首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
Os WRKY80基因参与调控水稻抗病反应研究   总被引:3,自引:0,他引:3  
为进一步了解OsWRKY80基因参与调控的抗病分子机理,对OsWRKY80增强表达转基因水稻和干涉转基因水稻进行稻瘟病抗性检测,Northern杂交分析OsWRKY80基因和PR基因(ZB8、PBZ1)稻瘟病接种0 h和24 h时的表达情况.结果表明:与干涉转基因水稻和未转基因对照相比,增强表达转基因水稻表现出对稻瘟病有较好的抗性.Northern杂交结果显示,在干涉转基因植株中内源OsWRKY80基因的诱导表达被抑制,转基因植株的抗病性与OsWRKY80基因的表达呈一定的正相关性.在干涉转基因植株中均未检测到ZB8和PBZ1的表达,稻瘟病诱导24 h时,未转基因植株和增强转基因植株中均能检测到ZB8、PBZ1诱导型表达,但在增强转基因植株中ZB8、PBZ1的诱导表达丰度要显著高于未转基因植株.这表明OsWRKY80基因可能作为正调控因子参与水稻防卫反应,PR基因的高水平诱导表达导致增强表达转基因植株对稻瘟病的抗性增强.  相似文献   

2.
【目的】建立转基因水稻中GUS蛋白质的免疫学检测方法,并了解花椰菜花叶病毒(CaMV)35S启动子驱动的GUS蛋白质在转基因水稻中的表达特征。【方法】以细菌基因组DNA为模板,PCR扩增GUS基因后克隆到表达载体pET30a中,测序验证的重组子转入大肠杆菌表达菌BL21中,IPTG诱导获得重组表达的GUS蛋白质,用HIS-tag beads纯化后作为免疫原免疫小鼠制备GUS蛋白质特异的抗体,通过免疫印迹分析筛选高特异性的单克隆抗体,用Broadford法对重组的GUS蛋白质进行定量,对不同浓度的GUS蛋白质进行免疫印迹分析,绘制检测GUS蛋白质的标准曲线,通过与标准曲线的比较对水稻叶片中GUS蛋白质进行定量分析。提取不同时期、不同部位的水稻总蛋白质,包括苗期的地上部、地下部,分蘖期的茎、茎节、叶鞘、叶枕、叶片上部、叶片中部和叶片下部,孕穗期的茎、穗轴、叶鞘、叶枕、叶片、幼穗(长度分别为1、2、10和20 cm),开花期的茎、穗轴、叶鞘、叶片、穗子,成熟期的茎、叶片、授粉后不同时期的种子(分别为授粉后10、20、30和40 d)、乳熟期的胚、胚乳和颖壳、成熟种子的全种子、胚、胚乳和颖壳以及不同时期的叶片和根部材料等。SDS-PAGE分离后用抗体检测其GUS蛋白质的丰度。【结果】筛选获得了高特异性的抗GUS单克隆抗体(编号为#27),用该抗体检测转基因水稻中及重组的GUS蛋白质均呈现特异条带,没有可见的背景信号,用本研究建立的免疫印迹方法对重组GUS蛋白质的检测下限约为4 ng,可检出转基因水稻单粒大米2.5%样品中(约0.6 mg)的GUS蛋白质。在不同时期的转基因水稻叶片中GUS蛋白质的表达丰度基本稳定,而在水稻根部的GUS丰度随生长急剧减少,5叶期根中的表达量不到3叶期的三分之一,到6叶期检测不到GUS蛋白质。在水稻苗期叶片中,GUS蛋白质约占鲜重的0.02‰。另外,除分蘖期以后的根部之外,GUS蛋白质几乎在所有的水稻组织部位中呈组成型表达,只是不同组织中的表达量略有差异,如在孕穗期和开花期的茎及颖壳中的表达量较低。【结论】建立了具有应用价值的对转基因水稻中GUS蛋白质丰度检测的免疫印记方法。该方法特异性高、样品用量少、不依赖于GUS蛋白质的酶活性、测定结果易于在不同实验室间比较。证明了35S启动子驱动的GUS蛋白质在转基因水稻中基本呈组成型表达。  相似文献   

