首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like most small marine fish larvae, the stomachs of winter flounder Pseudopleuronectes americanus are undeveloped at first feeding and have relatively reduced digestive capacity. This work was undertaken to test whether larvae at the onset of stomach differentiation (larval size about 5.5 mm) could be early weaned onto a commercial microencapsulated diet. We assessed the effect of early weaning by first comparing growth performance (standard length, total protein content and age at metamorphosis) of larvae fed enriched live prey from first feeding to a size of 5.5 mm and then reared on three different feeding regimes until metamorphosis: (1) live prey (LP) as a control group; (2) mixed feeding of live prey and microencapsulated diet (LP‐ME); (3) exclusively microencapsulated diet (ME) after fast weaning over 4 days (to a larval size of 6.2 mm). No differences were observed between larval development in the two first groups, which began metamorphosis at 40 days old. The larvae of the third group showed significantly slower growth that resulted in a delay of 4 days in the onset of metamorphosis. Differences in live prey availability between the treatments and the short transition period to allow the larvae to adapt to the new diet were identified as possible contributing factors to the slower growth and to the delay in metamorphosis of early weaned larvae. In a second experiment, the transitional weaning period was increased until the larvae were 6.6 mm in length. Weaning at that size resulted in no slowing of growth or delay in metamorphosis, suggesting that the feeding schedule was adequate.  相似文献   

2.
In recent years, a great deal of interest has emerged in the development of microdiets as an economic alternative to live food, in the larval culture of marine fish species. The ability to grow Sparus aurata larvae on a prototype microparticulate diet was examined. To achieve this objective, four feeding regimes differing in the time when the microdiet was introduced (3, 7 or 12 days) and one based exclusively on an inert diet were tested, during the first 22 days of larval life. Significant differences in larval growth were found between the experimental feeding regimes and their corresponding controls (enriched rotifers during the whole experimental period); the larvae in the co-feeding regimes and with an exclusive microparticulate diet were always significantly smaller than larvae fed on rotifers alone. However, the difference was minimised by introducing the inert diet at a later date. A lower survival was found in larvae with a co-feeding regime, in comparison with the control treatments and the survival was significantly lower in larvae fed exclusively on a microparticulate diet. The fatty acid analysis revealed that the experimental microencapsulated diet and the rotifers enriched with Protein Selco® presented relatively similar fatty acid content. In spite of the slightly higher (n?3)/(n?6) and Docosahexaenoic acid (DHA)/Eicosapentaenoic acid (EPA) ratios and somewhat lower highly unsaturated fatty acid (HUFA) content found in the inert diet, the fatty acid composition of the diets cannot explain the differences found in larval performance. The results revealed that the complete replacement of live prey with the tested microparticulate diet is still not possible in S. aurata larval rearing. Nevertheless, better growth and survival results and a substantial reduction in the daily supply of live food can be achieved with a combination of microdiet and live prey.  相似文献   

3.
The aim of the study was to determine the influence of dietary phospholipid (PL) levels on survival and development of first feeding gilthead sea bream (Sparus aurata) larvae. Larvae were fed from day 4 to 23 posthatching with an isoproteic and isolipidic formulated diet with graded levels of PL from 90–150 g kg?1 dry matter (DM). A dietary PL content of more than 90 g kg?1 DM seems to be necessary for sustaining growth of first feeding sea bream larvae. The survival rates of larvae fed the formulated diets (31–40% at day 23) were similar to those generally observed in marine aquaculture hatcheries with live prey feeding sequence. However, this high survival rate was not associated with high growth and the larvae showed, at the end of the study, a high proportion of individuals with abnormal liver and calculi in the urinary bladder. It is concluded that although the diets used here cannot be used in total replacement of live preys, they constitute a solid starting point for further nutritional studies with first feeding gilthead sea bream larvae.  相似文献   

4.
An artificial diet for shrimp larvae was microencapsulated with a polysaccharide blend [66% gum arabic, 17% mesquite gum and 17% maltodextrin 10 dextrose equivalent (DE)]. Microencapsulated diet (MD) was fed to mysis alone, as a co‐feed with the microalgae Chaetoceros cerastosporum and Tetraselmis chuii (mixed) and compared with a live diet (control) of C. cerastosporum, T. chuii and Artemia nauplii. No significant differences (P > 0.05) were detected in growth rates, development and quality indexes of larvae fed the three experimental diets. All diets supported survival percentages of >90%. Shrimp larvae fed MD and mixed diets had higher specific trypsin activity and soluble protein content than those fed live diet. Amylase activity decreased in larvae fed the mixed and MD apparently due to the carbohydrate composition of the diet. The results indicate that it is possible to substitute a live diet with a microencapsulated one (with a wall composition made up of a polysaccharide blend) in Litopenaeus vannamei mysis.  相似文献   

