RWH structures varied between 12 and 52 mm/day, while estimated actual recharge reaching the groundwater ranged from 3 to 7 mm/day. The large difference between recharge estimates could be explained through soil storage, local groundwater mounding beneath structures and a large lateral transmissivity in the aquifer. Overall, approximately 7% of rainfall is recharged by RWH in the catchment, which was similar in the comparatively wet and dry years of the field analysis. There were key differences between RWH structures, due to engineering design and location. These results indicate that recharge from RWH affects the local groundwater table, but also has potential to move laterally and impact surrounding areas. However, the greatest weakness in such analysis is the lack of information available on aquifer characteristics, in addition to geology and soil type.  相似文献   

13.
【目的】研究采用复式断面渠道的灌区渠系水利用系数更精确地测算方法。【方法】采用动水测定法测定了渠道各断面水力要素,之后通过修订后的戴维斯-威尔逊公式和考斯加科夫渠道渗漏经验公式求得研究区域复式断面渠道渠系水利用系数,对比分析了各渠道水损失以及渠系水损失量。【结果】动水测定法更适合不断流复式断面渠道水力要素的测算;采用标准梯形断面渠道衬砌的方式渠道损失最小;考斯加科夫渠道渗漏经验公式求得灌区渠系水利用系数为0.75,而戴维斯-威尔逊公式求得灌区渠系水利用系数为0.82,更加接近实际值0.86,精确度提高了9.5%。【结论】由于占地、开挖等影响因素,灌区渠系衬砌后多形成复式断面渠道,灌区渠道衬砌优先采用标准梯形断面衬砌方式。对于这类渠系工程,动水测定方法明显优于典型渠道测量方法,戴维斯-威尔逊公式也更适用于复式断面渠道的渠系水利用系数的测定。  相似文献   

14.
The dynamics of groundwater table and salinity over 17 years in Khorezm   总被引:1,自引:0,他引:1  
Salinization of irrigated agricultural land threatens ecological sustainability and livelihoods of people. Salinization is especially severe in the dry lowlands world-wide and in Central Asia where large amounts of salts accumulated in the soil profile, originating from shallow saline groundwater (GW). Analysis of the unique dataset of 2000 monitoring wells of GW table and salinity in lowland Khorezm region of Uzbekistan over the period of 1990 till 2006 showed shallow GW levels of 1.1-1.4 m (±0.48-0.66 m) at start of leaching periods and 0.9-1.4 (±0.43-0.63 m) in July during the annual growing seasons. While leaching efficiency is decreased, shallow GW in July is far above the optimum levels of 1.4-1.5 m. The effects of topography, soil texture, and irrigation and drainage networks were found to favor shallow GW forced by excessive water diversion. The drainage network, which is seen by many specialists as underdeveloped and its improvement necessary to arrest unacceptable GW levels, is being used under its full capacity. The solution to alleviate land degradation is not only an improved drainage, but better controlled and more flexible water management.  相似文献   

15.
治沟造地是我国解决耕地后备资源不足的重要举措。解决好用水、排水和防洪安全问题,是治沟造地流域农业产量提升、生态环境高质量发展的关键。在总结黄土高原流域水资源利用和水利设施防洪现有问题的基础上,提出了黄土高原治沟造地流域蓄(水)、排(水)、防(洪、盐渍化)、灌(溉)、管(理)为一体的水利综合配套技术,并推荐了两个适用于不同汇水面积的洪峰流量计算公式,为蓄排水工程设计提供依据。该技术有利于黄土高原治沟造地流域水资源的永续利用和治沟造地的土地安全。   相似文献   

16.
Planting trees has been proposed as part of the solution to dryland salinity in Australia. The best location in the landscape and the spatial arrangement of trees however, is difficult to determine. This paper presents a case study of a field experiment that compared the water use of tree belts with that of pastures in recharge and discharge areas of a first order catchment in the Central West of NSW, Australia.The recharge tree belt and both pasture sites used very similar amounts of water but the discharge tree belt used double the water of the other three land uses by accessing groundwater. The discharge tree belt operated in an energy-limited environment, transpiring at a rate equivalent to atmospheric demand whereas the other three land uses were all water-limited. From a land management point of view, the establishment of more trees on the discharge site would have the biggest impact on reducing saline discharge and the least impact on the agricultural operations.  相似文献   