3.
【背景】前期研究发现,水稻病程相关蛋白质OsPR1A的表达受上游抗病基因Xa21调控,接菌后早期启动Xa21介导的OsPR1A较高水平表达对水稻抵抗白叶枯病菌至关重要。同时OsPR1A也受到水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae,Xoo)的诱导表达。对于OsPR1A的研究绝大部分是作为抗性反应发生的标志基因佐证其他基因或途径在抗性中的作用,缺乏直接的证据证实OsPR1A本身的生物学功能。【目的】通过获得OsPR1a-OX超表达转基因植株,调查其表型及农艺性状,并明确OsPR1A蛋白质表达与抗性的关系,为鉴定OsPR1A功能提供依据。【方法】通过农杆菌介导法,将构建的OsPR1a-OX转化载体转入到水稻受体4021中,利用PCR和免疫印迹(western blot,WB)技术分别在基因水平和蛋白质水平上筛选并鉴定OsPR1A超表达阳性纯合株系。在成熟期,调查OsPR1A超表达转基因植株的表型及农艺性状(株高、穗长、分蘖数、结实率和籽粒大小等)。在31℃条件下,将生长2周的水稻幼苗TP309、4021和OsPR1A超表达转基因植株接种水稻白叶枯病菌,并在接菌0、2、4、6、8、10和12 d时测量病斑长度。在接菌0、4和6 d时,收集TP309、4021和OsPR1A超表达转基因植株的水稻叶片,提取蛋白质,利用WB技术检测OsPR1A的表达特征。【结果】构建了OsPR1a-OX转化载体,并转入到受体4021中,筛选并鉴定到2个OsPR1A超表达转基因纯合株系(#704和#709)。调查了OsPR1A超表达转基因植株在成熟期的表型及农艺性状,与对照4021相比,#704和#709的株高较矮、穗长较短、分蘖数减少、结实率降低,但籽粒稍大,可能与结实率低有关。在31℃条件下,OsPR1A超表达转基因植株的病斑长度与对照4021相比明显缩短,结果具有显著性差异(P<0.05)。在接菌0、4和6 d的材料中,超表达转基因植株#704和#709中OsPR1A始终有较高水平的表达丰度,从而提高了对白叶枯病菌的抗性。【结论】采用农杆菌介导法,获得OsPR1A超表达转基因植株;超表达OsPR1A影响到水稻的正常发育过程;超表达OsPR1A后增强了Xa21介导的水稻对白叶枯病的抗性。  相似文献   

4.
本研究采用免疫印迹技术(Western Blot, WB)在蛋白质水平上研究植物激素,尤其茉莉酸对OsPR1A表达的影响,增强对OsPR1A生物学功能的了解,并进一步探究茉莉酸对水稻白叶枯病的抗性机制。结果发现,在水稻离体叶片中OsPR1A受到外源茉莉酸甲酯(Methyl Jasmonate, MeJA)的强烈诱导;在水稻幼苗中,MeJA处理后OsPR1A在根中表达量增加。MeJA处理感病型水稻TP309幼苗后,与对照相比病斑长度缩短约1cm,OsPR1A于接菌后第6天被提前诱导表达,病斑生长受到抑制。MeJA处理水稻OsPR1a-RNAi植株,抗病表型明显,说明MeJA可以减轻转基因水稻OsPR1a-RNAi对白叶枯病菌(Xanthomonas oryzae pv. oryzae,Xoo)的敏感性。  相似文献   

