首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
The purpose of the following study was to investigate the influence of coffee roasting on the thiol-binding activity of coffee beverages, and to investigate the potential of various green bean compounds as precursors of thiol-binding sites by using promising "in bean" model roast experiments. Headspace gas chromatographic analysis on coffee brews incubated in the presence of the roasty-sulfury smelling 2-furfurylthiol for 20 min at 30 degrees C in septum-closed vessels revealed that the amounts of "free" thiol decreased drastically with increasing the roasting degree of the beans used for preparation of the brews. A half-maximal binding capacity (BC(50)) of 183 mg of 2-furfurylthiol per liter of standard coffee beverage was determined for a roasted coffee (CTN value of 67), thus demonstrating that enormous amounts of the odor-active thiol are "bound" by the coffee. Furthermore, biomimetic "in bean" precursor experiments have been performed in order to elucidate the precursor for the thiol-binding sites in the raw coffee bean. These experiments opened the possibility of studying coffee model reactions under quasi-natural roasting conditions and undoubtedly identified chlorogenic acids as well as thermal degradation products caffeic acid and quinic acid as important precursors for low-molecular-weight thiol-binding sites. In particular, when roasted in the presence of transition metal ions, chlorogenic acids and even more caffeic acid showed thiol-binding activity which was comparable to the activity measured for the authentic coffee brew.  相似文献   

2.
A straightforward stable isotope dilution analysis (SIDA) for the quantitative determination of the di- and trihydroxybenzenes catechol (1), pyrogallol (2), 3-methylcatechol (3), 4-methylcatechol (4), and 4-ethylcatechol (5) in foods by means of liquid chromatography-tandem mass spectrometry was developed. With or without sample preparation involving phenylboronyl solid phase extraction, the method allowed the quantification of the target compounds in complex matrices such as coffee beverages with quantification limits of 9 nmol/L for 4-ethylcatechol, 24 nmol/L for catechol, 3-methyl-, and 4-methylcatechol, and 31 nmol/L for pyrogallol. Recovery rates for the analytes ranged from 97 to 103%. Application of the developed SIDA to various commercial food samples showed that quantitative analysis of the target compounds is possible within 30 min and gave first quantitative data on the amounts of di- and trihydroxybenzenes in coffee beverage, coffee powder, coffee surrogate, beer, malt, roasted cocoa powder, bread crust, potato crisps, fruits, and cigarette smoke and human urine. Model precursor studies revealed the carbohydrate/amino acid systems as well as the plant polyphenols catechin and epicatechin as precursors of catechol and 5-O-caffeoylquinic acid, caffeic acid as a precursor of catechol and 4-ethylcatechol, and gallocatechin, epigallocatechin, and gallic acid as precursors of pyrogallol.  相似文献   

3.
To gain a more comprehensive knowledge of the contribution of recently identified phenol/thiol conjugates to the storage-induced degradation of odorous thiols, the concentrations of the sulfury-roasty smelling key odorant 2-furfurylthiol and the concentrations of the putative thiol-receptive di- and trihydroxybenzenes pyrogallol (1), hydroxyhydroquinone (2), catechol (3), 4-ethylcatechol (4), 4-methylcatechol (5), and 3-methylcatechol (6), as well as of the phenol/thiol conjugates 3-[(2-furylmethyl)sulfanyl]catechol (7), 3-[(2-furylmethyl)sulfanyl]-5-ethylcatechol (8), 4-[(2-furylmethyl)sulfanyl]hydroxyhydroquinone (9), and 3,4-bis[(2-furylmethyl)sulfanyl]hydroxyhydroquinone (10) were quantitatively determined in fresh and stored coffee beverages by means of stable isotope dilution analyses (SIDA). Although 2 was found to be the quantitatively predominant trihydroxybenzene in freshly prepared coffee brew, this compound exhibited a very high reactivity and decreased rapidly during coffee storage to generate the conjugates 9 and 10. After only 10 min, about 60% of the initial amount of 2-furfurylthiol in a coffee beverage reacted with 2 to give 9 and 10. In contrast, conjugate 7 was found to be exclusively formed during coffee roasting because its initial concentration as well as the amount of its putative precursor, phenol 3, was not affected by storage. It is interesting to note that the concentration of 8 was increased with increasing incubation time, but its putative precursor 4 was not affected, thus indicating another formation pathway most likely via the chlorogenic acid degradation product 4-vinylcatechol. This study demonstrates for the first time that the loss of 2-furfurylthiol during coffee storage is mainly due to the oxidative coupling of the odorant to hydroxyhydroquinone (2), giving rise to the conjugates 9 and 10.  相似文献   