5.
Variability in the high mortality rate during early life stages is considered to be one of the principal determinants of year‐class variability in fish stocks. The influence of water column stability on the spatial distribution of fish larvae and their prey is widely acknowledged. Water column stability may also impact growth through the early life history of fishes, and consequently alter the probability of survival to maturity by limiting susceptibility to predation and starvation. As a test of this concept, the variability in condition and growth of dab (Limanda limanda) and sprat (Sprattus sprattus) larvae was investigated in relation to seasonal stratification of the water column in the north‐western Irish Sea. RNA/DNA ratios and otolith microincrement analysis were used to estimate nutritional status and recent growth rates of larvae captured on four cruises in May and June of 1998 and 1999. Dab and sprat larvae were less abundant in 1999 and were in poorer condition with lower growth rates than in 1998. Dab larvae of <13 mm also exhibited spatial variability with higher RNA/DNA ratios at the seasonal tidal‐mixing front compared with stratified and mixed water masses. However, the growth and nutritional status of sprat larvae was uncorrelated to water column stability, meaning the more favourable feeding conditions generally associated with the stratified pool and tidal‐mixing front in the Irish Sea were not reflected in the growth and condition of these larvae. This suggests that the link between stability, production and larval growth is more complicated than inferred by some previous studies. The existence of spatio‐temporal heterogeneity in the growth and condition of these larvae has implications for larval survival and the recruitment success of these species in the Irish Sea.  相似文献   

6.
Live prey used in aquaculture to feed marine larval fish – rotifer and Artemia nauplii – lack the necessary levels of n‐3 polyunsaturated fatty acids (n‐3 PUFA) which are considered essential for the development of fish larvae. Due to the high voracity, visual feeding in conditions of relatively high luminosity, and cannibalism observed in meagre larvae, a study of its nutritional requirements is needed. In this study, the effect of different enrichment products with different docosahexaenoic acid (DHA) concentrations used to enrich rotifers and Artemia metanauplii have been tested on growth, survival, and lipid composition of the larvae of meagre. The larvae fed live prey enriched with Algamac 3050 (AG) showed a significantly higher growth than the rest of the groups at the end of the larval rearing, while the larvae fed preys enriched with Multigain (MG) had a higher survival rate. DHA levels in larvae fed prey enriched with MG were significantly higher than in those fed AG‐enriched prey. High levels of DHA in Artemia metanauplii must be used to achieve optimal growth and survival of meagre larvae.  相似文献   

7.
Fish larvae present high amino acid requirements due to their high growth rate. Maximizing this growth rate depends on providing a balanced amino acid diet which can fulfil larval amino acid nutritional needs. In this study, two experimental microencapsulated casein diets were tested: one presenting a balanced amino acid profile and another presenting an unbalanced amino acid profile. A control diet, live feed based, was also tested. Trials were performed with larvae from 1 to 25 days after hatching (DAH). Microencapsulated diets were introduced at 8 DAH in co-feeding with live feed and at 15 DAH larvae were fed the microencapsulated diets alone. Results showed a higher survival for the control group (8.6 ± 1.3% versus 4.2 ± 0.6% and 3.2 ± 1.8%) although dry weight and growth were similar in all treatments. The proportion of deformed larvae as well as the ammonia excretion was lower in the group fed a balanced diet than in the unbalanced or control groups (38.3% deformed larvae in control, 30% in larvae fed unbalanced diet and 20% on balanced diet group). Furthermore, larvae fed the microencapsulated diets presented higher docosahexaenoic acid and arachidonic acid levels. This study demonstrates that dietary amino acid profile may play an important role in larval quality. It also shows that balanced microencapsulated diets may improve some of the performance criteria, such as skeletal deformities, compared to live feeds.  相似文献   