17.
This study reports an analysis of the economics of options for strategic land-use change to attain future catchment level target combinations of salt load and water yield. Farm level survey information on land use, productivity, prices and costs of production were integrated with spatially specific soil, rainfall, topography, hydrology and salinity results of the simulation model CAT (Catchment Analysis Tool). This information was used to populate a two stage economic optimization model in which subcatchment economic results were combined for catchment level analyses. This study is the first to exploit CAT results in an economic framework and the first in which economic results are mapped using CAT. The 64,000 ha Bet Bet Catchment in Victoria, Australia, once deemed among the highest priority areas in the Murray Darling Basin for dryland salinity reduction, is the focus of this study. The calculated current net present value (NPV) of agricultural production in the catchment is AU$ 78 million3 while providing 42 GL of water yield4 annually for use downstream with a salt load of 22,600 t. Results show that salt loads may be reduced to 18,600 t (reduction of 4000 t) through expansion of tree plantations and lucerne production, reducing water yield to 31 GL (11 GL reduction) and NPV to AU$ 63 million (AU$ 15 million reduction). Water yields could be increased from current levels by 2 GL while maintaining current salt loads. Alternatively, catchment NPV could be increased by approximately AU$ 7 million with little or no reduction in water yield; but there may be reasons (small farm size) why this is unlikely. For this catchment, the maximum reduction in salt load appears insufficient to justify public investment in tree planting and perennial pasture establishment, particularly when the reduced NPV and reduced water yields are taken into account. The results for this catchment do not support regulation of land use for the sake of lowering river salinity. However, the capacity of tree plantations to reduce water yields may support a regulation requiring purchase of water entitlements from downstream entitlement holders for new plantations. Despite millions of dollars of past public investment, it is now clear that Bet Bet Catchment was never one where land-use changes could benefit downstream water users. The approach described in this paper enables catchment management authorities to weigh costs of land-use change against downstream benefits and natural resource management (NRM) options elsewhere.  相似文献   

18.
为了探讨新疆水资源与经济发展要素的匹配程度及其对新疆农业水利用效率的而影响。通过统计2004-2013年新疆水资源、经济发展水平、人口增长和耕地面积等数据,运用基尼系数、农区水利用综合系数和时间序列模型进行了实证检验,结果表明新疆水资源与经济发展和耕地面积的匹配度处于"相对平均"的阶段,而新疆水资源与人口增长的匹配度处于"两极分化"阶段。新疆水资源匹配度与新疆农业水利用之间存在着长期稳定的关系,新疆水资源和耕地面积的匹配度与新疆农业水利用效率呈双向因果关系,但是新疆农业水利用效率与新疆水资源和经济发展、人口增长的匹配度之间只存在着单向的因果关系。  相似文献   

19.
Our study area in the Chaobai watershed, upstream of Miyun Reservoir, has been undergoing agricultural water transfers to downstream municipal uses in Beijing. We examine the impacts of water reallocation on crop production and farmers’ income and discuss issues relating to current compensation mechanisms. We use data from a survey of 349 farm households and their farm plots in the upper Chaobai watershed within Hebei province. Water reallocation from upstream to downstream areas has reduced agricultural water supply and the area irrigated. Regression results show that in plots deprived of irrigation, maize yields decrease by 21% and crop revenues decline by 32%. On average, losing irrigation on one hectare of cultivated land reduces net crop income by 2422 yuan. We examine compensation arrangements and social equity for the major policies implemented in the region and we identify gaps between current compensation levels and farmers’ income and production losses. The current compensation received by farmers is generally lower than the losses incurred due to reduced irrigation. A more appropriate compensation mechanism is called for in future water transfers.  相似文献   

20.
The South-North Water Transfer (SNWT) project (upon completion) will deliver some 4.8 billion m3 of water per annum to Hebei, Beijing and Tianjin — greatly mitigating water shortage in North China. Surface water that is currently restricted to urban use could then become partly available for agricultural production. This will reduce the dependence of agriculture on groundwater, which will in turn retard groundwater depletion in the region. This study determines the spatial and temporal distributions of agricultural water requirement in Hebei Plain. This in turn lays the basis for surface water reallocation following the completion of the SNWT project. DSSAT and COTTON2K crop models are used along with crop coefficient methods to estimate required irrigation amounts for wheat, maize, cotton, vegetables and fruit trees in Hebei Plain. The study uses 20 years (1986-2006) of agronomic, hydrologic and climate data collected from 43 well-distributed stations across the plain. Based on the results, wheat accounts for over 40% of total irrigation water requirement in the plain. Similarly, wheat, maize and cotton together account for 64% of the total irrigation water requirement. The piedmont regions of Mount Taihang have the highest irrigation requirement due to high percent farm and irrigated land area. The months of April and May have the highest irrigation water requirement, respectively accounting for 18.1% and 25.4% of average annual irrigation. Spatial and temporal variations in our estimated irrigation water requirement are higher than those in the officially published statistics data. The higher variations in our results are more reflective of field conditions (e.g. precipitation, cropping pattern, irrigated land area, etc.). This therefore indicates a substantive improvement (in our study) over the average statistical data. Based on our simulation results, viable surface water reallocation strategies following the completion of the SNWT project are advanced and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号