4.
Recent investigations demonstrated that the reaction of odor-active thiols such as 2-furfurylthiol with thermally generated chlorogenic acid degradation products is responsible for the rapid aroma staling of coffee beverages. To get a clear understanding of the molecular mechanisms underlying this aroma staling, the existence of putative phenol/thiol conjugates needs to be verified in coffee. The aim of the present study was therefore to synthesize such conjugates for use as reference substances for LC-MS screening of coffee. To achieve this, catechol, 3-methyl-, 4-methyl-, and 4-ethylcatechol, pyrogallol, hydroxyhydroquinone, 5-O-caffeoylquinic acid, and caffeic acid, respectively, were reacted with 2-furfurylthiol in the presence of iron(III) chloride and air oxygen. After purification, the structures of 25 phenol/thiol conjugates were identified by means of LC-MS/MS and 1D/2D NMR experiments. Using these compounds as reference materials, four conjugates, namely, 3-((2-furylmethyl)sulfanyl)catechol, 3-((2-furylmethyl)sulfanyl)-5-ethylcatechol, 4-((2-furylmethyl)sulfanyl)hydroxyhydroquinone, and 3,4-bis((2-furylmethyl)sulfanyl) hydroxyhydroquinone, were identified for the first time in coffee brew by means of HPLC-MS/MS(MRM). These findings clearly demonstrate catechol, 4-ethylcatechol, and hydroxyhydroquinone as the primary thiol trapping agents involved in the aroma staling of coffee beverages.  相似文献   

5.
In this paper, we report a (1)H and (13)C nuclear magnetic resonance (NMR)-based comprehensive analysis of coffee bean extracts of different degrees of roast. The roasting process of coffee bean extracts was chemically characterized using detailed signal assignment information coupled with multivariate data analysis. A total of 30 NMR-visible components of coffee bean extracts were monitored simultaneously as a function of the roasting duration. During roasting, components such as sucrose and chlorogenic acids were degraded and components such as quinic acids, N-methylpyridinium, and water-soluble polysaccharides were formed. Caffeine and myo-inositol were relatively thermally stable. Multivariate data analysis indicated that some components such as sucrose, chlorogenic acids, quinic acids, and polysaccharides could serve as chemical markers during coffee bean roasting. The present composition-based quality analysis provides an excellent holistic method and suggests useful chemical markers to control and characterize the coffee-roasting process.  相似文献   

6.
The effect of the roasting degree on coffee brew melanoidin properties and formation mechanisms was studied. Coffee brew fractions differing in molecular weight (Mw) were isolated from green and light-, medium-, and dark-roasted coffee beans. Isolated fractions were characterized for their melanoidin, nitrogen, protein, phenolic groups, chlorogenic acid, quinic acid, caffeic acid, and sugar content. It was found that the melanoidin level in all fractions correlated with both the nitrogen and the protein content. The melanoidin level also correlated with the phenolic groups' level and ester-linked quinic acid level. It was concluded that proteins and chlorogenic acids should be primarily involved in melanoidin formation. Initial roasting, from green to light-roasted beans, especially led to the formation of intermediate Mw (IMw) melanoidins when compared to high Mw (HMw) melanoidins. Indications were found that this IMw melanoidin formation is mainly due to Maillard reactions and chlorogenic acid incorporation reactions between chlorogenic acids, sucrose, and amino acids/protein fragments. Additionally, it was found that prolonged roasting predominantly led to formation melanoidins with a high Mw. Furthermore, arabinogalactans seem to be relatively more involved in melanoidin formation than galactomannans. It was hypothesized that chromophores may be formed or attached through the arabinose moiety of arabinogalactan proteins (AGP). Finally, it could be concluded that galactomannans are continuously incorporated in AGP-melanoidins upon roasting.  相似文献   