5.
【目的】克隆3个紫花苜蓿乙烯应答因子基因,分析其在不同条件下的表达特性;构建植物表达载体并转化烟草,对转基因烟草的耐盐性进行初步鉴定。【方法】根据已获得的cDNA序列设计引物,扩增MsERF5、MsERF8和MsERF11的DNA序列,并分析基因结构;利用半定量RT-PCR技术分析其组织表达特异性和胁迫条件下的表达特性;通过农杆菌介导的方法转化烟草,鉴定盐胁迫条件下转基因烟草的表型和生理生化特性,初步验证其功能。【结果】MsERF5、MsERF8和MsERF11都不包含内含子。MsERF5在根、叶和花蕾中的表达量高于茎和花;MsERF8在根和叶中的表达量高于茎、花蕾和花;MsERF11在叶中的表达量最高;3个基因都能被多种非生物胁迫(盐、干旱、铝)和激素(脱落酸、赤霉素、乙烯利、水杨酸和茉莉酸甲酯)诱导,但表达模式不同。在盐浓度为200 mmol•L-1的筛选培养基上只有导入目的基因的愈伤组织能产生不定芽,250 mmol•L-1 NaCl处理再生植株10 d,转基因植株和野生型植株叶片的电导率和可溶性糖含量均呈现上升趋势,但野生型植株叶片的电导率显著高于转基因植株,可溶性糖含量则显著低于转基因植株(P<0.05);转基因植株和野生型植株叶片的叶绿素含量均呈现下降趋势,野生型植株叶片叶绿素含量显著低于转基因植株(P<0.05);盐胁迫条件下,转化不同基因的再生植株的电导率、叶绿素和可溶性糖含量没有显著差异(P>0.05)。【结论】3个紫花苜蓿乙烯应答因子基因都不包含内含子,其表达具有组织特异性,都能被多种非生物胁迫和激素诱导,能够使烟草愈伤组织在含盐培养基上形成不定芽并最终产生转基因植株,且转基因植株的耐盐性高于野生型植株。  相似文献   

6.
以OsWRKY78基因及其相应的RNAi转基因水稻为研究对象,分析OsWRKY78转录因子响应盐胁迫的表达和功能,研究WRKY转录因子参与水稻耐盐的机制。结果表明:水稻OsWRKY78基因启动子中存在30多个与非生物胁迫相关的顺式调控元件。基因表达和GUS组织化学染色分析表明OsWRKY78的表达受盐诱导。抑制OsWRKY78基因表达可显著增强水稻在种子萌发和小苗生长阶段的耐盐性,一定程度上是通过调节OsLEA3、OsRAB21等与逆境相关基因的表达来实现的。  相似文献   

7.
WRKY蛋白是植物中最大的转录因子家族之一,对植物的生长发育具有重要调控作用。利用SMART\|RACE\|PCR技术分离获得水稻WRKY转录因子基因(OsWRKY71)的全长cDNA序列,并进行了相关的生物信息学分析。分离到的水稻WRKY转录因子cDNA全长为1 245 bp(GenBank登录号KJ137000),开放阅读框1 047 bp,编码348个氨基酸,分子量为3828 kDa,OsWRKY71具有WRKY转录因子家族典型的保守结构域,属于第Ⅱ组WRKY蛋白家族。系统进化分析表明,OsWRKY71氨基酸序列与禾本科作物小麦的亲缘关系最近,其中与小麦序列相似性为69%,和大麦的序列相似性为68%。荧光定量PCR检测表明,OsWRKY71在孕穗期剑叶中表达丰度最高,根中最低,具有表达的空间差异性。抗病品种‘IR28’在受到稻曲菌诱导的初期,OsWRKY71基因表达呈现先升高后下降趋势,易感品种‘甬优9号’在受到稻曲菌诱导后表达受到抑制。这些结果表明,OsWRKY71的表达对稻曲菌侵染有应答响应,很可能在水稻防御稻曲菌侵染的机制中发挥作用。  相似文献   

8.
在水稻T-DNA插入突变体库中发现一个生长缓慢的突变体Osdg,其T-DNA插入位点侧翼序列编码一个WRKY类转录因子(OsWRKY10)。为了明确插入位点的基因是否为引起突变表型的基因,构建了抑制OsWRKY10基因表达的dsRNA干涉载体并转化水稻(Oryza sativa L.subsp.japonica,中花11),获得转基因植株(WInW)。T1代转基因植株的表型观测结果表明,部分WInW干涉植株出现生育期延长、株高下降、分蘖数减少、穗长缩短等表型,与突变体Osdg的突变表型相似,这说明,抑制OsWRKY10基因的表达可能延缓水稻的生长发育,该基因与引起Osdg突变表型的基因具有相似功能。  相似文献   