8.
Abstract

Aiming at a precocious substitution of live prey by artificial diet, a 20-day experiment with pacu, Piaractus mesopotamicuslarvae using co-feeding and abrupt weaning strategies was set up. At the end of the experiment, larvae fed Artemia showed the best results (P < 0.05) in weight, total length and biomass, compared with other treatments. Larvae fed exclusively a microencapsulated diet never ingested the diet. Diet ingestion in co-fed and abrupt-weaned larvae was low, but did increase during the experiment; however, Artemia influenced diet ingestion on co-fed larvae. Careful considerations should be given to diet processing and formulation to ensure survival and growth of larvae fed exclusively on prepared diets.  相似文献   

9.
Two sets of experiments were carried out to evaluate the potential of eggs and endotrophic larvae of captive Paracentrotus lividus as alternative live prey for marine fish larvae first feeding. The first consisted in rearing sparids, Diplodus sargus and Sparus aurata, larvae until 15 days after hatching in a recirculation system. Compared with the commonly used live prey – rotifer Brachionus spp. – general lower values of survival and growth were obtained when fish larvae were fed with the alternative live prey. Among these, eggs showed to be the preferred feeding. Broodstock feed showed to play a fundamental role on prey quality and consequent fish larvae survival. In the second set of experiments, the 24‐h ingestions of the first feeding larvae in static water were determined for five currently cultured fish larvae species. Except for larger and more predatory Dicentrarchus labrax larvae, there was a trend for higher P. lividus egg ingestion, followed by pre‐plutei and prisms. Prey size, colour and movement affected food selection by fish larvae. It is concluded that, in spite of the alternative live prey being readily consumed by all tested fish larvae, they cannot however presently compete with rotifers in marine fish larvae first feeding.  相似文献   

10.
In this study, partial and total replacement of live diets (microalgae and Artemia nauplii) with microencapsulated diets (MED) are demonstrated for larval culture of P. indicus . Slower growth and lower survival rate of larvae fed experimental MED were significantly improved by a supplement of 15 cells/μL frozen mixed algae (1:2, Tetrtaselmis and Skeletonema ) during protod stages (PZ1–PZ3). This low level of algal supplement to MED resulted in survival (85–92%) equal to that obtained from control live diets (91%) during protod stages. These significant improvements in larval growth and survival are likely to be due to higher larval digestive enzyme activities and hence more efficient digestion of the artificial diet by the larvae. Like other penaeids, P. indicus larvae show high total and tissue trypsin activities during PZ stages, with a peak at mysis stage 1 (M1), and a decrease during subsequent stages when fed on conventional live diets of algae followed by Artemia during mysis stages. Larvae fed 15 ceUs/μL mixed frozen algae in addition to MED demonstrated a significantly higher trypsin activity throughout herbivorous larval stages in comparison to larvae fed solely on MED. A freeze dried alga Rhinomonas reticulata incorporated into a MED at 23Vo (v/v) induced larval trypsin activity equal to that produced by live algae. Hence, the algal substances, which trigger digestive enzyme production, may be retained within the microcapsules. At mysis stages, however, addition of live prey (one Artemia/ mL) to cultures fed with MED significantly improved growth and survival although it depressed trypsin activity. For mysis stages it appears that the use of predigested ingredients is necessary to improve the digestibility of formulated diets.  相似文献   

11.
A large effort has been dedicated in the past years to the development of nutritional balanced inert diets for marine fish larvae in order to suppress the nutritional deficiencies of live feed. In this study growth performance, Artemia intake, protein digestibility and protein retention were measured for Senegalese sole (Solea senegalensis Kaup), in order to provide insight into how protein utilization affects growth performance. Three feeding regimes were tested: ST – standard live feed; ArtRL – live feed and 20%Artemia replacement with inert diet (dry matter basis) from mouth opening; ArtRH – live feed and 58%Artemia replacement with inert diet from mouth opening. Artemia intake and protein metabolism were determined at 6, 15 and 21 days after hatching using 14C‐labelled Artemia protein and subsequent incubation in metabolic chambers. At the end of the experiment, sole fed exclusively with live feed were significantly larger than sole from Artemia replacement treatments. Protein digestibility decreased during sole ontogeny, and more sharply in ArtRH sole. Concomitantly retention efficiency increased during ontogeny but with a slight delay in ArtRH sole. Senegalese sole larvae growth and protein utilization is depressed when co‐fed high levels of inert diet and Artemia, mostly during metamorphosis climax.  相似文献   