7.
In this study, the polyphenol oxidase (PPO) of artichoke (Cynara scolymus L.) was first purified by a combination of (NH(4))(2)SO(4) precipitation, dialysis, and a Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity column. At the end of purification, 43-fold purification was achieved. The purified enzyme migrated as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis indicated that PPO had a 57 kDa molecular mass. Second, the contents of total phenolic and protein of artichoke head extracts were determined. The total phenolic content of artichoke head was determined spectrophotometrically according to the Folin-Ciocalteu procedure and was found to be 425 mg 100 g(-1) on a fresh weight basis. Protein content was determined according to Bradford method. Third, the effects of substrate specificity, pH, temperature, and heat inactivation were investigated on the activity of PPO purified from artichoke. The enzyme showed activity to 4-methylcatechol, pyrogallol, catechol, and L-dopa. No activity was detected toward L-tyrosine, resorsinol, and p-cresol. According to V(max)/K(m) values, 4-methylcatechol (1393 EU min(-1) mM(-1)) was the best substrate, followed by pyrogallol (1220 EU min(-1) mM(-1)), catechol (697 EU min(-1) mM(-1)), and L-dopa (102 EU min(-1) mM(-1)). The optimum pH values for PPO were 5.0, 8.0, and 7.0 using 4-methylcatechol, pyrogallol, and catechol as substrate, respectively. It was found that optimum temperatures were dependent on the substrates studied. The enzyme activity decreased due to heat denaturation of the enzyme with increasing temperature and inactivation time for 4-methylcatechol and pyrogallol substrates. However, all inactivation experiments for catechol showed that the activity of artichoke PPO increased with mild heating, reached a maximum, and then decreased with time. Finally, inhibition of artichoke PPO was investigated with inhibitors such as L-cysteine, EDTA, ascorbic acid, gallic acid, d,L-dithiothreitol, tropolone, glutathione, sodium azide, benzoic acid, salicylic acid, and 4-aminobenzoic acid using 4-methylcatechol, pyrogallol, and catechol as substrate. The presence of EDTA, 4-aminobenzoic acid, salicylic acid, gallic acid, and benzoic acid did not cause the inhibition of artichoke PPO. A competitive-type inhibition was obtained with sodium azide, L-cysteine, and d,L-dithiothreitol inhibitors using 4-methylcatechol as substrate; with L-cysteine, tropolone, d,L-dithiothreitol, ascorbic acid, and sodium azide inhibitors using pyrogallol as substrate; and with L-cysteine, tropolone, d,L-dithiotreitol, and ascorbic acid inhibitors using catechol as a substrate. A mixed-type inhibition was obtained with glutathione inhibitor using 4-methylcatechol as a substrate. A noncompetitive inhibition was obtained with tropolone and ascorbic acid inhibitors using 4-methylcatechol as substrate, with glutathione inhibitor using pyrogallol as substrate, and with glutathione and sodium azide inhibitors using catechol as substrate. From these results, it can be said that the most effective inhibitor for artichoke PPO is tropolone. Furthermore, it was found that the type of inhibition depended on the origin of the PPO studied and also on the substrate used.  相似文献   

8.
Aimed at elucidating intense bitter-tasting molecules in coffee, various bean ingredients were thermally treated in model experiments and evaluated for their potential to produce bitter compounds. As caffeic acid was found to generate intense bitterness reminiscent of the bitter taste of a strongly roasted espresso-type coffee, the reaction products formed were screened for bitter compounds by means of taste dilution analysis, and the most bitter tastants were isolated and purified. LC-MS/MS as well as 1-D/2-D NMR experiments enabled the identification of 10 bitter compounds with rather low recognition threshold concentrations ranging between 23 and 178 micromol/L. These bitter compounds are the previously unreported 1,3-bis(3',4'-dihydroxyphenyl) butane, trans-1,3-bis(3',4'-dihydroxyphenyl)-1-butene, and eight multiply hydroxylated phenylindanes, among which five derivatives are reported for the first time. In addition, the occurrence of each of these bitter compounds in a coffee brew was verified by means of LC-MS/MS (ESI-) operating in the multiple reaction monitoring (MRM) mode. The structures of these bitter compounds show strong evidence that they are generated by oligomerization of 4-vinylcatechol released from caffeic acid moieties upon roasting.  相似文献   