9.
【目的】农作物对逆境胁迫的耐受能力与产量息息相关,是作物育种要考虑的重要因素。文中对水稻顺式还原酮加双氧酶基因OsARD1进行研究,分析其表达模式,明确其在水稻应对非生物胁迫中的功能,为水稻耐旱品种的分子设计及育种提供参考依据。【方法】提取不同组织器官的总RNA,利用RT-PCR方法分析OsARD1表达的组织特异性。利用不同的非生物胁迫处理14 d大小的野生型(中花11)植株,在不同时间点提取总RNA,利用RT-PCR方法分析OsARD1表达的受诱导情况。通过农杆菌遗传转化法转化水稻愈伤组织,经过一系列分子检测后获得稳定遗传的T1代OsARD1的过量表达转基因植株,以转入空载体的野生型植株作为对照。将在营养液中正常培养的12 d大小的野生型和过表达幼苗移出营养液进行缺水处理并进行恢复试验。将催芽后的野生型和过表达转基因植株种子种在含有5% PEG6000的agar培养基中进行渗透胁迫处理,以不含PEG6000的agar培养基作为对照,观察二者的表型。【结果】组织特异性表达分析表明OsARD1主要在根及成熟的组织中表达,尤其在衰老的组织中有较高表达。非生物胁迫处理表明OsARD1的表达明显受机械损伤、高盐和渗透胁迫的诱导。获得6个独立株系的可稳定遗传的OsARD1过量表达转基因植株。对过量表达转基因植株及空载体野生型对照进行干旱胁迫处理,缺水处理5 h后,野生型植株叶片卷曲皱缩成针状表现出严重的缺水症状,但此时过表达转基因植株叶片仍处于舒展状态;缺水处理8 h后开始复水培养3 d,野生型植株的存活率仅为10%,而过表达植株存活率为80%,远远高于野生型,说明过量表达OsARD1提高了水稻对缺水的耐受能力。用PEG渗透胁迫模拟干旱胁迫处理6 d后发现,不含PEG6000对照组中野生型和过表达植株的幼苗生长情况没有明显的差别;在PEG处理组中,野生型幼苗根的生长受到严重抑制,而过表达植株幼苗根的生长受到抑制较小,根长明显长于野生型对照植株,说明过量表达OsARD1增强了水稻耐受干旱胁迫的能力。【结论】OsARD1主要在水稻根及成熟的组织中表达,并且受机械损伤、高盐和渗透胁迫的诱导。过量表达OsARD1提高了水稻抗旱性能。  相似文献   

10.
为探究盐胁迫下 OsDSR2 抑制表达后对水稻主要农艺性状和产量的影响,进一步阐明 OsDSR2 参与调控水稻耐盐机制,以野生型植株中花11(ZH11)和 OsDSR2 RNAi转基因水稻不同株系DR14和DR20为试验材料,植株幼穗分化期进行0.15mol/L盐胁迫处理,待植株完熟后测定穗长、每穗总粒数、每穗实粒数、结实率、单株穗数、单株粒质量、千粒质量等主要农艺性状,并进行相关性和主成分分析。结果表明,盐胁迫后 OsDSR2 RNAi转基因水稻的单株穗数、结实率均显著高于野生型ZH11,正常条件下, OsDSR2 RNAi转基因水稻单株粒质量均显著低于野生型ZH11,盐胁迫后二者均降低但无显著性差异。与正常条件下相比,盐胁迫处理后 OsDSR2 RNAi转基因植株的千粒质量与每穗实粒数呈显著负相关性,单株粒质量与穗长、结实率、千粒质量呈负相关性,单株穗数与穗长、结实率呈负相关性,单株粒质量与每穗总粒数呈正相关性;结实率与穗长、每穗总粒数呈负相关性。盐胁迫处理后 OsDSR2 RNAi转基因水稻第一、二主成分中,分别是单株粒质量和结实率特征向量最大。综上,盐胁迫下 OsDSR2 的抑制表达主要通过抑制水稻植株的单株穗数、结实率和单株粒质量的降低,协调单株粒质量与单株穗数、结实率、千粒质量的关系以及结实率与千粒质量、单株穗数的关系,从而调控盐胁迫下水稻的产量。  相似文献   