12.
Marine Fish Larvae Feeding: Formulated Diets or Live Prey?   总被引:7,自引:0,他引:7  
In the rearing of larval marine fish, any diet that reduces dependance on live prey production is of technical and economic interest. Weaning juveniles with a completely developed digestive tract to a conventional diet, (i.e., "late weaning") can be successful in any marine fish species. For example, weaning one-month-old sea bass (20 mg) to the study's reference diet, Sevbar, resulted in over 85% survival (40% from hatching) and 1.25 g fish at day 90 (at 19 C)
In contrast, "early weaning" of larvae to special microdiets during the first month is still difficult. The best way to reduce live prey utilization in sea bass is to wean larvae at about 3–4 mg in size (day 20). If weaning could be accomplished 15 days earlier, Artemia savings could be as high as 80%. However, this introduces risks relative to growth retardation (30% weight loss) and lower juvenile quality, including greater size variability and skeletal abnormalities. Similar results have been obtained with commercial microparticles (Fry Feed Kyowa) and experimental microbound diets (MBD) made from raw materials (alginate MBD) or preferably from freeze-dried protein sources (zein MBD).
Total replacement of live prey is still impossible in marine fish. Sea bass larvae fed formulated diets exclusively from first feeding (0.3 mg larval wet weight), or even from their second week of life onwards, exhibited low survival and poor growth. Better results can be obtained when formulated diets are used in combination with live prey from first feeding, although the optimal ratio of live prey to formulated diet is still to be specified.  相似文献   

13.
A feeding protocol was developed for red drum larvae based on combining a commercial microparticulate diet (Kyowa Fry Feed) with live prey (rotifers) in a closed, water reuse system. In five trials, growth and survival were measured on larvae reared on a combination of live and microdiet for 1–5 d and then microdiet alone. Results in each trial were compared to control larvae reared on live rotifers Brachionus plicatilis and brine shrimp nauplii Artemia salinas. The most satisfactory combination was feeding live food and microdiet together for the first five days and then completely discontinuing live prey, eliminating the need to feed brine shrimp to the larvae. Growth rates of larvae fed progressively larger sizes of the microdiet were as good as larvae reared on live prey. Both groups metamorphosed to the juvenile stage at less than one month. Survival rates on the five day live food and microdiet combination were a remarkable 60% from egg to the juvenile stage. The successful weaning of red drum to microdiets paves the way to produce a semipurified diet to test nutrient requirements of larval fish.  相似文献   

14.
The tongue sole Cynoglossus semilaevis, an inshore fish in China, has showed great potential in aquaculture recently. However, poor survival was recorded during the period of weaning from live Artemia to artificial diets. In this paper, the influence of co‐feeding larvae with live and inert diet on weaning performance was described. The C. semilaevis larvae were reared at 21 ± 1 °C and fed four different feeding regimes from 6 days post‐hatching (dph): A, Artemia (10 individuals mL?1); B, Artemia (5 individuals mL?1); C, mixed diet (10 Artemia individuals mL?1 and 12 mg L?1 inert diet); and D, mixed diet (5 Artemia individuals mL?1 and 12 mg L?1 inert diet). Rotifers were also supplied in all cases during the first days of feeding. Mixed diets of commercial formulated feed and live prey (rotifers and Artemia) allowed larvae to complete metamorphosis, achieving similar specific growth rate (SGR) (18.5 ± 1.4% and 18.7 ± 1.6%) and survival (40 ± 7.6% and 48.5 ± 6.8%) compared with larvae fed on live feed alone (SGR of 18.3 ± 1.2%, 19.3 ± 1.9% and survival of 41.2 ± 11.3%, 38 ± 4.9%). However, in metamorphosed fish, when live feed was withdrawn on 31 dph, there was significant difference (P < 0.05) in survival and growth among treatments. Metamorphosed fish, previously fed mixture diets during larval stages, had similar survival (62.1 ± 7.6% and 62.8 ± 3.9% for regimes C and D, respectively) but higher than that obtained for fish that previously fed on live feed (49.3 ± 2% and 42.1 ± 3.9% for regimes A and B, respectively) after weaning (day 60). The SGR of weaned fish previously fed live feed was similar (3.1 ± 0.6% and 2.92 ± 0.6% for regimes A and B, respectively) but lower than that recorded for fish that was fed from day 6 to day 30 on the mixed diet (4.5 ± 1.1% and 4.9 ± 0.3% for regimes C and D, respectively). It is suggested that weaning of C. semilaevis from early development would appear to be feasible and larval co‐feeding improves growth and survival.  相似文献   