9.
A partial characterization of polyphenol oxidase (PPO) activity in Ocimum basilicum L. is described. PPO in O. basilicum L. was extracted and purified through (NH4)2SO4 precipitation, dialysis, and a Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity column. The samples obtained from (NH4)2SO4 precipitation and dialysis were used for the characterization of PPO. At the end of purification by affinity chromatography, 11.5-fold purification was achived. The purified enzyme exhibited a clear single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the enzyme was estimated to be approximately 54 kDa. The contents of total phenolic and protein of O. basilicum L. extracts were determined. The total phenolic content of O. basilicum L. was determined spectrophotometrically according to the Folin-Ciocalteu procedure and was found to be 280 mg 100 g(-1) on a fresh weight basis. The protein content was determined according to the Bradford method. The enzyme showed activity to 4-methylcatechol, catechol, and pyrogallol substrates, but not to tyrosine. Therefore, of these three substrates, 4-methylcatecol was the best substrate due to the highest V(max)/K(m) value, followed by pyrogallol and catechol. The optimum pH was at 6, 8, and 9 for 4-methylcatechol, catechol, and pyrogallol, respectively. The enzyme had an optimum temperature of 20, 40, and 50 degrees C for 4-methylcatechol, catechol, and pyrogallol, respectively. It was found that optimum temperature and pH were dependent on the substrates studied. The enzyme activity with increasing temperature and inactivation time for 4-methylcatechol, catechol, and pyrogallol substrates decreased due to heat denaturation of the enzyme.  相似文献   

10.
This paper reports a study on the hydroxylation of ferulic acid and tyrosine by field bean (Dolichos lablab) polyphenol oxidase, a reaction that does not take place without the addition of catechol. A lag period similar to the characteristic lag of tyrosinase activity was observed, the length of which decreased with increasing catechol concentration and increased with increasing ferulic acid concentration. The activation constant K(a) of catechol for ferulic acid hydroxylation reaction was 5 mM. The kinetic parameters of field bean polyphenol oxidase toward ferulic acid and tyrosine were evaluated in the presence of catechol. 4-Methyl catechol, L-dihydroxyphenylalanine, pyrogallol, and 2,3,4-trihydroxybenzoic acid, substrates with high binding affinity to field bean polyphenol oxidase, could stimulate this hydroxylation reaction. In contrast, diphenols such as protocatechuic acid, gallic acid, chlorogenic acid, and caffeic acid, which were not substrates for the oxidation reaction, were unable to bring about this activation. It is most likely that only o-diphenols that are substrates for the diphenolase serve as cosubstrates by donating electrons at the active site for the monophenolase activity. The reaction mechanism for this activation is consistent with that proposed for tyrosinase (Sanchez-Ferrer, A.; Rodriguez-Lopez, J. N.; Garcia-Canovas, F.; Garcia-Carmona, F. Biochim. Biophys. Acta 1995, 1247, 1-11). The presence of o-diphenols, viz. catechol, L-dihydroxyphenylalanine, and 4-methyl catechol, is also necessary for the oxidation of the diphenols, caffeic acid, and catechin to their quinones by the field bean polyphenol oxidase. This oxidation reaction occurs immediately with no lag period and does not occur without the addition of diphenol. The kinetic parameters for caffeic acid (K(m) = 0.08 mM, V(max) = 32440 u/mg) in the presence of catechol and the activation constant K(a) of catechol (4.6 mM) for this reaction were enumerated. The absence of a lag period for this reaction indicates that the diphenol mechanism of diphenolase activation differs from the way in which the same o-diphenols activate the monophenolase activity.  相似文献   

11.
To study the mechanism of coffee melanoidin formation, green coffee beans were prepared by (1) removal of the hot water extractable components (WECoffee); (2) direct incorporation of sucrose (SucCoffee); and (3) direct incorporation of type II arabinogalactan-proteins (AGPCoffee). As a control of sucrose and AGP incorporation, lyophilized green coffee beans were also immersed in water (control). The original coffee and the four modified "in bean" coffee models were roasted and their chemical characteristics compared. The formation of material not identified as carbohydrates or protein, usually referred to as "unknown material" and related to melanoidins, and the development of the brown color during coffee roasting have distinct origins. Therefore, a new parameter for coffee melanoidin evaluation, named the "melanoidin browning index" (MBI), was introduced to handle simultaneously the two concepts. Sucrose is important for the formation of colored structures but not to the formation of "unknown material". Type II AGPs also increase the brown color of the melanoidins, but did not increase the amount of "unknown material". The green coffee hot water extractable components are essential for coffee melanoidin formation during roasting. The cell wall material was able to generate a large amount of "unknown material". The galactomannans modified by the roasting and the melanoidin populations enriched in galactomannans accounted for 47% of the high molecular weight brown color material, showing that these polysaccharides are very relevant for coffee melanoidin formation.  相似文献   