11.
【目的】分离紫花苜蓿(Medicago sativa L.)油菜素内酯(brassionsterinds,BRs)合成酶基因MsDWF4,分析基因表达特性,开展基因的耐盐性研究,为揭示MsDWF4对紫花苜蓿非生物胁迫的调控机制提供参考。【方法】根据已知的拟南芥DWF4序列,应用同源克隆技术获得紫花苜蓿MsDWF4,对序列进行生物信息学分析。利用qRT-PCR技术分析MsDWF4的组织表达特异性,及其在多种非生物胁迫(高温、冷害、干旱和高盐)和激素(生长素、油菜素内酯、脱落酸和茉莉酸)处理下的表达模式;构建MsDWF4超表达载体,利用农杆菌介导遗传转化法转化紫花苜蓿,获得超表达MsDWF4的紫花苜蓿株系,用高盐(200 mmol·L -1 NaCl)处理紫花苜蓿转基因株系并结合抗氧化酶活性分析,研究MsDWF4是否提高紫花苜蓿的耐盐性。【结果】获得MsDWF4的cDNA序列,其CDS全长1 470 bp,编码489个氨基酸,该基因编码的蛋白质为P450超家族成员,共含有67个激酶磷酸化位点。序列分析和系统发育树分析表明紫花苜蓿MsDWF4与蒺藜苜蓿DWF4的亲缘关系最近,与禾本科的亲缘关系最远。组织特异性表达分析表明,MsDWF4在根尖中表达量最高,花和叶中次之。高温、冷、PEG、NaCl、ABA和IAA均诱导该基因在植株地上部和根部的表达;在BR处理下,MsDWF4在地上部下调表达,而在根部先被诱导后被抑制;JA处理下,MsDWF4在地上部和根中皆被抑制。构建35S∷MsDWF4超表达载体,并通过农杆菌介导的方式转化紫花苜蓿,PCR鉴定结果显示MsDWF4已经成功转入紫花苜蓿,并获得6个转基因阳性株系。盐胁迫处理下,转基因株系MsDWF4的表达量和抗氧化酶活性均显著高于对照。【结论】获得紫花苜蓿油菜素内酯合成酶基因MsDWF4的CDS序列;该基因在根尖等生长旺盛部位表达最高,基因表达响应多种逆境胁迫和外源激素处理;MsDWF4提高转基因紫花苜蓿对盐胁迫的抗性。MsDWF4可能参与转基因紫花苜蓿的多种逆境响应过程,并且正向调控紫花苜蓿的耐盐性。  相似文献   

12.
【目的】锌指蛋白(zinc finger protein,ZFP)在植物非生物胁迫应答中起重要的作用,研究两个锌指蛋白基因MiZAT10A和MiZAT10B转入拟南芥对盐、干旱、重金属以及外源激素等非生物胁迫的应答,为抗逆育种提供理论依据。【方法】利用在线软件PLACE和MEME分别对芒果MiZAT10A和MiZAT10B进行启动子顺式作用元件以及motif预测和分析,并利用TBtools软件和‘四季蜜芒’基因注释文件(GFF文件,未公开)绘制染色体定位图;通过实时荧光定量分析MiZAT10A和MiZAT10B的组织表达模式;构建芒果MiZAT10A和MiZAT10B超量表达载体,采用农杆菌花序浸染法转化模式植物拟南芥,观察并记录转基因拟南芥开花表型以及在盐、干旱、重金属以及外源激素脱落酸和赤霉素处理下的根生长情况。【结果】启动子顺式元件分析显示,两个基因的启动子区域都有许多光响应元件、激素响应元件和非生物胁迫响应元件。表达模式分析显示,MiZAT10A与MiZAT10B在芽和花中表达水平最高。MiZAT10A和MiZAT10B分别获得了9株和14株转基因拟南芥,开花表型分析显示,Mi...  相似文献   

13.
 【目的】通过对水稻骨干亲本在不同发育时期的蛋白质表达特征研究,了解其形成机理并促进其应用。【方法】采用Western blotting调查了6个水稻骨干亲本(9311、培矮64s、特青、珍汕97B、广陆矮4号和矮脚南特)在不同生长发育时期/部位(苗期地上部与地下部、开花期剑叶和穗子、成熟期剑叶和穗子)与光合作用、活性氧清除及胁迫防御相关的9个蛋白质的表达。【结果】9个蛋白质的表达在不同骨干亲本间有多态性,尤其在地下部和穗子等部位的表达差异较大,而在叶片中的表达比较接近;此外,蛋白质表达在不同生长发育时期/部位间也有多态性,反映了蛋白质表达的时空特异性。【结论】初步建立一条利用蛋白质特异抗体了解水稻蛋白质表达的研究途径。  相似文献   