15.
The present study is the first to evaluate lipid metabolism in first-feeding Atlantic bluefin tuna (ABT; Thunnus thynnus L.) larvae fed different live prey including enriched rotifers Brachionus plicatilis and Acartia sp. copepod nauplii from 2 days after hatch. Understanding the molecular basis of lipid metabolism and regulation in ABT will provide insights to optimize diet formulations for this high-value species new to aquaculture. To this end, we investigated the effect of dietary lipid on whole larvae lipid class and fatty acid compositions and the expression of key genes involved in lipid metabolism in first feeding ABT larvae fed different live prey. Additionally, the expression of lipid metabolism genes in tissues of adult broodstock ABT was evaluated. Growth and survival data indicated that copepods were the best live prey for first feeding ABT and that differences in growth performance and lipid metabolism observed between larvae from different year classes could be a consequence of broodstock nutrition. In addition, expression patterns of lipid metabolic genes observed in ABT larvae in the trials could reflect differences in lipid class and fatty acid compositions of the live prey. The lipid nutritional requirements, including essential fatty acid requirements of larval ABT during the early feeding stages, are unknown, and the present study represents a first step in addressing these highly relevant issues. However, further studies are required to determine nutritional requirements and understand lipid metabolism during development of ABT larvae and to apply the knowledge to the commercial culture of this iconic species.  相似文献   

16.
In mass culture of Pacific bluefin tuna Thunnus orientalis, yolk‐sac larvae of other species are fed as a major prey item to tuna larvae from 7 to 8 mm in total length. Marked growth variations in tuna larvae are frequently observed after feeding of yolk‐sac larvae, and this variation in the growth of tuna larvae is subsequently a factor leading to the prevalence of cannibalistic attacks. To elucidate details of the mortality process of hatchery‐reared tuna larvae after the initiation of yolk‐sac larvae feeding, we compared the nutritional and growth histories of the surviving (live) tuna larvae to those of the dead fish, found dead on the bottom of the tank, as direct evidence of their mortality processes. Cause of mortality of tuna larvae 3 and 5 days after the initiation of feeding of yolk‐sac larvae was assessed from nitrogen stable isotope and otolith microstructure analyses. Stable isotope analysis revealed that the live fish rapidly utilized prey fish larvae, but the dead fish had depended more on rotifers relative to the live fish 3 and 5 days after the initiation of feeding of yolk‐sac larvae. The growth histories based on otolith increments were compared between the live and dead tuna larvae and indicated that the live fish showed significantly faster growth histories than dead fish. Our results suggest that fast‐growing larvae at the onset of piscivory could survive in the mass culture tank of Pacific bluefin tuna and were characterized by growth‐selective mortality.  相似文献   

17.
In mass culture of Pacific bluefin tuna Thunnus orientalis, a marked growth variation is observed after they start feeding at 6–7 mm in body length (BL) on yolk‐sac larvae of other species, and the growth variation in tuna larvae is a factor leading to the prevalence of cannibalism. To examine the relationship between prey utilization and growth variation, nitrogen stable isotope ratios (δ15N) of individual larvae were analysed. A prey switch experiment was conducted under two different feeding regimes: a group fed rotifers (rotifer fed group), and a group fed yolk‐sac larvae of spangled emperor, Lethrinus nebulosus (fish fed group) from 15 days after hatching (6.87 mm BL). The fish fed group showed significantly higher growth than the rotifer fed group. Changes in the δ15N of the fish fed group were expressed as an exponential model and showed different patterns from those of the rotifer fed group. The δ15N of fast‐growing tuna larvae collected in an actual mass culture tank after the feeding of yolk‐sac larvae was significantly higher than those of the slow‐growing larvae, indicating that slow glowing larvae depended largely on rotifers rather than the yolk‐sac larvae.  相似文献   