12.
Fruits and vegetables contain naturally occurring polyphenolic compounds that can undergo enzyme-catalyzed oxidation during food preparation. Many of these compounds contain catechol (1,2-dihydroxybenzene) moieties that may be transformed into o-quinone derivatives by polyphenoloxidases and molecular oxygen. Secondary reactions of the o-quinones include the Strecker degradation of ambient amino acids to form flavor-important volatile aldehydes. The purpose of this work was to investigate the mechanism of the polyphenol/o-quinone/Strecker degradation sequence in a nonenzymic model system. By using ferricyanide ion as the oxidant in pH 7.17 phosphate buffer at 22 degrees C, caffeic acid, chlorogenic acid, (+) catechin, and (-) epicatechin were caused to react with methionine and phenylalanine to produce Strecker aldehydes methional and phenylacetaldehyde in 0.032-0.42% molar yields (0.7-10 ppm in reaction mixtures). Also, by employing l-proline methyl ester in a reaction with 4-methylcatechol, a key reaction intermediate, 4-(2'-carbomethoxy-1'-pyrrolidinyl)-5-methyl-1,2-benzoquinone (7), was isolated and tentatively identified.  相似文献   

13.
In this study different Arabica and Robusta coffee beans from different regions of the world were analyzed for acrylamide after roasting in a laboratory roaster. Due to the complex matrix and the comparably low selectivity of the LC-MS at m/ z 72, acrylamide was analyzed after derivatization with 2-mercaptobenzoic acid at m/ z 226. Additionally, the potential precursors of acrylamide (3-aminopropionamide, carbohydrates, and amino acids) were studied. The highest amounts of acrylamide formed in coffee were found during the first minutes of the roasting process [3800 ng/g in Robusta ( Coffea canephora robusta) and 500 ng/g in Arabica ( Coffea arabica)]. When the roasting time was increased, the concentration of acrylamide decreased. It was shown that especially the roasting time and temperature, species of coffee, and amount of precursors in raw material had an influence on acrylamide formation. Robusta coffee contained significantly larger amounts of acrylamide (mean = 708 ng/g) than Arabica coffee (mean = 374 ng/g). Asparagine is the limiting factor for acrylamide formation in coffee. 3-Aminopropionamide formation was observed in a dry model system with mixtures of asparagine with sugars (sucrose, glucose). Thermal decarboxylation and elimination of the alpha-amino group of asparagine at high temperatures (>220 degrees C) led to a measurable but low formation of acrylamide.  相似文献   

14.
Of all plant constituents, coffee has one of the highest concentrations of chlorogenic acids. When roasting coffee, some of these are transformed into chlorogenic acid lactones (CGL). We have studied the formation of CGL during the roasting of coffee beans in Coffea arabica cv. Bourbon; C. arabicacv. Longberry; and C. canephora cv. Robusta. Individual CGL levels were determined by comparison of HPLC peaks with those of synthetic CGL standards. Seven CGL were identified: 3-caffeoylquinic-1,5-lactone (3-CQL), 4- caffeoylquinic-1,5-lactone (4-CQL), 3-coumaroylquinic-1,5-lactone (3-pCoQL), 4-coumaroylquinic-1,5-lactone (4-pCoQL), 3-feruloylquinic-1,5-lactone (3-FQL), 4-feruloylquinic-1,5-lactone (4-FQL), and 3,4-dicaffeoylquinic-1,5-lactone (3,4-diCQL). 3-CQL was the most abundant lactone in C. arabica and C. canephora, reaching peak values of 230 +/- 9 and 254 +/- 4 mg/100 g (dry weight), respectively, at light medium roast ( approximately 14% weight loss). 4-CQL was the second most abundant lactone (116 +/- 3 and 139 +/- 2 mg/100 g, respectively. The maximum amount of CGL represents approximately 30% of the available precursors. The relative levels of 3-CQL and 4-CQL in roasted coffee were reverse to those of their precursors in green coffee. This suggests that roasting causes isomerization of chlorogenic acids prior to the formation of lactones and that the levels of lactones in roasted coffee do not reflect the levels of precursors in green coffee.  相似文献   