14.
【目的】水稻穗顶端退化严重影响产量,鉴定与克隆水稻穗顶端退化相关基因,可以丰富水稻穗发育调控的分子机理,为水稻高产分子设计育种提供理论基础和基因资源。【方法】从粳稻品种武运粳30号EMS突变体库筛选到一份稳定遗传的穗顶端退化突变体panicle apical abortion 21paa21)。对退化一次枝梗比例、每穗退化粒数占比、每穗粒数、株高、穗长、单株产量等农艺性状进行统计。使用台盼蓝和伊文思蓝染色检测顶端小穗是否发生程序性细胞死亡。测定WT和paa21不同发育时期幼穗和不同穗部位的H2O2含量。paa21分别与籼稻II-32B、9311正反交进行遗传分析。利用paa21与籼稻II-32B杂交构建的F2群体进行基因定位和克隆。使用SWISS-MODEL网站预测野生型和突变体蛋白的三维结构。利用RT-qPCR分析ROS响应标志基因、程序性细胞死亡相关基因、过氧化氢酶相关基因的表达量。【结果】paa21突变体发生严重的穗顶端退化,统计paa21所有一次枝梗退化情况,发现退化小穗主要位于顶端的一次枝梗上。与WT相比,paa21的株高、每穗粒数、穗长和单株产量均降低。通过观察不同发育时期的幼穗,发现在paa21突变体幼穗发育至12 cm时,可见穗顶端退化表型。台盼蓝和伊文思蓝染色结果表明突变体顶端小穗发生程序性细胞死亡。在退化的paa21顶端小穗中观察到更强烈的DAB染色;H2O2含量测定结果表明,与WT相比,paa21穗中积累更高水平的ROS。遗传分析表明paa21突变表型受一对隐性核基因控制。图位克隆结果发现paa21Os02g0673100第二外显子发生一个C到T的突变,导致丙氨酸突变为缬氨酸。该基因编码一个铝激活的苹果酸转运蛋白ALMT7。突变位点位于第4个跨膜螺旋上。SWISS-MODEL预测结果表明,该突变位点并未对突变体蛋白三维结构造成明显影响。RT-qPCR结果表明,在幼穗发育至10 cm时,paa21中ROS响应标志基因Os01g0826400Os05g0474800Os02g0181300,程序性细胞死亡相关基因VPE2VPE3,过氧化氢酶编码基因CATACATBCATC的表达量较WT大幅升高。此外,paa21 10 cm幼穗中过氧化氢酶(CAT)的活性较WT明显下降。【结论】paa21幼穗在发育后期顶端小穗中积累过量的ROS,产生程序性细胞死亡,最终导致顶端小穗发生退化。  相似文献   

15.
【目的】水稻是重要的粮食作物,为全球超过一半的人口提供主食。穗部性状是影响水稻产量的主要因素,挖掘调控穗部性状的优异基因组合,为提高水稻产量提供聚合育种策略。【方法】以弯穗型籼稻品种R99和直立穗型粳稻品种SN265构建的151个重组自交系为试材,应用Illumina测序平台对重组自交系和双亲进行全基因组重测序。结合表型数据与遗传图谱,对每穗粒数、一次枝梗着粒数、二次枝梗着粒数和粒型进行QTL分析,筛选QTL区间内的候选基因,应用基于三代测序组装的SN265和R99高质量基因组进行候选基因预测和序列比对,在重组自交系中筛选产量性状表现最好的基因组合,并在SN265遗传背景下应用CRISPR基因编辑技术对目标位点进行基因编辑。【结果】R99每穗粒数和二次枝梗着粒数显著多于SN265,SN265的一次枝梗着粒数显著高于R99,R99粒型细长,SN265粒型短圆。每个重组自交系平均测序深度为6.25×,R99和SN265的测序深度分别为30×和32×。获得1 456 445个高质量的SNP,利用划bin策略进行图谱构建,得到一个包含3 569个bins,平均长度为58.17 kb的遗传图。Q...  相似文献   