18.
Carp larvae, like any other fish larvae dependon natural food during first few days of theirlife. In nursery conditions, high mortality andslow larval growth are of common occurrence;sub-optimal nutrition might be a possiblereason for such consequences. To improve thesituation the effect of feeding ascorbicacid-enriched live food on survival, growth,tissue biochemical composition includingascorbate level was evaluated in first feeding(3 days old) larvae (av. wt. 2.2 mg) of therohu carp, Labeo rohita (Ham.) for aperiod of 15 days (temp. 28.6 ± 1 °C)under natural photoperiod. The larvae (stockingdensity 10 l–1) were offered enriched andnon-enriched zooplankton ad libitumfollowing a rigid schedule with four feedingregimes, each having 3 replicates. In treatmentT1, non-enriched zooplankton (Moina,Daphnia, Cyclops, Diaptomus) and in T2,T3, T4 ascorbic acid enriched (12 henrichment) zooplankton [@10%, 20% and 30%ascorbyl palmitate (AP) inclusion in diet ofzooplankton] were offered. Highest survival(90%) and growth (9563% live weight gain)could be seen in T3 group and the lowestin T1 (62% survival and 805% live weightgain), thus confirming the dietary essentialityof ascorbic acid for rohu larvae. Therequirement has been shown to be 1409 µg/gdry diet. Whole body tissue analyses for crudeprotein, total lipid and RNA: DNA ratiofollowed the same trend as that of growthresponse and percent survival. Significantpositive correlation (r = 0.949 and 0.861) couldbe found with muscle RNA/DNA ratio and muscleRNA content with specific growth rate indifferent treatments. Significant differencewas found in tissue ascorbate levels betweenenriched plankton fed groups, being highest in T3. Such live foodmediated vitamin transfer might be an effectivemeans to provide higher plane of nutrition forhigh survival and rapid growth for rohu larva.  相似文献   

19.
Harpacticoid copepods are being considered as alternative candidates for live feed in aquaculture, but their benthic affinity may pose problems for pelagic fish larvae. We compared the swimming behaviour and feeding incidence of herring larvae (Clupea harengus) in the presence of harpacticoid copepods (Tachidius discipes) and rotifers (Brachionus plicatilis). Additionally, we provided T. discipes via a floating sieve to improve the prey availability. The comparison was performed at 5 and 10 days post hatch (dph) via 2D‐video observations. Quantitative analyses of larval trajectories allowed the estimation of feeding behaviour through a series of indicators: swimming speed, straightness of trajectories, turning angles and swimming activities (break, sink, slow, normal, fast). The outcomes highlighted that the prey type had no significant effect on swimming speed or straightness of the swimming path. However, at 10 dph directly copepod‐fed larvae spent less time in slow but more time in the normal swimming‐state than rotifer‐fed larvae and larvae fed with Tachidius via sieve. This suggests higher energy expenditure of directly copepod‐fed larvae. Moreover, the feeding incidence was higher in larvae fed with Tachidius via sieve than directly Tachidius‐fed larvae. Thus, providing harpacticoid copepods via a floating sieve can improve the rearing of marine fish larvae.  相似文献   

20.
Larvae of two caridean shrimp species, Macrobrachium rosenbergii (De Man) and Palaemon elegans Rathke, were fed live and artificial diets. P. elegans larvae fed exclusively live Artemia salina (15 nauplii mL?1) developed into first postlarval stage (PL1) within 12 days at a temperature of 25°C and salinity 32.5 g L?1. Their survival and mean total length at this stage were 88.5% and 6.7 mm respectively. M. rosenbergii larvae fed on 15 Artemia mL?1 started to metamorphose into PLl within 24 days at 29–30°C and 12 g L?1. Attempts to completely replace live Artemia for rearing P. elegans during early stages failed, and only a partial replacement was achieved for the larvae of both species. P. elegans larvae survived (49%) solely on a microgranulated diet (Frippak PL diet) from stage zoea (Z) 4–5 to PL1. Similarly, a microencapsulated diet (Frippak CD3) also sustained M. rosenbergii larvae from Z5–6 to PL1 with a 28% survival. Development of the larvae of both species was retarded by 2–3 days and their survivals were lower than those fed on the live diet. The inability of the early larvae of these caridean species to survive on artificial diets is attributed to their undeveloped guts and limited enzymatic capabilities. Trypsin activity in the larvae was determined for all larval stages. It was found that the highest trypsin activity, at stage Z4–5 in P. elegans and at stage Z5–6 in M. rosenbergii, coincides with a rapid increase in the volume of the hepatopancreas and the formation of the filter apparatus. These morphological changes in the gut structure appear to enable the larvae to utilize artificial diets after stage Z5–6. Low larval trypsin activities may be compensated by the easily digestible content of their live prey during early larval stages (Z1–Z4/5) and by longer gastroevacuation time (GET) and almost fully developed guts during later stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号