15.
Polyphenol oxidase (E.C. 1.14.18.1) (PPO) extracted from yacon roots (Smallanthus sonchifolius) was partially purified by ammonium sulfate fractionation and separation on Sephadex G-100. The enzyme had a molecular weight of 45 490+/-3500 Da and Km values of 0.23, 1.14, 1.34, and 5.0 mM for the substrates caffeic acid, chlorogenic acid, 4-methylcatechol, and catechol, respectively. When assayed with resorcinol, DL-DOPA, pyrogallol, protocatechuic, p-coumaric, ferulic, and cinnamic acids, catechin, and quercetin, the PPO showed no activity. The optimum pH varied from 5.0 to 6.6, depending on substrate. PPO activity was inhibited by various phenolic and nonphenolic compounds. p-Coumaric and cinnamic acids showed competitive inhibition, with Ki values of 0.017 and 0.011 mM, respectively, using chlorogenic acid as substrate. Heat inactivation from 60 to 90 degrees C showed the enzyme to be relatively stable at 60-70 degrees C, with progressive inactivation when incubated at 80 and 90 degrees C. The Ea (apparent activation energy) for inactivation was 93.69 kJ mol-1. Sucrose, maltose, glucose, fructose, and trehalose at high concentrations appeared to protect yacon PPO against thermal inactivation at 75 and 80 degrees C.  相似文献   

16.
Oxidation reactions in coffee involve redox-sensitive polyphenols and appear to control the fragmentation of coffee storage proteins both in solution and during roasting. Coffee-specific nitrogenous flavor precursors may derive from this process. Accordingly, data converge to suggest that the redox status of the green bean before roasting might control the development of subsequent redox reactions during roasting. Consequently, we decided to identify biological events that may trigger or prevent oxidation during maturation of the coffee cherry and set the final redox status of the green bean. In a previous study, we observed that the sensitivity of green coffee to oxidative processes decreased along maturation. By using the very same samples originating from open-pollinated Robusta clones, we followed the activity of three essential redox enzymes: catalase (CAT), peroxidase (POD) and polyphenoloxidase (PPO). While CAT and POD activities increased with maturation, PPO activities decreased. Thanks to the identification of an atypical immature subclass, it appeared that CAT might be an essential factor in setting the final redox status of the green bean before the roasting event.  相似文献   

17.
Hierarchical scheme for LC-MSn identification of chlorogenic acids   总被引:2,自引:0,他引:2  
The fragmentation behavior of 18 chlorogenic acids that are not substituted at position 1 has been investigated using LC-MS(4) applied to a methanolic coffee bean extract and commercial cider (hard cider). Using LC-MS(3), it is possible to discriminate between each of the three isomers of p-coumaroylquinic acid, caffeoylquinic acid, feruloylquinic acid, and dicaffeoylquinic acid, and a hierarchical key has been prepared to facilitate this process when standards are not available. MS(4) fragmentations further support these assignments, but were not essential in reaching them. The distinctive behavior of 4-acyl and 3-acyl chlorogenic acids compared with the 5-acyl chlorogenic acids is a key factor permitting these assignments. The fragmentation patterns are dependent upon the particular stereochemical relationships between the individual substituents on the quinic acid moiety. Fragmentation is facilitated by 1,2-acyl participation and proceeds through quinic acid conformers in which the relevant substituents transiently adopt a 1,3-syn-diaxial relationship. Selected ion monitoring at m/z 529 clearly indicated the presence in coffee of six caffeoylferuloylquinic acid isomers, whereas previously only two or three had been demonstrated. The hierarchical key permitted specific structures to be assigned to each of the six isomers. These assignments are internally consistent and consistent with the limited data previously available.  相似文献   