16.
【目的】克隆水稻直立短穗基因Erect and Short PanicleESP),分析其参与的基因调控途径,解析ESP控制株型、穗长等农艺性状的分子机理。【方法】以直立短穗突变体esp及其野生型为材料,成熟期进行株高、穗长、粒长等表型测定;构建籼粳杂交F2定位群体,挑选与突变表型一致的F2单株,利用与突变性状连锁的分子标记对目的基因进行定位;对野生型和突变体进行基因组测序,结合定位结果,找到突变位点,克隆ESP;利用生物信息学软件进行进化树和基因表达分析;提取野生型和突变体幼穗中的RNA并建库,GO(gene ontology)聚类分析表达差异基因,同时根据KEGG(kyoto encyclopedia of genes and genomes)数据库,分析野生型和突变体中植物激素信号转导和内质网蛋白加工相关基因的表达变化,并通过qRT-PCR验证。【结果】通过表型观察和农艺性状调查,与野生型相比,直立短穗突变体esp株高降低,穗长变短,穗型由弯曲变为直立,每穗粒数减少,粒长变短,粒宽和千粒重增加;有效穗数无显著差异。利用突变体esp与PA64构建籼粳F2定位群体,将目的基因定位于水稻第7染色体长臂标记C7-11和C7-14之间7.58 Mb区间内,基因组测序发现LOC_Os07g42410第6内含子与第7外显子连接位点由碱基G变异为A,导致第6内含子不能被剪切,蛋白翻译提前终止;该基因与已报道的OsDEP2/OsEP2为等位基因。进化分析显示该基因广泛存在于单子叶和双子叶植物中;表达分析表明ESP在茎秆、花序、雌蕊、内外稃和子房中高度表达,其表达水平随着子房变大而逐渐降低。利用转录组分析突变体和野生型幼穗中的基因表达,结果表明,与野生型相比,esp突变体中表达差异显著(差异>1.5倍)的基因630个,其中235个表达上调,395个表达下调。GO分析显示植物激素信号转导和内质网蛋白加工相关基因受到不同程度地调控,利用qRT-PCR进行验证,结果与转录组数据一致。【结论】直立短穗基因ESP与已报道的直立穗基因OsDEP2/OsEP2为等位基因,其突变导致株高降低、穗长变短等多个表型;ESP可能通过调节植物激素信号转导、内质网蛋白加工过程中的基因表达,进而影响植株的发育。  相似文献   

17.
【目的】研究水稻HD-ZipⅠ转录因子家族的成员OsHOX6基因启动子的表达。【方法】通过构建水稻OsHOX6基因启动子与GUS基因融合表达载体,利用农杆菌(Agrobacterium)介导,以未成熟水稻胚作为试验材料,转化到水稻IR64,通过PCR检测和潮霉素抗性筛选出阳性的转基因植株,从不同组织取样品,进行X-Gluc染色并观察。【结果】转基因植株的叶、根、茎、花等器官经过X-Gluc染色后,主要在侧根、花粉以及组织损伤部分出现蓝色斑点,其它组织均未检测出蓝色斑点,观察根解剖结构,绿色斑点集中在根内皮层。【结论】 水稻OsHOX6基因启动子能够驱动GUS基因,在转基因水稻侧根和花粉上特异表达。  相似文献   

18.
【目的】OsIAA11参与的生长素信号途径在水稻生长发育阶段和环境因子响应中起重要作用,并影响水稻生育后期的产量形成过程。利用CRISPR/Cas9编辑技术对粳稻中花11(ZH11)的OsIAA11序列进行编辑,获得OsIAA11突变植株,通过对突变植株的农艺性状指标开展田间调查分析,以期探索OsIAA11突变对水稻产量构成因子的影响。【方法】依据CRISPR/Cas9编辑原理,在OsIAA11第1和第2外显子区域设计2个20 bp的编辑靶点,并在水稻基因组数据库中比对分析靶点序列,排除非特异性编辑,将2个靶点核苷酸片段分别与pYLgRNA-U6a和pYLgRNA-U6b载体连接,通过2次PCR扩增,得到含特异性连接接头的U6a-IAA11-T1和U6b-IAA11-T2表达盒,再将2个表达盒连接到pYLCRISPR/Cas9-MT载体上,获得pYLCRISPR/Cas9-IAA11-T12重组表达载体,利用农杆菌介导法转化ZH11愈伤组织,再生培养得到T0代转基因幼苗,通过PCR扩增潮霉素抗性基因获得阳性株系。对T2代植株的靶点区域序列进行PCR扩增和测序分析,鉴定OsIAA11突变类型,并考察突变植株的田间农艺性状。【结果】pYLCRISPR/Cas9-IAA11-T12表达载体成功转化ZH11水稻愈伤组织,并获得25株转基因再生植株,经潮霉素鉴定得到20株阳性株系,从阳性植株的T2后代中鉴定出17种在2个靶点区域都发生编辑的纯合突变类型植株,除osiaa11-20-1osiaa11-21-2osiaa11-23osiaa11-25在第1个靶点、以及osiaa11-22-2在第2个靶点是单碱基插入突变外,其他突变植株在第1个靶点为小片段缺失突变,在第2个靶点多为单碱基缺失突变。对17种不同基因型osiaa11突变体的农艺性状调查表明,与野生型水稻相比,突变体水稻的株高、有效穗数、穗长、穗粒数、结实率、千粒重、收获指数以及谷草比等性状未发生明显变化,而分蘖成穗率则显著降低,表明无效分蘖增多。【结论】采用CRISPR/Cas9技术对OsIAA11序列进行编辑,得到17种不同基因型的osiaa11突变体水稻,其分蘖成穗率显著降低,无效分蘖变多,表明OsIAA11参与了生长素对分蘖芽发生的调节代谢。  相似文献   

19.
【目的】CIPK是植物响应逆境胁迫信号通路中一类重要的蛋白激酶,可与CBL形成CBL-CIPK复合物,启动细胞内相关应答基因的表达而应对各种非生物胁迫。发掘并研究紫花苜蓿MsCIPK基因响应非生物胁迫的分子机理,有助于揭示紫花苜蓿抗逆生物学基础,为紫花苜蓿抗逆育种提供新的基因资源。【方法】通过PCR技术克隆MsCIPK2,使用生物信息学工具分析基因序列,利用qRT-PCR技术分析MsCIPK2,以及与其互作的4个CBL基因(MsCBL2MsCBL6MsCBL7MsCBL10)在紫花苜蓿各组织中的表达水平,在烟草叶片表皮细胞中,瞬时表达pCAMBIA1302-GFP-MsCIPK2融合表达载体,通过激光共聚焦显微镜观察进行亚细胞定位,利用酵母双杂交技术分析MsCIPK2与4个MsCBLs蛋白互作情况,利用发根农杆菌诱导紫花苜蓿产生过量表达MsCIPK2的毛状根,利用qRT-PCR技术分析转基因毛状根株系中相关基因的表达水平。【结果】通过PCR扩增获得MsCIPK2片段,该基因CDS为1 230 bp,编码409个氨基酸,具有典型的CIPK家族的ATP结合位点、激活环、NAF motif和PPI motif等结构域。MsCIPK2在紫花苜蓿根中表达量最高,在花中表达量最低。亚细胞定位结果显示,MsCIPK2蛋白定位于内质网。酵母双杂交试验结果显示,MsCIPK2蛋白与MsCBL2、MsCBL6、MsCBL7和MsCBL10蛋白具有相互作用,且与MsCBL10蛋白相互作用较强。MsCBL2MsCBL6MsCBL10在紫花苜蓿根中表达量最高,MsCBL7在荚中表达量最高。qRT-PCR结果表明,过量表达MsCIPK2的毛状根中响应非生物胁迫基因ATPaseP5CSCYP705A5COR47HAK5RD2的表达量均明显上调。在200 mmol·L-1 NaCl和20%PEG处理条件下,与对照相比,过量表达MsCIPK2毛状根的丙二醛含量降低,SOD活性、脯氨酸含量和可溶性糖含量增高。【结论】紫花苜蓿MsCIPK2与MsCBLs蛋白互作,主要在根中表达并响应盐和干旱胁迫,过量表达MsCIPK2可以提高紫花苜蓿的耐盐性和耐旱性,MsCIPK2可作为提高紫花苜蓿抗逆育种的候选基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号