18.
This study is the first of two publications that investigate the phenomena of coffee nonvolatiles interacting with coffee volatile compounds. The purpose was to identify which coffee nonvolatile(s) are responsible for the interactions observed between nonvolatile coffee brew constituents and thiols, sulfides, pyrroles, and diketones. The overall interaction of these compounds with coffee brews prepared with green coffee beans roasted at three different roasting levels (light, medium, and dark), purified nonvolatiles, and medium roasted coffee brew fractions (1% solids after 1 or 24 h) was measured using a headspace solid-phase microextraction technique. The dark roasted coffee brew was slightly more reactive toward the selected compounds than the light roasted coffee brew. Selected pure coffee constituents, such as caffeine, trigonelline, arabinogalactans, chlorogenic acid, and caffeic acid, showed few interactions with the coffee volatiles. Upon fractionation of medium roasted coffee brew by solid-phase extraction, dialysis, size exclusion chromatography, or anion exchange chromatography, characterization of each fraction, evaluation of the interactions with the aromas, and correlation between the chemical composition of the fractions and the magnitude of the interactions, the following general conclusions were drawn. (1) Low molecular weight and positively charged melanoidins present significant interactions. (2) Strong correlations were shown between the melanoidin and protein/peptide content, on one hand, and the extent of interactions, on the other hand (R = 0.83-0.98, depending on the volatile compound). (3) Chlorogenic acids and carbohydrates play a secondary role, because only weak correlations with the interactions were found in complex matrixes.  相似文献   

19.
The incorporation of chlorogenic acids (CGAs) and their subunits quinic and caffeic acids (QA and CA) in coffee brew melanoidins was studied. Fractions with different molecular weights, ionic charges, and ethanol solubilities were isolated from coffee brew. Fractions were saponified, and the released QA and CA were quantified. For all melanoidin fractions, it was found that more QA than CA was released. QA levels correlated with melanoidin levels, indicating that QA is incorporated in melanoidins. The QA level was correlated with increasing ionic charge of the melanoidin populations, suggesting that QA may contribute to the negative charge and consequently is, most likely, not linked via its carboxyl group. The QA level correlated with the phenolic acid group level, as determined by Folin-Ciocalteu, indicating that QA was incorporated to a similar extent as the polyphenolic moiety from CGA. The QA and CA released from brew fractions by enzymes confirmed the incorporation of intact CGAs. Intact CGAs are proposed to be incorporated in melanoidins upon roasting via CA through mainly nonester linkages. This complex can be written as Mel=CA-QA, in which Mel represents the melanoidin backbone, =CA represents CA nonester-linked to the melanoidin backbone, and -QA represents QA ester-linked to CA. Additionally, a total of 12% of QA was identified in coffee brew, whereas only 6% was reported in the literature so far. The relevance of the additional QA on coffee brew stability is discussed.  相似文献   

20.
Volatile aroma principles, nonvolatile taste constituents (caffeine and chlorogenic and caffeic acids), and glycosidically bound aroma compounds of monsooned and nonmonsooned raw arabica coffee were analyzed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Among the most potent odor active constituents known to contribute to the aroma of the green beans, 3-isopropyl-2-methoxypyrazine, 3-isobutyl-2-methoxypyrazine, 4-vinylguaiacol, beta-damascenone, (E)-2-nonenal, trans,trans-2,4-decadienal, phenylacetaldehyde, and 3-methylbutyric acid were detected by GC-MS in both samples. A decrease in content of methoxypyrazines and an increase in 4-vinylguaiacol and isoeugenol resulted in a dominant spicy note of monsooned coffee. These phenolic compounds exist partly as their glycosides, and their release from the bound precursors during monsooning accounted for their higher content in monsooned coffee. A considerable decrease in astringent chlorogenic acid as a consequence of hydrolysis to bitter caffeic acid was noted in monsooned coffee. Radiation processing of nonmonsooned beans at a dose of 5 kGy resulted in an increased rate of monsooning. At this dose a quantitative increase in most of the aroma active components could be observed in all samples studied. Hydrolysis of chlorogenic acid to caffeic acid was noted in radiation-processed monsooned coffee beans irrespective of whether the treatment was carried out before or after monsooning. These changes were, however, not observed in irradiated, nonmonsooned coffee beans, suggesting an enzymatic rather than a radiolytic cleavage of chlorogenic acid. A rationale behind the mechanism of monsooning and radiation-induced enhancement of the monsooning process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号